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Abstract. We study a sequence of nonlinear stochastic differential equations and
show that the distributions of the solutions converge to the solution of the vis-
cous porous medium equation with exponent m > 1, generalizing the results of
Oelschläger (2001) and Philipowski (2006) which concern the case m = 2. Fur-
thermore we explain how to apply this result to the study of interacting particle
systems.

1. Introduction

Let V ∈ C2
c (Rd) (twice continuously differentiable with compact support) be

an even non-negative function with
∫

Rd V (x)dx = 1. For m > 1, we consider the

following sequence of nonlinear stochastic differential equations in R
d (which in the

special case m = 2 coincides with the model studied in Philipowski (2006)):






dY ε
t = −

[

∇V ε ∗ (V ε ∗ uε(t))m−1
]

(Y ε
t )dt + dBt

Y ε
0 = ζ

uε(t) = Law(Y ε
t ).

(1.1)

Here V ε is obtained from V by the scaling

V ε(x) :=
1

εd
V (x/ε),

(Bt)t≥0 is a d-dimensional Brownian motion, and ζ is a random variable which is
independent from (Bt)t≥0 and whose distribution has a density

u0 ∈ L∞(Rd). (1.2)
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Defining
gε(t) := V ε ∗ (V ε ∗ uε(t))m−1,

by Itô’s formula uε is a distributional solution of
{

∂tu
ε = 1

2 ∆uε + div(∇gεuε)
uε(0, ·) = u0.

(1.3)

We will show that uε converges, as ε → 0, to the solution u of the viscous porous
medium equation

{

∂tu = 1
2 ∆u + m−1

m ∆(um)
u(0, ·) = u0.

In the case m = 2 the proof of existence and uniqueness of a strong solution
of (1.1) can be found in Sznitman (1991, Chapter I, Theorem 1.1), and that proof
can be easily generalized to arbitrary m ≥ 2 thanks to the Lipschitz continuity of
the function s 7→ sm−1. In the case 1 < m < 2 we will prove existence of a strong
solution in Section 2.2 using an approximation argument (see Proposition 2.8).

The importance of this convergence result comes from the fact that the nonlinear
stochastic differential equation (1.1) arises in the study of large interacting particle
systems, and by the above convergence one can prove a propagation of chaos result,
see Section 2.

1.1. Notations and statement of the main result. Let M(Rd) be the the space of
probability measures on R

d, equipped with the metric

d(µ, ν) := sup
f∈BL

∣

∣

∣

∣

∫

Rd

f(x)µ(dx) −
∫

Rd

f(x)ν(dx)

∣

∣

∣

∣

,

where BL is the set of all Lipschitz continuous functions on R
d which are bounded

together with their Lipschitz constant by 1. It is well known (see for example Dudley
(1989)) that d metrizes the weak convergence in M(Rd) (that is, the convergence
in the duality with bounded countinuous functions).

Definition 1.1. A weak solution of the viscous porous medium equation
{

∂tu = 1
2 ∆u + m−1

m ∆(um)
u(0, ·) = u0

(1.4)

on the time interval [0, T ] with initial datum u0 is a measure-valued function u ∈
C([0, T ],M(Rd)) with the following properties:

(1) For almost every t ∈ [0, T ] the measure u(t) has a density with respect to
Lebesgue measure (which we still denote by u(t)), and u ∈ Lm(Rd × [0, T ]).

(2) For all f ∈ C2
b (Rd) and all t ∈ [0, T ]:

∫

Rd

f(x)u(t, x)dx =

∫

Rd

f(x)u0(x)dx +
1

2

∫ t

0

∫

Rd

∆f(x)u(s, x)dxds

+
m − 1

m

∫ t

0

∫

Rd

∆f(x)u(s, x)mdxds.

As we will see in the sequel, thanks to the assumption u0 ∈ L∞(Rd) all weak
solutions of the viscous porous medium equation belong to Lm+1(Rd × [0, T ]) (and
not only to Lm(Rd × [0, T ])), and therefore are unique (see Propositions 3.9 and
3.10). One so obtains the following convergence result (whose proof is given to
Section 3):
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Theorem 1.2. The sequence (uε)ε>0 converges in C([0, T ],M(Rd)) to the unique
weak solution u∞ of the viscous porous medium equation with initial datum u0.

Remark 1.3. In the case m = 2 a similar result was proved by Oelschläger (2001),
but only under the very restrictive assumption u0 ∈ C∞

b (Rd). Philipowski (2006)
generalized Oelschläger’s result to the case u0 ∈ L2(Rd), but only in the case m = 2.

2. Application to interacting particle systems

Our result is of crucial importance in the study of systems of interacting diffusions
related to the porous medium equation

∂tu =
m − 1

m
∆(um).

The classical application of this equation concerns the density of an ideal gas flow-
ing through a homogeneous porous medium (see Vázquez (1999, Chapter 1.9) or
Vázquez (2007, Chapter 2.1)). Let u be the density of the gas, v its velocity and p
the pressure. Then we have the following physical laws:

1. Conservation of mass: ∂t(εu) + div(uv) = 0

2. Equation of state: p ∝ uγ

3. Darcy’s law: v ∝ −∇p

Here ε ∈ (0, 1) is the porosity of the medium (which is constant because we are
dealing with a homogeneous medium), and γ the polytropic exponent. Combining
these equations we see that (up to a positive constant factor that can be scaled
away)

∂tu =
γ

γ + 1
∆(uγ+1),

so that the density of the gas satisfies the porous medium equation with m = γ +1.
For an introduction to flows in porous media we refer to Vázquez (1999), and for
the mathematical theory and other applications of the porous medium equation to
Vázquez (2007).

We have given a physical derivation of the porous medium equation based on
the hypotheses of continuum mechanics. But strictly speaking, a gas is not a
continuum, but consists of atoms and molecules. It is therefore desirable to find
rigorous connections between this microscale and the macroscale. Knowing that
on the macroscale the behaviour of the gas is described by the porous medium
equation, our goal is to find a microscopic model which allows us, when the number
of particles tends to infinity, to derive the porous medium equation as limit equation.

In the special case m = 2 this problem was solved by Philipowski (2007), and
the question arose whether his approach could be adapted to treat more general
values of m. As we will see in the sequel this is indeed possible.

We will distinguish two cases: the easier case m ≥ 2 and the more complicated
case 1 < m < 2.

2.1. The case m ≥ 2. We consider the following system of interacting diffusions
in R

d (which in the special case m = 2 coincides with the model studied by
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Philipowski (2007)):


















dXN,n,i,ε,δ
t = −

[
∫

Rd

∇V ε(y)
{ 1

N

N
∑

j=1

V ε(XN,i,ε,δ
t − y − XN,j,ε,δ

t )
}m−1

dy

]

dt

+ δdBi
t

XN,i,ε,δ
0 = ζi.

(2.1)
Here (Bi)i∈N is a sequence of independent standard Brownian motions, and (ζi)i∈N

is a sequence of independent and identically distributed random variables, indepen-
dent of the Brownian motions and whose distributions have density u0 with respect
to Lebesgue measure.

The particle system (2.1) depends on three parameters: N ∈ N, ε > 0 and δ > 0.
N is the number of particles, ε measures the range of interaction, and δ measures
the strength of the additional diffusion caused by the Brownian motions.

Let M be a fixed natural number, and let PN,M,ε,δ
t be the joint distribution on

R
Md of the random variables XN,i,ε,δ

t , i = 1, . . . , M . Moreover let u ∈ C([0, T ],
L1(Rd)) ∩ L∞([0, T ], L∞(Rd)) be the unique weak solution of the Cauchy problem
for the porous medium equation

{

∂tu = m−1
m ∆(um)

u(0, ·) = u0

(see Brézis and Crandall (1979), Bénilan and Crandall (1981), Vázquez (2007)), and
denote by Pt the measure on R

d with density u(t, ·). Then we have the following
theorem:

Theorem 2.1 (Propagation of chaos for m ≥ 2).

lim
δ→0

lim
ε→0

lim
N→∞

PN,M,ε,δ
t = P⊗M

t , (2.2)

locally uniformly in t.

This result has the following consequences:

Corollary 2.2.

(1) The empirical measure µN,ε,δ
t = 1

N

∑N
i=1 δXN,i,ε,δ

t
of the particle system

converges weakly to Pt.
(2) The distribution of the position of each particle also converges to Pt.
(3) Any fixed number of particles remains approximately independent in the

course of time, in spite of the interaction.

Proof . The second and the third statement follow immediately from Theorem 2.1.
The first statement follows from Theorem 2.1 and the general fact (see Sznitman
(1991, Chapter I.2, Proposition 2.2)) that propagation of chaos is equivalent to
weak convergence of the empirical measure to a deterministic measure. �

Proof of Theorem 2.1. As intermediate objects between the particle system (2.1)
and the porous medium equation we introduce nonlinear processes Y i,ε,δ (i ∈ N,
ε, δ > 0) defined as solutions of the following nonlinear stochastic differential equa-
tions:







dY i,ε,δ
t = −

[

∇V ε ∗ (V ε ∗ uε,δ(t))m−1
]

(Y i,ε,δ
t )dt + δdBi

t ,

Y i,ε,δ
0 = ζi

uε,δ(t) = Law(Y i,ε,δ
t ).

(2.3)
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These are (up to the factor δ in front of the Brownian motions) independent

copies of our process Y ε
t defined in (1.1). In a first step we show that XN,i,ε,δ

t

converges (for N → ∞) to Y i,ε,δ
t (the proof of the following result is postponed to

the Appendix):

Proposition 2.3.

E

[

sup
0≤t≤T

∣

∣

∣
XN,i,ε,δ

t − Y i,ε,δ
t

∣

∣

∣

2
]

≤ C(ε)

N
,

where the dependence of C(ε) on ε is made explicit in the proof.

By the above proposition, we easily have the convergence

lim
N→∞

PN,m,ε,δ
t = (P ε,δ

t )⊗m,

where P ε,δ
t = uε,δ is the law of Y i,ε,δ

t .

Then, Theorem 1.2 implies that the distribution of Y i,ε,δ
t converges (for ε → 0)

to the solution uδ of the viscous porous medium equation (with viscosity δ2/2)
{

∂tu
δ = δ2

2 ∆uδ + m−1
m ∆

(

(uδ)m
)

uδ(0, ·) = u0,

so that

lim
ε→0

lim
N→∞

PN,M,ε,δ
t = (P δ

t )⊗M ,

P δ
t being the measure with density uδ(t, ·). Finally, a result of Bénilan and Crandall

(1981) implies that uδ converges in L∞([0, T ], L1(Rd)) to the solution u of the
porous medium equation as δ → 0, from which (2.2) follows. �

2.2. The case 1 < m < 2. This case is more difficult since the function s 7→
sm−1 is not locally Lipschitz continuous. We therefore replace it with a Lipschitz
continuous approximation ϕn (i.e. (ϕn)n∈N is a sequence of non-negative Lipschitz
continuous functions that converges uniformly to the function s 7→ sm−1) and study
the following system:


















dXN,n,i,ε,δ
t =−

[
∫

Rd

∇V ε(y) ϕn

( 1

N

N
∑

j=1

V ε(XN,n,i,ε,δ
t − y − XN,n,j,ε,δ

t )
)

dy

]

dt

+ δdBi
t

XN,n,i,ε,δ
0 = ζi.

(2.4)

As before let M be a fixed natural number, and let PN,M,n,ε,δ
t be the joint dis-

tribution of the random variables XN,i,n,ε,δ
t , i = 1, . . . , M . Moreover let Pt be the

measure with density u(t, ·) on R
d, where u ∈ C([0, T ], L1(Rd))∩L∞([0, T ], L∞(Rd))

is the unique weak solution of the porous medium equation
{

∂tu = m−1
m ∆(um)

u(0, ·) = u0.

Then we have the following:

Theorem 2.4 (Propagation of chaos for 1 < m < 2).

lim
δ→0

lim
ε→0

lim
n→∞

∗ lim
N→∞

PN,M,n,ε,δ
t = P⊗M

t , (2.5)
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locally uniformly in t. Here lim∗
n→∞ denotes the limit of any converging subsequence

of a precompact sequence.

Remark 2.5. This theorem means the following:

(1) For each ε, δ > 0 the sequence (limN→∞ PN,M,n,ε,δ
t )n∈N is tight.

(2) Each accumulation point of this sequence (denoted by lim∗
n→∞ limN→∞

PN,M,n,ε,δ
t ) satisfies limδ→0 limε→0 lim∗

n→∞ limN→∞ PN,M,n,ε,δ
t = P⊗M

t .
This means that although the limit that we obtain after letting n → ∞
might be non-unique, the whole limit is unique.

Proof of Theorem 2.4. We define nonlinear processes Y n,i,ε,δ (i ∈ N, ε, δ > 0) as
solutions of the following nonlinear stochastic differential equations:







dY n,i,ε,δ
t = −

[

∇V ε ∗ ϕn(V ε ∗ un,ε,δ(t))
]

(Y n,i,ε,δ
t )dt + δdBi

t,

Y n,i,ε,δ
0 = ζi

un,ε,δ(t) = Law(Y n,i,ε,δ
t ).

(2.6)

As in Proposition 2.3 (the proof is exactly the same, just write ϕn in place of the

function s 7→ sm−1) one can show that XN,n,i,ε,δ
t converges (for N → ∞) to Y n,i,ε,δ

t :

Proposition 2.6.

E

[

sup
0≤t≤T

∣

∣

∣
XN,n,i,ε,δ

t − Y n,i,ε,δ
t

∣

∣

∣

2
]

≤ C(ε, n)

N
.

As in the preceding subsection this proposition implies

lim
N→∞

PN,M,n,ε,δ
t = (Pn,ε,δ

t )⊗M ,

where Pn,ε,δ
t = un,ε,δ(t) is the law of Y n,i,ε,δ

t . We now let n → ∞. Since the
processes Y n,i,ε,δ are (for different i) independent copies of each other, we can omit
the index i. Let un,ε,δ be the law of the process Y n,ε,δ, considered as an element of
M(C([0, T ], Rd)) (so that un,ε,δ(t) is its marginal at time t).

Lemma 2.7. The sequence (un,ε,δ)n∈N is tight.

Proof . In order to apply Theorem 1.4.6 of Stroock and Varadhan (1979) we have
to show that for all non-negative f ∈ C∞

0 (Rd) there is a constant Af ≥ 0 such

that for all n ∈ N and all x0 ∈ R
d the process f(Y n,ε,δ

t + x0) + Af t is a non-
negative submartingale. To do so we first observe (using Itô’s formula) that, for all
f ∈ C2

b (Rd), the process

f(Y n,ε,δ
t + x0)−

∫ t

0

{

−
[

∇V ε ∗ ϕn(V ε ∗ un,ε,δ(s))
]

(Y n,i,ε,δ
s ) · ∇f(Y n,i,ε,δ

s + x0)

+
δ2

2
∆f(Y n,i,ε,δ

s + x0)
}

ds

is a martingale. Moreover, since ϕn(s) → sm−1 uniformly, we can assume ϕn(s) ≤
1 ∨ s for all n ∈ N. It is then clear that we can take Af :=

[

‖∇V ε‖L1(Rd)(1 ∨
‖V ε‖L∞(Rd)) + δ2/2

]

‖f‖C2(Rd). �

Let uε,δ be an accumulation point of the sequence (un,ε,δ)n∈N in M(C([0, T ], Rd)).
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Proposition 2.8. Up to a subsequence, the sequence of processes (Y n,ε,δ)n∈N con-
verges almost surely to the strong solution Y ε,δ of the equation

{

dY ε,δ
t = −

[

∇V ε ∗ (V ε ∗ uε,δ(t))m−1
]

(Y ε,δ
t )dt + δdBt

Y ε,δ
0 = ζ,

i.e. sup0≤t≤T

∣

∣

∣
Y n,ε,δ

t − Y ε,δ
t

∣

∣

∣
→ 0 a.s. for n → ∞. Moreover uε,δ(t) equals the

law of Y ε,δ
t , so that Y ε,δ is in fact a strong solution of the nonlinear stochastic

differential equation






dY ε,δ
t = −

[

∇V ε ∗ (V ε ∗ uε,δ(t))m−1
]

(Y ε,δ
t )dt + δdBt

Y ε,δ
0 = ζ

uε,δ(t) = Law(Y ε,δ
t ).

Proof . The weak convergence of un,ε,δ to uε,δ together with the uniform conver-
gence of ϕn to the function s 7→ sm−1 implies uniform convergence of the drift
coefficient ∇V ε ∗ ϕn(V ε ∗ un,ε,δ(t)) to ∇V ε ∗ (V ε ∗ uε,δ(t))m−1, and the first state-
ment follows immediately (use Gronwall’s lemma and the Lipschitz continuity of
x 7→ ∇V ε ∗(V ε ∗uε,δ(t))m−1(x)). The second statement is also clear because uε,δ(t)

is the weak limit of un,ε,δ(t) = Law(Y n,ε,δ
t ), and Y ε,δ

t is the limit of Y n,ε,δ
t for the

almost sure convergence. �

Lemma 2.7 and Proposition 2.8 together imply that lim∗
n→∞ limN→∞ PN,M,n,ε,δ

t

= (P ε,δ
t )⊗M , where P ε,δ

t = uε,δ(t) is the law of Y i,ε,δ
t . Now we conclude, as in the

preceding subsection, using Theorem 1.2 and the result of Bénilan and Crandall
(1981). �

3. Proof of Theorem 1.2

We introduce the following smoothed version of uε

vε(t, x) := (uε(t) ∗ V ε)(x).

Observe that, since uε(t) is a probability measure for all t ∈ [0, T ] and V ∈ C2
c (Rd),

we have
vε,∇vε, D2vε ∈ L∞([0, T ], L1(Rd) ∩ C(Rd)). (3.1)

Moreover vε solves
{

∂tv
ε = 1

2 ∆vε + div(∇gεuε) ∗ V ε = 1
2 ∆vε + (∇gεuε) ∗ ∇V ε

vε(0, ·) = u0 ∗ V ε.
(3.2)

Thus, since the right hand side of (3.2) belongs to L∞([0, T ], L1(Rd) ∩ C(Rd)), we
also have

∂tv
ε ∈ L∞([0, T ], L1(Rd) ∩ C(Rd)). (3.3)

We also remark that, with these notations,

gε = V ε ∗ (vε)m−1. (3.4)

The strategy of the proof is the following: first, in Lemma 3.1, we prove some
a priori bounds on vε and gε which allow to show the tightness of both sequences
(uε)ε>0 and (vε)ε>0, and that up to a subsequence they converge in C([0, T ],M(Rd))
to the same limit u∞ (see Proposition 3.3 and Lemma 3.4). Then we take advance of
the regularizing effect of the heat kernel to prove some stronger a priori estimates on
vε (see Lemma 3.5), which give that vε converges to u∞ strongly in Lm([0, T ]×R

d)
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(see Lemma 3.6). This fact allows to pass to the limit in the non-linear term of
the equation and to show that u∞ is a weak solution of the viscous porous medium
equation (see Proposition 3.8). Finally we prove uniqueness of weak solutions (see
Propositions 3.9 and 3.10), which implies that the whole sequence (uε)ε>0 converges
to u∞.

Lemma 3.1. For each t ≥ 0:

‖vε(t, ·)‖m
Lm(Rd) +

m(m − 1)

2

∫ t

0

∫

Rd

|∇vε(s, x)|2vε(s, x)m−2dx ds

+ m

∫ t

0

∫

Rd

|∇gε(s, x)|2uε(s, dx) ds = ‖vε(0, ·)‖m
Lm(Rd).(3.5)

Remark 3.2. Since vε(0, ·) = u0 ∗V ε, ‖V ε‖L1(Rd) = 1 and u0 ∈ L1(Rd)∩L∞(Rd) ⊂
Lm(Rd), we have

‖vε(0, ·)‖Lm(Rd) ≤ ‖u0‖Lm(Rd) < ∞.

Therefore Lemma 3.1 implies that each of the three terms on the left hand side of
(3.5) is bounded uniformly in ε and t.

Proof of Lemma 3.1. Multiplying (3.2) by (vε)m−1 and integrating this identity in
space (which is admissible by (3.1) and (3.3)) we have

1

m

d

dt

∫

Rd

vε(t, x)mdx =
1

2

∫

Rd

vε(t, x)m−1∆vε(t, x)dx

+

∫

Rd

vε(t, x)m−1[(∇gεuε) ∗ ∇V ε](t, x)dx.

Observe now that, since V ε is even, ∇V ε is odd, and thus
∫

Rd

b(x)[a ∗ ∇V ε](x)dx = −
∫

Rd

[∇V ε ∗ b](x)a(x)dx

for any a, b (provided everything is well-defined). Thus, by this fact and (3.4), we
get

1

m

d

dt

∫

Rd

vε(t, x)mdx =
1

2

∫

Rd

vε(t, x)m−1∆vε(t, x)dx

−
∫

Rd

[∇V ε ∗ (vε)m−1](t, x)∇gε(t, x)uε(t, dx)

= −m − 1

2

∫

Rd

|∇vε(t, x)|2vε(t, x)m−2dx

−
∫

Rd

|∇gε(t, x)|2uε(t, dx).

Integrating in time, the thesis follows. �

Proposition 3.3. The set (uε)ε>0 is relatively compact in C([0, T ],M(Rd)).

Proof . In order to apply the Ascoli-Arzelà theorem we have to show:

(1) There is a compact set K ⊂ M(Rd) with uε(t) ∈ K for all ε > 0 and all
t ∈ [0, T ].

(2) The set {uε | ε > 0} is equicontinuous, i.e. for each η > 0 there exists δ0
such that, for all ε > 0 and all s, t ∈ [0, T ],

|s − t| ≤ δ ⇒ d(uε(s), uε(t)) ≤ η.
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We start with the first statement. Since a subset K of M(Rd) is relatively compact
if and only if it is tight, we have to show that for each η > 0 there exists a compact
set K ⊂ R

d with uε(t, K) ≥ 1 − η (or equivalently P [Y ε
t ∈ Kc] ≤ η) for all ε > 0

and all t ∈ [0, T ].
Let R > 0. Then we have:

P [|Y ε
t | > R] = P

[
∣

∣

∣

∣

ζ −
∫ t

0

∇gε(Y ε
s , s)ds + Bt

∣

∣

∣

∣

> R

]

≤ P

[

|ζ| >
R

3

]

+ P

[∣

∣

∣

∣

∫ t

0

∇gε(Y ε
s , s)ds

∣

∣

∣

∣

>
R

3

]

+ P

[

|Bt| >
R

3

]

.

The first and the third term tend (for R → ∞) to 0, uniformly in ε and t ∈ [0, T ].
For the second term we obtain, using Chebyshev’s inequality,

P

[∣

∣

∣

∣

∫ t

0

∇gε(Y ε
s , s)ds

∣

∣

∣

∣

>
R

3

]

≤ 9

R2
E

[∣

∣

∣

∣

∫ t

0

∇gε(Y ε
s , s)ds

∣

∣

∣

∣

2]

≤ 9t

R2
E

[
∫ t

0

|∇gε(Y ε
s , s)|2 ds

]

=
9t

R2

∫ t

0

∫

Rd

|∇gε(x, s)|2 uε(s, dx)ds,

and due to Lemma 3.1 this also tends (for R → ∞) to 0, uniformly in ε and t. This
completes the proof of the first statement.

We now prove the second statement. For s, t ∈ [0, T ] we obtain (using Lemma 3.1)

d(uε(s), uε(t)) = sup
f∈BL

∣

∣

∣

∣

∫

Rd

f(x)uε(t, dx) −
∫

Rd

f(x)uε(s, dx)

∣

∣

∣

∣

= sup
f∈BL

|E [f(Y ε
t )] − E [f(Y ε

s )]|

≤ E
[

|Y ε
t − Y ε

s |2
]1/2

= E

[∣

∣

∣

∣

−
∫ t

s

∇gε(Y ε
r , r)dr + Bt − Bs

∣

∣

∣

∣

2]1/2

≤ E

[
∣

∣

∣

∣

−
∫ t

s

∇gε(Y ε
r , r)dr

∣

∣

∣

∣

2]1/2

+ E

[

|Bt − Bs|2
]1/2

≤ E

[

|t − s|
∫ t

s

|∇gε(Y ε
r , r)|2dr

]1/2

+ |t − s|1/2

= |t − s|1/2

([
∫ t

s

∫

Rd

|∇gε(x, r)|2uε(r, dx)dr

]1/2

+ 1

)

≤ C|t − s|1/2.

This means that (uε)ε>0 is equicontinuous, so that the lemma is proved. �

We have shown that the sequence (uε)ε>0 has a convergent subsequence. We
now fix such a convergent subsequence, which we still denote by (uε)ε>0. Let
u∞ ∈ C([0, T ],M(Rd)) be its limit.

Lemma 3.4. The sequence (vε)ε>0 also converges in C([0, T ],M(Rd)) to u∞.
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Proof . The result is a simple consequence of the fact that

sup
0≤t≤T

d(uε(t), vε(t)) → 0

as ε → 0. To prove this, observe that for any t ∈ [0, T ] and f ∈ BL we have

∣

∣

∣

∣

∫

Rd

f(x)vε(x)dx −
∫

Rd

f(x)uε(t, dx)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Rd

f(x)(uε(t) ∗ V ε)(x)dx −
∫

Rd

f(x)uε(t, dx)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Rd

[(f ∗ V ε)(x) − f(x)]uε(t, dx)

∣

∣

∣

∣

≤
∫

Rd

(
∫

Rd

|f(x + y) − f(y)|V ε(x)dx

)

uε(t, dy)

≤
∫

Rd

|x|V ε(x)dx

∫

Rd

uε(t, dy)

= ε

∫

Rd

|x|V (x)dx = Cε.

�

Since by Lemma 3.1 the sequence (vε)ε>0 is bounded in L∞([0, T ], Lm(Rd)),
up to a subsequence it weakly* converges in L∞([0, T ], Lm(Rd)). Therefore by the
above lemma we get that u∞ ∈ L∞([0, T ], Lm(Rd)). We now want to prove a strong
convergence result.

To this aim, we introduce a fractional-type Sobolev space Xα, for 0 < α < 1:

Xα :=

{

w ∈ L1(Rd)

∣

∣

∣

∣

sup
0<|h|≤1

‖w(· + h) − w(·)‖L1(Rd)

|h|α < +∞
}

(this space coincides with the space Λ1,∞
α , see Stein (1970, Paragraph V.5)). It is

simple to check that this is a Banach space endowed with the norm

‖w‖Xα := ‖w‖L1(Rd) + sup
0<|h|≤1

‖w(· + h) − w(·)‖L1(Rd)

|h|α .

By the Riesz-Fréchet-Kolmogorov Theorem (see Brézis (1983, Theorem IV.25)),
any bounded subset of Xα is compact in L1(Ω) for any bounded domain Ω ⊂ R

d.
To prove our strong convergence result, we need a uniform bound on vε in

L1([0, T ], Xα).

Lemma 3.5. The sequence (vε)ε>0 is uniformly bounded in L1([0, T ], Xα) for any
0 < α < 1.

Proof . Observe that by (3.2), (3.1) and (3.3), vε is a smooth bounded solution of
the parabolic equation

{

∂tv
ε = 1

2∆vε + div fε

vε(0, ·) = u0 ∗ V ε,
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with fε := (∇gεuε) ∗ V ε. Therefore it is well-known that vε is given by

vε(t) = Γ(t) ∗ vε(0) +

∫ t

0

(Γ(t − s) ∗ div fε(s))ds

= Γ(t) ∗ vε(0) +

∫ t

0

(∇Γ(t − s) ∗ fε(s))ds, (3.6)

where Γ(t, x) is the heat kernel given by

Γ(t, x) :=

{

1
(2πt)d/2 e−

|x|2

2t for t > 0,

δx for t = 0

(see for instance Ladyženskaja et al. (1967)). Moreover, the following estimates are
true:

Γ,∇Γ ∈ L1([0, T ], Xα) ∀ 0 < α < 1.

Indeed, by a direct computation one has

‖Γ(t, ·)‖L1(Rd) = 1, ‖∇Γ(t, ·)‖L1(Rd) ≤
C√
t
, ‖D2Γ(t, ·)‖L1(Rd) ≤

C

t
.

These estimates immediately give Γ ∈ L1([0, T ], Xα), ∇Γ ∈ L1([0, T ]× R
d). More-

over one has

‖∇Γ(t, · + h) −∇Γ(t, ·)‖L1(Rd)

= ‖∇Γ(t, · + h) −∇Γ(t, ·)‖α
L1(Rd)‖∇Γ(t, · + h) −∇Γ(t, ·)‖1−α

L1(Rd)

≤ |h|α‖D2Γ(t, ·)‖α
L1(Rd)

(

2‖∇Γ(t, ·)‖L1(Rd)

)1−α

≤ C

t
1+α

2

|h|α,

so that ∇Γ ∈ L1([0, T ], Xα) for any 0 < α < 1. We now remark that, since

‖fε‖L1([0,T ]×Rd) ≤
∫ T

0

∫

Rd

|∇gε(t, x)|uε(t, dx) dt

≤
(

T

∫ T

0

∫

Rd

|∇gε(t, x)|2uε(t, dx) dt

)1/2

,

by Lemma 3.1 fε is uniformly bounded in L1([0, T ] × R
d). We therefore easily

deduce from (3.6) that vε is uniformly bounded in L1([0, T ], Xα), as wanted. �

Lemma 3.6. We have vε → u∞ in Lm([0, T ]× R
d).

Remark 3.7. Observe that, since vε is bounded in L∞([0, T ], Lm(Rd)), the lemma
implies also that vε → u∞ in Lp([0, T ], Lm(Rd)) for all p < ∞. Indeed, if vε → u∞

in Lm([0, T ] × R
d), then up to a subsequence ‖vε(t, ·) − u∞(t, ·)‖Lm(Rd) → 0 for

almost every t ∈ [0, T ]. This fact and Lebesgue’s dominated convergence theorem
give the strong convergence in Lp([0, T ], Lm(Rd)) for all p < ∞.

Proof . We first remark that

m2

4

∫ t

0

∫

Rd

|∇vε(t, x)|2vε(t, x)m−2dx ds =

∫ t

0

∫

Rd

|∇(vε)m/2(t, x)|2dx ds,

so that by Lemma 3.1 the sequence (vε)m/2 is bounded in L2([0, T ], H1(Rd)).
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We now claim that it suffices to prove the convergence result in L1([0, T ]× BR)
for any fixed R > 0. Indeed, by Lemma 3.4 the measures vε(t, ·) are uniformly tight
in t and ε. Thus, for any η > 0 there exists Rη such that

∫ T

0

∫

Bc
Rη

vε(t, x)dx dt ≤ η. (3.7)

Moreover we observe that, if w ∈ H1(Rd), then w2 ∈ W 1,1(Rd) ⊂ Ld/(d−1)(Rd),
with the convention d/(d − 1) = ∞ if d = 1 (see Adams (1975)). Therefore,
since (vε)m/2 is bounded in L2([0, T ], H1(Rd)), we obtain that (vε)m is bounded in
L2([0, T ], Ld/(d−1)(Rd)). Thus, if d ≥ 2, by the inclusion L2([0, T ], Ld/(d−1)(Rd)) ⊂
Ld/(d−1)([0, T ] × R

d) we have

∫ T

0

∫

Rd

vε(t, x)
md
d−1 dx dt ≤ C (3.8)

for a certain C independent of ε. So by (3.7), (3.8) and Hölder’s inequality, we get

∫ T

0

∫

Bc
Rη

vε(t, x)mdx dt

≤
(

∫ T

0

∫

Bc
Rη

vε(t, x)dx dt

)
m

1−d+md
(

∫ T

0

∫

Bc
Rη

vε(t, x)
md
d−1 dx dt

)

(m−1)(d−1)
1−d+md

≤ Cη
m

1−d+md (3.9)

(the case d = 1 is also simpler thanks to the boundness of vε in L2([0, T ], L∞(Rd)).
From (3.9) and the uniform integrability of (vε)m (which is a simple consequence
of the uniform bound of (vε)m in L2([0, T ], Ld/(d−1)(Rd))), the claim easily follows.

To conclude the proof, we now show the strong convergence of vε to u∞ in
L1([0, T ] × BR). Fix 0 < α < 1, and take s > 0 big enough so that M(BR) (the
space of probability measures on BR endowed with the weak topology) continuously
embeds into H−s(BR) (H−s(BR) being the dual space of Hs(BR)). We claim that
for any δ > 0 there exists a constant Cδ such that, for any smooth function f on
R

d, we have

‖f‖L1(BR) ≤ δ‖f‖Xα + Cδ‖f‖H−s(BR). (3.10)

Indeed, if not, there would exist a δ > 0 and a sequence of functions (fk)k∈N, such
that

‖fk‖Xα = 1, ‖fk‖L1(BR) ≥ δ + k‖fk‖H−s(BR). (3.11)

As we remarked before, Xα compactly embeds into L1(BR), thus there exist a
subsequence (still denoted by fk) such that fk → g in L1(BR). Since

‖fk‖L1(BR) ≤ ‖fk‖Xα = 1,

by (3.11) we get that fk → 0 in H−s(BR), so that g = 0. But, on the other hand,

‖g‖L1(BR) = lim
k

‖fk‖L1(BR) ≥ δ > 0,

a contradiction.
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Applying (3.10) to vε(t, ·) − vε̃(t, ·) and integrating in time, we get

‖vε − vε̃‖L1([0,T ]×BR) ≤ δ‖vε − vε̃‖L1([0,T ],Xα)

+ Cδ‖vε − vε̃‖L1([0,T ],H−s(BR))

≤ δ
(

‖vε‖L1([0,T ],Xα) + ‖vε̃‖L1([0,T ],Xα)

)

+ Cδ‖vε − vε̃‖L1([0,T ],H−s(BR))

≤ C

(

δ + Cδ

∫ T

0

d(vε(t), vε̃(t) dt

)

,

where in the last step we used that the sequence (vε)ε>0 is bounded in L1([0, T ], Xα)
and that M(BR)) →֒ H−s(BR) continuously. Since, by Lemma 3.4, (vε)ε>0 is a
Cauchy sequence in C([0, T ],M(Rd)), we finally obtain

lim sup
ε,ε̃→0

‖vε − vε̃‖L1([0,T ]×BR) ≤ Cδ,

which implies that (vε)ε>0 is a Cauchy sequence in L1([0, T ] × BR) by the arbi-
trariness of δ. �

Proposition 3.8. For all t ∈ [0, T ] and all f ∈ C2
b (Rd) we have:

∫

Rd

f(x)u∞(t, x)dx =

∫

Rd

f(x)u0(x)dx +
1

2

∫ t

0

∫

Rd

∆f(x)u∞(s, x)dxds

+
m − 1

m

∫ t

0

∫

Rd

∆f(x)u∞(s, x)mdxds, (3.12)

that is u∞ is a weak solution of the viscous porous medium equation with initial
datum u0.

Proof . According to (1.3) we have

∫

Rd

f(x)uε(t, dx) =

∫

Rd

f(x)u0(x)dx +
1

2

∫ t

0

∫

Rd

∆f(x)uε(s, dx)ds

−
∫ t

0

∫

Rd

∇f(x) · ∇gε(s, x)uε(s, dx)ds. (3.13)

Since uε → u∞ in C([0, T ],M(Rd)), the convergence of all the terms in (3.13) is
trivial except for the third term in the right hand side. We have

∣

∣

∣

∣

∫ t

0

∫

Rd

∇f(x) · ∇gε(s, x)uε(s, dx)ds +
m − 1

m

∫ t

0

∫

Rd

∆f(x)u∞(s, x)mdxds

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ t

0

∫

Rd

∇f(x) · ∇gε(s, x)uε(s, dx)ds

−
∫ t

0

∫

Rd

∇f(x) · ∇
(

vε(s, x)m−1
)

vε(s, x)dxds

∣

∣

∣

∣

+

∣

∣

∣

∣

m − 1

m

∫ t

0

∫

Rd

∆f(x)vε(s, x)mdxds − m − 1

m

∫ t

0

∫

Rd

∆f(x)u∞(s, x)mdxds

∣

∣

∣

∣

.

By the convergence vε → u∞ in Lm([0, T ]× R
d), the second term goes to 0.
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Regarding the first term, we observe that
∣

∣

∣

∣

∫ t

0

∫

Rd

∇f(x) · ∇gε(s, x)uε(s, dx)ds

−
∫ t

0

∫

Rd

∇f(x) · ∇
(

vε(s, x)m−1
)

vε(s, x)dxds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t

0

∫

Rd

∫

Rd

∇f(x) · ∇
(

vε(s, y)m−1
)

V ε(x − y)uε(s, dx)dyds

−
∫ t

0

∫

Rd

∫

Rd

∇f(y) · ∇
(

vε(s, y)m−1
)

V ε(x − y)uε(s, dx)dyds

∣

∣

∣

∣

≤
∫ t

0

∫

Rd

∫

Rd

|∇f(x) −∇f(y)|
∣

∣∇
(

vε(y, s)m−1
)∣

∣V ε(x − y)uε(s, dx)dyds

≤ ‖D2f‖∞
∫ t

0

∫

Rd

∫

Rd

∣

∣∇
(

vε(s, y)m−1
)∣

∣ |x − y|V ε(x − y)uε(s, dx)dyds.

Since diam(suppV ε) = ε diam(suppV ) (recall that V has compact support) we see
that the last term is bounded by

ε diam(suppV )‖D2f‖∞
∫ t

0

∫

Rd

∫

Rd

∣

∣∇
(

vε(s, y)m−1
)∣

∣V ε(x − y)uε(s, dx)dyds

= ε diam(suppV )‖D2f‖∞(m − 1)

∫ t

0

∫

Rd

∫

Rd

|∇vε(s, y)| vε(s, y)m−1dyds.

To conclude, we observe that by Hölder inequality

‖∇vε(vε)m−1‖L1([0,T ]×Rd) ≤ ‖∇vε(vε)m/2−1‖L2[0,T ]×Rd)‖(vε)m/2‖L2[0,T ]×Rd)

= ‖(vε)m−2|∇vε|2‖1/2

L1[0,T ]×Rd)
‖vε‖m/2

Lm[0,T ]×Rd)
,

and the right hand side is uniformly bounded thanks to Lemma 3.1. �

Up to now, we have proved that the sequence (uε)ε>0 is relatively compact
(Proposition 3.3) and that any limit point u∞ of a subsequence is a weak solution
of the viscous porous medium equation (Proposition 3.8).

It remains to show uniqueness of weak solutions u of this equation. To do so,
we first prove that, thanks to the assumption u0 ∈ L∞(Rd), any weak solution of
(1.4) belongs to Lm+1([0, T ]× R

d) (and not only to Lm([0, T ]× R
d)), and then we

conclude using Proposition 3.10.

Proposition 3.9. Let v ∈ L1([0, T ] × R
d) ∩ Lm([0, T ] × R

d) be a weak solution
of the viscous porous medium equation such that v(0, ·) ∈ L∞(Rd). Then v ∈
Lm+1([0, T ] × R

d).

Proof . Let us consider the convex function Φ : R
+ → R

+ given by

Φ(s) :=
1

2
s +

m − 1

m
sm.

Then v is a weak solution of

∂tv = ∆(Φ(v)).

Fix ϕ(x) a smooth convolution kernel on R
d, and define

vη(t, ·) := v(t, ·) ∗ ϕη



Convergence to the viscous porous medium equation 199

with ϕη(x) := 1
ηd ϕ(x/η). Then vη is smooth and integrable in x with all its deriva-

tives. Moreover, since

∂tvη = ∆(Φ(v) ∗ ϕη),

vη is also smooth as a function of t. We can therefore multiply the above equation

by
∫ T

t
Φ(v) ∗ ϕη(s, ·)ds and integrate in space-time, obtaining

∫ T

0

∫

Rd

∂tvη(t, x)

(
∫ T

t

Φ(v) ∗ ϕη(s, x)ds

)

dx dt

=

∫ T

0

∫

Rd

∆(Φ(v) ∗ ϕη)(t, x)

(
∫ T

t

Φ(v) ∗ ϕη(s, x)ds

)

dx dt

= −
∫ T

0

∫

Rd

∇(Φ(v) ∗ ϕη)(t, x)

(
∫ T

t

∇(Φ(v) ∗ ϕη)(s, x)ds

)

dx dt

= −1

2

∫

Rd

∣

∣

∣

∣

∫ T

0

∇Φ(v) ∗ ϕη(t, x)dt

∣

∣

∣

∣

2

dx ≤ 0.

Therefore, integrating by parts in the first line of the above equation, we get

∫ T

0

∫

Rd

vη(t, x)Φ(v) ∗ ϕη(t, x) dx dt

≤
∫

Rd

vη(0, x)

∫ T

0

Φ(v) ∗ ϕη(t, x) dx dt

≤ ‖vη(0)‖∞‖Φ(v)‖L1([0,T ]×Rd)

= ‖vη(0)‖∞
(

1

2
‖v‖L1([0,T ]×Rd) +

m − 1

m
‖v‖m

Lm([0,T ]×Rd)

)

.

Since Φ is convex, by Jensen’s inequality we have Φ(vη)(t, x) ≤ Φ(v) ∗ϕη(t, x), and
we finally obtain

∫ T

0

∫

Rd

1

2
vη(t, x)2 +

m − 1

m
vη(t, x)m+1 dx dt =

∫ T

0

∫

Rd

vη(t, x)Φ(vη) dx dt

≤ ‖vη(0)‖∞
(

1

2
‖v‖L1([0,T ]×Rd) +

m − 1

m
‖v‖m

Lm([0,T ]×Rd)

)

.

Taking the limit as η → 0, we conclude that v ∈ Lm+1([0, T ]× R
d). �

Proposition 3.10. Let v and ṽ be two weak solutions of the viscous porous medium
equation on [0, T ] such that v, ṽ ∈ Lm+1(Rd × [0, T ]). Then v = ṽ.

Proof . Using the same notations of the proof of the above proposition, v and ṽ
are weak solutions of

∂tw = ∆(Φ(w)).

As before we regularize the solutions with a smooth convolution kernel ϕ, and we
get

∂t(vη − ṽη) = ∆(Φ(v) ∗ ϕη − Φ(ṽ) ∗ ϕη).
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Multiplying the equation by
∫ T

t
[Φ(v) ∗ ϕη(s, ·) − Φ(ṽ) ∗ ϕη(s, ·)]ds and integrating

in space-time, as in the proof of the above proposition we obtain

Z T

0

Z

Rd

∂t(vη − ṽη)(t, x)

„
Z T

t

[Φ(v) ∗ ϕη(s, x) − Φ(ṽ) ∗ ϕη(s, x)]ds

«

dx dt

= −

Z T

0

Z

Rd

∇(Φ(v) ∗ ϕη − Φ(ṽ) ∗ ϕη)(t, x)

„Z T

t

∇(Φ(v) ∗ ϕη − Φ(ṽ) ∗ ϕη)(s, x)ds

«

dx dt

= −
1

2

Z

Rd

˛

˛

˛

˛

Z T

0

∇(Φ(v) ∗ ϕη − Φ(ṽ) ∗ ϕη)(t, x)dt

˛

˛

˛

˛

2

dx ≤ 0.

Integrating by parts in the first line of the above equation and using that u and ũ
coincide at time 0, we have

∫ T

0

∫

Rd

[vη(t, x) − ṽη(t, x)][Φ(v) ∗ ϕη(t, x) − Φ(ṽ) ∗ ϕη(t, x)] dx dt ≤ 0.

Since v, ṽ ∈ Lm+1(Rd × [0, T ]), we can take the limit as η → 0, and we get

∫ T

0

∫

Rd

[v(t, x) − ṽ(t, x)][Φ(v)(t, x) − Φ(ṽ)(t, x)] dx dt ≤ 0.

As the integrand is non-negative everywhere, it follows that v = ṽ almost every-
where. �

Appendix: Proof of Proposition 2.3

Let K := ‖V ‖L∞(R), L a Lipschitz constant for V and I :=
∫

Rd |∇V (y)| dy, so

that V ε is bounded by Kε := K/εd and Lipschitz-continuous with Lipschitz con-
stant Lε := L/εd+1, and

∫

Rd |∇V ε(y)| dy = I/ε. In order to simplify the notation
we omit the indices N , ε and δ. For t ∈ [0, T ] we set

Φ(t) := E

[

sup
0≤s≤t

∣

∣X i
s − Y i

s

∣

∣

2
]

.

Because of the symmetry of the particle system and the system of the nonlinear
processes, Φ(t) does not depend on i. By (2.1) and (2.3) we have

˛

˛

˛
X

i
t − Y

i
t

˛

˛

˛

2

=

˛

˛

˛

˛

Z t

0

Z

Rd

∇V
ε(y)

»

(V ε ∗ u
ε,δ
s )(Y i

s − y)

ffm−1

−



1

N

N
X

j=1

V
ε(Xi

s − y − X
j
s )

ffm−1–

dyds

˛

˛

˛

˛

2

≤t

Z t

0

„
Z

Rd

|∇V
ε(y)|

˛

˛

˛

˛



(V ε ∗ u
ε,δ
s )(Y i

s − y)

ffm−1

−



1

N

N
X

j=1

V
ε(Xi

s − y − X
j
s )

ffm−1
˛

˛

˛

˛

dy

«2

ds

≤t

Z t

0

„Z

Rd

|∇V
ε(y)|dy sup

y∈Rd

˛

˛

˛

˛



(V ε ∗ u
ε,δ
s )(Y i

s − y)

ffm−1

−



1

N

N
X

j=1

V
ε(Xi

s − y − X
j
s )

ffm−1
˛

˛

˛

˛

«2

ds

=
I2

ε2
t

Z t

0

sup
y∈Rd

˛

˛

˛

˛



(V ε ∗ u
ε,δ
s )(Y i

s − y)

ffm−1

−



1

N

N
X

j=1

V
ε(Xi

s − y − X
j
s)

ffm−1
˛

˛

˛

˛

2

ds.
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Since the right-hand side is non-decreasing in t, the same estimate also holds for

sup0≤s≤t

∣

∣X i
s − Y i

s

∣

∣

2
in place of

∣

∣X i
t − Y i

t

∣

∣

2
. We now estimate

∣

∣

∣

∣

{

(V ε ∗ uε,δ
s )(Y i

s − y)

}m−1

−
{

1

N

N
∑

j=1

V ε(X i
s − y − Xj

s)

}m−1∣
∣

∣

∣

2

.

Since m ≥ 2 the Lipschitz continuity of the function s 7→ sm−1 implies that this is
bounded by

(m − 1)2K2(m−2)
ε

∣

∣

∣

∣

(V ε ∗ uε,δ
s )(Y i

s − y) − 1

N

N
∑

j=1

V ε(X i
s − y − Xj

s)

∣

∣

∣

∣

2

.

Using the triangle inequality we obtain

∣

∣

∣

∣

(V ε ∗ uε,δ
s )(Y i

s − y) − 1

N

N
∑

j=1

V ε(X i
s − y − Xj

s)

∣

∣

∣

∣

2

≤ 3

∣

∣

∣

∣

(V ε ∗ uε,δ
s )(Y i

s − y) − 1

N

N
∑

j=1

V ε(Y i
s − y − Y j

s )

∣

∣

∣

∣

2

+ 3

∣

∣

∣

∣

1

N

N
∑

j=1

V ε(Y i
s − y − Y j

s ) − 1

N

N
∑

j=1

V ε(X i
s − y − Y j

s )

∣

∣

∣

∣

2

+ 3

∣

∣

∣

∣

1

N

N
∑

j=1

V ε(X i
s − y − Y j

s ) − 1

N

N
∑

j=1

V ε(X i
s − y − Xj

s)

∣

∣

∣

∣

2

so that, combining all these estimates,

E

[

sup
0≤s≤t

∣

∣X i
s − Y i

s

∣

∣

2
]

≤ C′(ε)t

{
∫ t

0

sup
y∈Rd

E

[∣

∣

∣

∣

(V ε ∗ uε,δ
s )(Y i

s − y) − 1

N

N
∑

j=1

V ε(Y i
s − y − Y j

s )

∣

∣

∣

∣

2]

ds

+

∫ t

0

sup
y∈Rd

E

[
∣

∣

∣

∣

1

N

N
∑

j=1

V ε(Y i
s − y − Y j

s ) − 1

N

N
∑

j=1

V ε(X i
s − y − Y j

s )

∣

∣

∣

∣

2]

ds

+

∫ t

0

sup
y∈Rd

E

[∣

∣

∣

∣

1

N

N
∑

j=1

V ε(X i
s − y − Y j

s ) − 1

N

N
∑

j=1

V ε(X i
s − y − Xj

s )

∣

∣

∣

∣

2]

ds

}

,

where C′(ε) := 3(m − 1)2K
2(m−2)
ε I2ε−2.

Thanks to the Lipschitz continuity of V ε the second and the third term are both
bounded by

L2
ε

∫ t

0

E

[

∣

∣X i
s − Y i

s

∣

∣

2
]

ds,
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while for the first term we have

E

[∣

∣

∣

∣

(V ε ∗ uε,δ
s )(Y i

s − y) − 1

N

N
∑

j=1

V ε(Y i
s − y − Y j

s )

∣

∣

∣

∣

2]

=
1

N2

N
∑

j,k=1

E

[(

(V ε ∗ uε,δ
s )(Y i

s − y) − V ε(Y i
s − y − Y j

s )

)

×

(

(V ε ∗ uε,δ
s )(Y i

s − y) − V ε(Y i
s − y − Y k

s )

)]

.

If j 6= k the expectation vanishes, and otherwise it is bounded by K2
ε . Therefore

Φ(t) = E

[

sup
0≤s≤t

∣

∣X i
s − Y i

s

∣

∣

2
]

≤ C′(ε)t

{

K2
ε t

N
+ 2L2

ε

∫ t

0

E

[

∣

∣X i
s − Y i

s

∣

∣

2
]

ds

}

≤ 2TC′(ε)L2
ε

∫ t

0

Φ(s)ds + C′(ε)
K2

ε

N
t2

= α

∫ t

0

Φ(s)ds + βt2,

where

α := 2TC′(ε)L2
ε, β := C′(ε)

K2
ε

N
.

Gronwall’s lemma now implies

Φ(t) ≤ 2βeαt

∫ t

0

se−αsds ≤ 2
β

α2
eαt

∫ ∞

0

se−sds = 2
β

α2
eαt,

that is

Φ(t) ≤ 1

N

K2
ε

2T 2C′(ε)L4
ε

e2TC′(ε)L2
εt ∼ 1

N
ε6+2d(m−1)et/ε4+2d(m−1)

.

�
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