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CONVERGENCE, UNIQUENESS, AND SUMMABILITY OF 
MULTIPLE TRIGONOMETRIC SERIES 

BY 

J. MARSHALL ASH(1) AND GRANT V. WELLAND(2) 

Abstract. In this paper our primary interest is in developing further insight into 
convergence properties of multiple trigonometric series, with emphasis on the problem 
of uniqueness of trigonometric series. Let E be a subset of positive (Lebesgue) measure 
of the k dimensional torus. The principal result is that the convergence of a trigono- 
metric series on E forces the boundedness of the partial sums almost everywhere on 
E where the system of partial sums is the one associated with the system of all rectangles 
situated symmetrically about the origin in the lattice plane with sides parallel to the 
axes. If E has a countable complement, then the partial sums are bounded at every 
point of E. This result implies a uniqueness theorem for double trigonometric series, 
namely, that if a double trigonometric series converges unrestrictedly rectangularly to 
zero everywhere, then all the coefficients are zero. Although uniqueness is still con- 
jectural for dimensions greater than two, we obtain partial results and indicate possible 
lines of attack for this problem. 

We carry out an extensive comparison of various modes of convergence (e.g., 
square, triangular, spherical, etc.). A number of examples of pathological double trig- 
onometric series are displayed, both to accomplish this comparison and to indicate the 
"best possible" nature of some of the results on the growth of partial sums. 

We obtain some compatibility relationships for summability methods and finally 
we present a result involving the (C, a, 0) summability of multiple Fourier series. 

Introduction. The main interest of this paper will be the theory of multiple 
trigonometric series. Multiple Fourier series (the most important type of multiple 
trigonometric series) will be discussed only in connection with the theory of 
uniqueness and again in the last chapter. For the definitions of any unfamiliar 
terms used in the introduction the reader is referred to ?1. 

One of the main difficulties in multiple series arises in connection with the usual 
consistency theorems for summation methods. In order to maintain the validity of 
the typical theorem "convergence implies summability," even in the case of Poisson 
summation one has to have the added condition that all partial sums be bounded. 
If one attempts to restrict himself to regular methods of forming the partial sums, 
it is easy to construct examples where this condition fails. However, by introducing 
unrestricted rectangular partial sums, convergence of a multiple trigonometric 
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series on a set of positive measure implies the pointwise boundedness of the partial 
sums almost everywhere in the given set. Hence, one achieves a wide range of 
consistency theorems on an almost everywhere basis. 

The technique of obtaining the boundedness of the partial sums has as its origin 
a work of P. J. Cohen [2], in which the author obtains an estimate for the rate of 
increase of coefficients of a multiple trigonometric series convergent almost 
everywhere by a regular method. By applying this technique (it is described and 
applied in ?11) in the case of unrestricted rectangular convergence in a set of 
positive measure, one is able to even conclude that the coefficients are bounded 
(Theorem 2.2). Lemma 2. 1, part (b) of Lemma 2.2, and the first statement in Theorem 
2.1 were proved by P. J. Cohen in [2]. We reproduce the proofs here since [2] is not 
easily available and since the other applications show Cohen's technique to be 
more powerful and useful than had previously been apparent. 

Another difficulty in multiple series is the diversity of possible partial sums. As 
is pointed out in ?111, this diversity introduces problems at the most fundamental 
level. Perhaps the most "natural" methods of forming partial sums are by circles, 
squares, rectangles, and diamonds (corresponding to diamonds is triangular 
convergence). Several examples are given in ?111 to show the basic incompatibilities 
between these methods. See Figure 3 for a summary of the situation. This in- 
compatibility makes somewhat surprising the fact that convergence (= unrestricted 
rectangular convergence) everywhere implies spherical Abel summability every- 
where (Theorem 3.1). 

In ?IV, the fact from ?11 that everywhere convergence controls the growth of the 
coefficients and the fact from ?111 that convergence implies spherical Abel sum- 
mability are combined with a uniqueness theorem of V. Shapiro [16] to obtain 
uniqueness for double trigonometric series that converge in a set which excludes 
at most one point. The question of uniqueness under the hypothesis of everywhere 
convergence is still open in dimensions greater than two. We give three other 
possible approaches with partial results. One result (Theorem 4.3) is that unique- 
ness holds for multiple trigonometric series of power series type that converge 
everywhere. 

Finally in ?V some recently proved results in one dimensional Fourier series 
[1], [9] are used to prove (C, a, 0) summability for certain double Fourier series 
(a> 0). This result complements certain recent results of C. Fefferman [6], [7], 
P. Sjolin [19], and N. Tevzadze [20] concerning the convergence and divergence of 
multiple Fourier series. 

For further references the reader is referred to the excellent bibliography in [18]. 

I. Definitions. In this paper, we will be considering various aspects of pointwise 
convergence of a multiple trigonometric series 

(1.1) T(x) = > ameim*x. 
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We use m=(m1, M2 ..., mJ) where the mi are integers and x=(x1, x2,.. ., Xk) 

E Tk. We will understand Tk= [0, 277) x [0, 27T) xk * x [0, 27T) to be Ek with two 
vectors x and y identified whenever xi-yi (mod 2i), i= 1,..., k. Also, Ix-y I 
=min {[I. (X*-y*)2]12 X* iS equivalent to x and y* is equivalent to y}. For 
z e C, Izl means the usual modulus of a complex number. We set m x=im1x1 
+ . +MkXk, ImJ =(M2+... +M2)1)2, lmil =mini {lmil}, and llml11 =maxi{JImil}. 
The relation m > n will mean mi _ ni, i= 1,..., k. Let Qk be the set of all k-tuples 

P=(Pl, ,Pk) where pi=O or 1 for i=1,. . ., k. If p E Qk, we set 

f@x) = i aXi - axi. f and (dx)P = dxi. dxi2,. dxi 

where pi,= 1, s = 1,..., r and pj = 0 otherwise. When k = 2, we will take m = (m, n), 
x= (x, y), Iml =(M2+n2)1"2 and so forth in order to simplify the notation. 

There are many interpretations of the statement " T converges at x." A method 
of convergence is described by a sequence {En}n=0,1,2,... of finite sets of k-tuples of 
integers such that each En is contained in En,+ for all sufficiently large j and the 
union of all the En consists of all k-tuples of integers. The method is symmetric 
if m E En implies that so are the other k-tuples m' satisfying Im'l = lm,I, i= 1,..., k. 
In this paper only symmetric methods will be considered. 

A method of convergence is regular if and only if there is a constant K such that 
for every lattice point m = (m1, . . ., mk) there exists no such that m belongs to Eno 
and such that for each lattice point I in Eno we have IIIljII ' KIII m III. We call the least 
such K the eccentricity of the method. In other words, the En's are not too eccen- 
trically shaped. This definition is due to Paul J. Cohen [2, p. 39]. 

Some examples of regular methods of convergence are spherical conver- 
gence or circular convergence if k =2 (En = {m I I m j < n}), triangular convergence 
(En={m Imil <n}), square convergence (En={m I jlm Ij <$n), and restricted 
rectangular convergence. T is said to converge restrictedly rectangularly if T 
converges to the same value for every sequence {En} satisfying the following 
conditions: 

(i) each En is a rectangle symmetric about the origin with sides parallel to the 
axes; 

(ii) if Pn denotes the minimum dimension of En and if qn denotes its maximum 
dimension, then qn/pn is uniformly bounded. 

The minimum bound will be called the eccentricity of the sequence {En}. 
If condition (ii) is removed we have the definition of unrestricted rectangular 

convergence. Henceforth, converge will mean converge unrestrictedly rectangularly. 
Explicitly, T(x) converges to s(x) if 

M1 M2 Mk 

(1.2) s(x) = lim SM(X) where SM(X) = .. ** ameim-X 
IlMII- c Ml= mlM1 M2 -M2 mk= -Mk 

where M= (M1, . .., Mk). Note that convergence is not a regular method of 
convergence. The series T(x) converges in the sense of Pringsheirm to s(x) if (1.2) 
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holds and if there is a number B = B(x) such that ISM(X)I < B for all M. For example, 
if a,,= jnj, a1n= - Inj, amn=0 otherwise, then T(O) converges to 0, but SO,N(O) 
- N(N+ 1) so T(O) does not converge in the sense of Pringsheim. 

We will consider several summability methods. A series T is spherically Abel 
summable to s(x) if T(x, t) = _ am exp (im- x - Iml t) converges absolutely for t > 0 
and if limt,0 T(x, t)=s(x). We say T is Riemann summable to s(x) if 

(sin_m1h1\2 sim2h2\2 (sin mkhk\ T(x; h1, l.., hk) = , ame2x m1h1 m2h ) mJhki 

converges absolutely for h2+ +h2 =?h I hi 2 =0 (interpret (sin O)/O to be 1), and if 

liMtlhl-o T(x; hi, . . .,5 hk) = S(X). 

We will consider only Lebesgue measurable subsets A of Tk and JAI will denote 
the Lebesgue measure of A. 

II. Relationships between methods of convergence and the growth of coefficients. 

LEMMA 2.1 (P. J. COHEN [2]). Let ScT1 with ISI > . Thenfor any integer 1>0 
there are I points of S; z1, . . ., zl, such that izi-zjl > (8/I) for iAfj. 

Proof. We choose zp, p= 1, 2, ... ., , recursively as follows. Let z1 be any point 
of S. For this proof only identify T1 with [z1, z1 + 27r). Choose Z2 > Zl + 8/1 SO that 

IS n [z1, z2]I<ISI/l. Having chosen Z2,-- . ZP-1 choose zp>zp1+ 8/i so that 

I S n [zp - 1, zp] I < I S I /l. This can be done since 

p - 2 'SI 
IS n [Z1, zp_1]jl = E ) [zi, zi+1l < (p-2)p 

i=l 

= IS r) [zp-l, 27r)I > ISI -(p-2) 'SI > 2 . 

Observe that 

l S n [z1, z1]l < / S i> (z + 27)-z _ I S n (z1, zlI + 2r) _ I 3 I 
S 

l / 1>71 

so that z1 and z1 are sufficiently separated as points of TV. It is clear from the 
construction that any other pair of points are also sufficiently separated. 

LEMMA 2.2. Let p(w) = ao + alw + * ? a,wn be a trigonometric polynomial where 
w = eix ranges over the unit circle. 

(a) If Ip(w)I<B for weEcT, IjEj>0, then there is a constant c=c(jEj) such 
that Ip(w)I <Bcn for all w in TV. 

(b) If given any y > 1, there exists A= A(y) < 1 and b =b(y) such that Ip(w)I < B 
on some set Ec T1, IEl > 2rA, then for all w E T', 

(2.1) jp(w)j <Bbyn. 

Proof. We will treat A E (0, 1) as a parameter. Its value will be determined later. 
In the proof of (a), A will be IEI/2-a; in the proof of (b), A will depend on y. Let 
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zo, z1., z., n> 1, be points of {z e C: IzI = 1} such that Iarg zi-arg zjI 
> 2vrA/(n + 1) if i j. Since we will use the Lagrange interpolation formula p(z) 

- := E p(zOi)i(z) where 

(2.2) vri(z) = rl i (Z-z,) 

we need to estimate the 77i(z). Because of symmetry, it suffices to estimate 7r0(z). 
Without loss of generality, we assume that 

0 = argzO < argz1 < **. < argzn < 21r-21rA/(n+1) < 217. 

Let m be the smallest integer greater than (n + 1)/A such that m - n - 1 is an even 
integer. Note m and n have opposite parity. Let ; - e2XiIm _ 1 = e - 2ni/m, 2 - e2(21m)ie 

g_2=e221(2,m)iI... 1 be the mth roots of unity, indexed so that IjI-<IgjJ-1 
if Ii I <j I < m/2. Observe that 

(2.3) 7O(Z) = I1 (z-) 

Let A= the set of the n g's nearest to 1 (excluding 1 itself), B = the set of the n g's 
furthest from 1, B'= the set of the m - n - 1 g's nearest to 1 (excluding 1 itself), 
A'= the set of the mr-n-i g's furthest from 1, and finally, C=the set of all g's 
except g=1. Note AuA'=BuB'=C, A nA'=BnrB'=0, the empty set. We 
have easily 

(2.4) ]7j(1-z) |> |(1-g) 
j=l C,eA 

for |1-zll ? |1-CJ, J1-z,nJ > J11 n 1- J- J1-z21 > Z 1-11J, ll-Zn-11 >11t-2 

etc. 
We also have 

(2.5) Fl(z -zj) < (1 ). 
j=l (eB 

To give a formal argument for (2.5) is tedious while the essential idea is geo- 
metrically evident. We give a description of the argument. When n is odd, one 
chooses y to be a zj which is closest to - z. 

By pushing the remaining zj's closer to y one obtains a new group of zj's whose 
neighboring elements differ in argument by 217/rm while the product corresponding 
to the left-hand side of (2.5) is increased. 

Finally, a maximum is obtained when this new grouping is rigidly rotated so that 
y moves to - z, giving a new product on the left-hand side of (2.5) which is in 
modulus equal to the right-hand side. In the case that n is even, one proceeds in a 
similar way so that the final rotation of the adjusted grouping of points has its 
two nearest points to - z straddling - z in the same way the two nearest mth roots 
of unity nearest to - 1 straddle - 1. 
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From (2.3), (2.4), and (2.5) we have 

(2.6) j7ro(z)I < rI7eB I1gI 
- 

17 iec I1-g /FIIhB' I1I -l7_heA' I1 g 
FII eA | 1- l FLC I 1-IE/hCeA' I -I FLeB' II 

Define 8 by Sn = (m - n - 1)/2. Then 3= S(A, n) satisfies 

(2.7) 1 1- I < ((n+l)/A)-(n+l) < , < (n+l)/A+2-(n+l) < I_ )+ 
2 A-1 2n 2n A- 

so that 3 -+0 as A -? 1 and n -? oo. 
Estimating each term in the numerator of (2.6) by 2, we have 

(2.8) 17 jl1-g < 2 
CeA' 

For the denominator we have 

6n 6 -r2 6 4 
171|J1-gJ = 171 (1-e2rikIm)(I e-2jrkIm) = k (2 sin kT)2 >6n (4k) 

= (4/m)26n(8n) !2 > (4/m)26n((2T)112(8n)6n + 2e- 6n)2 

This last inequality follows from Stirling's inequality. Combining this with (2.6) 
and (2.8) we have 

(2.9) 17rro(z)J < (11/2i8n)(e((28 +1)n+ 1)/28n)26n. 

We now prove Lemma 2.2. Given p(w) and Ec T1, |EJ > 2iTA, by Lemma 2.1 we 
may choose zo, z1, .. ., Znfrom E where Iarg zi-arg zjI > 2rA/(n + 1) if i Oj. Assume 
p is bounded by B on E, and recall p(z) = O p(zj)rj(z). By (2.9) and the comment 
following (2.2) we have, for all z, 

< Bn+1 (e((28+ I)n+ 1)\26n 1 
Jp(z)J ~2-T r 28n Sn 

(2.10) < B{ 1 (e(28?1?+In)) } = B{y(n, I)} n2 

In order to prove (a), we choose A= EI/27T> 0 so that, by (2.7), >0 is bounded 
away from zero. Hence, Supn,y y(n, 8) = c. To prove (b), first choose A so close to 1 
and then no so large that y(n, 8)>y if n?no. Set b=maxkl=.no {y(S, k)k, I}. 

From (2.10) we have Ip(z) I< Bbyn. This completes the proof of Lemma 2.2. 

LEMMA 2.3. If T(x) converges at each x of a set E of positive measure (more 
generally, if lim sup,,jj. I T.(x)I < oo for x in E), then there is a set Fc E, IFI = IE I 
such that all rectangular partial sums are bounded on F. (The bound may vary from 
point to point.) In particular, if E= Tk (or even if the complement of E is countable), 
then the conclusion holds everywhere on E. 

REMARK. To appreciate that this lemma is trivial only if k = 1, consider the 
simple numerical series S= m,n=O amn where aOn=2 n, aln= -2nI amn=0 otherwise. 
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Here Smn = 0 if m and n are both greater than two so s converges to 0, but so, = 2n + 1 
-1 so the partial sums are unbounded. 

Proof. First let k =2. Let F= {(x0, yo) e E: the one-dimensional measures of 

Exo= E n {x = xo} and E = E n {y =yo} are both positive}. It will suffice to show 
the partial sums bounded at each (x0, Yo) E F; since whenever the complement of E 
is countable, F= E, and since F is in any case a subset of E of full measure (apply 
Fubini's theorem to the characteristic function of E-F to see this). Given (x0, yo) 
find B and ,u so large that 

(2.11) lTmn(Xo, y)j < B whenever m, n > p. andy eFO, 
( Tn(X Yo)f < B whenever m, n > p. and x E Fxo, 

where Fxo c EXO and F,0c -E, have positive measure. Further, choose B so large that 

(2.12) I Tmn(XO, yo) I -B 

if m and n are both less than H.. This can be done since (2.12) simply demands that 
B be bigger than (p. + 1)2 numbers. We still have to study Tmn(Xo, Yo) when m > p > n 
or n > ,u > m. The two cases are symmetrical; so henceforth, assume m > p > n. 
From (2.11), ITm(xo, y)j <B for all ye FyO. Thinking of Tm# as a polynomial in 
eil of degree 2,. since 

It m 
ITmg(X, Y) - E t +,ieiaxei9+OY 

3=-jg f=-M 

and applying Lemma 2.2 we obtain for all y 

(2.13) ITmg(xo,y)l < Bc2, c = c(lEyol). 

Since a polynomial is its own Fourier series and a function's supremum dominates 
its Fourier coefficients, we obtain the same inequality for the coefficients 

m 
(2.14) E teiaxo ? BC2g, P - 

a~~~~ ~ = -m 

Use this inequality 2n + 1 times to obtain 

n 
(2.15) ITmn(xo, y)j _ < Bc2'i = (2n+ l)Bc2, < (2p.+ l)Bc2# for all y. 

'3=-n 

In particular, this last inequality holds for y=y0, which was to be shown. 
For the case of k > 2, the theorem can be proved by an induction which requires 

no new ideas not already present in the k = 2 case. One simply replaces m by 
(n1, . .., nk-), n by nk and makes a similar decomposition of F. 

For completeness we include a proof of the Cantor-Lebesgue Theorem. One 
could also see Reves and Szasz [14, pp. 693-695] or Geiringer [8, p. 69]. For 
n> 0, An(X) is the sum of all the elements of {a, exp [il.x]: 41 =ni, i= 1, ..., k}. 
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CANTOR-LEBESGUE THEOREM. If limmin nj A ,(x)=0 for all x E E, IE > 0, then 

lin1linij,x an = ? 

Proof. We proceed by induction. For the theorem in one dimension see Zygmund 
[23, Vol. I, Chapter IX]. Assume the theorem holds for k-I and that 

Real (An(x)) = an(x') cos nkXk + bn(x') sin nkXk 

= p(n; x') cos (nkXk + c(n; x')) = o(1) as 1 ? n oo 

for every x = (x', Xk) E E. It suffices to show that p(n; x') -O0 for every x' in some 
set F of positive measure. Let F={x' f'L,, XE(X, Xk) dXk > 0}, where XE is the 
characteristic function of E. By Fubini's theorem, IFI > 0. For any fixed x' E F, 

(2.16) p2 cos2 (nkXk + a) - 0 for all Xk E {Xk (X', Xk) e E} = F(x'). 

But by definition of F, IF(x')I >0, so integrating (2.16) over F(x') shows that 
4-p2IF(x')I, and hence also p, tends to O as -1n? oo. 

THEOREM 2.1. If T(x) is convergent almost everywhere by a regular method of 
convergence of eccentricity k, and if y > 1 is given, then there exists b = b(T, y, k) > 0 
such that 

(2.17) IamI ? bylllmlll. 

If T(x) is convergent on a set E of positive Lebesgue measure IE , then there is 
c=c(T, IEl, k)> 1 such that 

(2.18) IamI ? cIllmIll. 

These results are in a sense best possible. 

Proof. Let y > 1 be given. Let Sn(X) = JEiE cjeii x be the nth partial sum of T(x) 
with respect to the given regular method of summation. We are given that {sn(x)} 
converges for almost every x E Tk; hence, that the sn(x) are uniformly bounded on 
arbitrary large subsets of Tk. Consider sn(x) as a polynomial in one complex 
variable exp (ix1) = z1 with coefficients depending on x'= (x2,..., Xk), 

JI ~~~~~~~~2JI 
Isn(x1, x')I = 2 d(x') exp (ijx1) = E dm-j1(x') exp (imx1) 

j= -JI m=o 

We may assume that Sn is bounded by a constant BA on a set of the form 
UX'SH (G(x') x {x'}) where I HI > (27rA)k -1; for every x' e H, IG(x)I > (27A) and 
A < 1 may be chosen arbitrarily close to 1. Fix any x' E H; by Lemma 2.2, part (b), 
Isn(x1, x')I $ BAb(yl)yl2Jl for every x1 so that by using Fourier's integral repre- 
sentation for the coefficients of the polynomial as in the proof of Lemma 2.3, we 
obtain 

Idj(x')I = 12 f Sn(x) exp (- ijxl) dx1 ? BAb(yl)y2Jl, X' E H. 
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If we apply the same argument to the dj, if the original A was sufficiently close to 
1, a k-fold iteration yields 

lcl ? BA(b(yl))kyl2(J + + Jk) for each j E. E, 

But by the definition of regularity, given any j, there is an 

En C {-Ji, -J1 + , , J1} X.. x{-Jk, ..*Jk - 1,Jk} 

such that IIjllI II K> supi .k Ji,j E En- Hence, 

|c; I _ Bx(b(yj))kY2kK111 111. 

If we set yl = yl12kK and b=BAb(yl)k, this proves the first part of Theorem 2.1. 
The second part of Theorem 2.1 follows exactly the same line of proof except that 

part (a) of Lemma 2.2 is used in place of part (b). 
P. J. Cohen [2, p. 44] gives examples of trigonometric series whose coefficients 

are "almost" 0(111mjll). To show that Theorem 2.1 is best possible we give new 
examples. Consider a two dimensional series of the form 

00 

(2.19) t(x, y) = 2 0(n)(1 -cos x)nein 
n=1 

where the choice of b will determine the properties of t. Since 

2n 2n 12n\ 
(2.20) (1-cos x)n = 2 sin) = 2n > Jei(n)x (_ 1)n-' 

the Nth partial sum of (2.19) may be written 

N nl 2n N N 

(2.21) tN(X, y) = 2 2 1) -I (n)2 -'(n eimx.e = E tmne 
n=1 m= -nnMnNm N 

From (2.21) it is clear that the ordinary Nth partial sum of t corresponds to the 
(N, N) square partial sum of t thought of as a double series. We note that 

Ito,nI = k(n)2-n(T) = _)2 _ 

(2.22) 
nj2an)112 (n2n e- 2n / 2n 0n 

> k(n)2 -2 n n '~ 
if )2 V(5/4)(2-rn)12nne- n)2T 0 ) 3n 1/2 3n12 

Now set 0(n) = 3n112. For each x satisfying 1 - cos xl < 1 and for all y, that is for 
(x, y) E (-IT!2, IT!2) x [-IT, 7T], we have that tN,N converges absolutely. However, 

Ito,nl >2n which shows that (2.18) cannot be improved. To see that the "almost 
everywhere" hypothesis in the first part of Theorem 2.1 cannot be weakened, set 

-(n) = 3n"12r - n. Given any e > 0, r < 2 may be chosen so close to 2 as to make the set 
of convergence of t have measure > (2r)2 - E. Nevertheless, I to,nl > (2/r)n, so that 
the coefficients still grow exponentially. 

Finally, given that a series does converge almost everywhere with respect to 
some regular method, the somewhat awkward condition (2.17) is the most that one 
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can deduce concerning the growth of its coefficients. Let N= III (m, n) 111 
=max {jml, Inj}. Assume that tm,n is square convergent almost everywhere. Then 
(2.17) asserts that 

(2.23) for all y > 1, Itm,nIIyN < by 

where by is independent of m and n. This is equivalent to 

(2.24) for all y > 1, lim Itm,n 0. 
N- o 

For (2.24) obviously implies (2.23) and conversely assuming (2.23) and given y > 1, 
we have, picking y' between y and 1, 

Itm,nI - t (/\ < bIto(mn) 

Now given any function 0(N) such that for all y> 1, Ob(N)IyN >-0, choose 

-(n)=3n"2'0(n)2-n. Then almost everywhere (in fact except for the two lines 
X=7r and x= -,r), t(x, y) converges as can be seen by setting y2=2/(l -cos x) if 
x .rr (if x_0, t(0, y)= 0). But Ito0,nI >+/(n) so the coefficients grow faster than b. 
For concrete examples the reader might consider 0(n) = n1O6 or 0(n) = 2n1(log n. 

In other words, almost everywhere square convergence permits the coefficients any 
rate of growth which is less than exponential. 

REMARK. Lemma 2.2 is also fairly sharp. Let P(z) = einx((l -cos x)/2)n. P is 
a polynomial of degree 2n. If IP(z)I ? B on [- 8, 8], B (8/2)2n and sup IP(z)I = 1 
so that sup IP(z)j I-B(4/1[-8, 8]1)2n. This shows that the c=c(lSI) of Lemma 2.2 
cannot be chosen smaller than 4/1 S . A close reading of the proof of Lemma 2.2 
shows that c may be chosen of the form dl SI but we do not know if d may be as 
small as 4. 

THEOREM 2.2. If T(x) is convergent on a set E, IEJ > 0, then 

(2.25) am = o(1) as I1mli oo and 

(2.26) am = 0(1) for all m. 

This is also a best possible result. 

Proof. Given a numerical series ij?O ai, with partial sums Sn= &>ji?O ai, it can 
be seen that 

(2.27) an = - (-1)s6. 

In this formula (-1)"-( 1)61+62+ +6k and we understand Sn_a to be equal to 
0 whenever any nt -5i = -1. In one and two dimensions this reduces to the 
elementary facts that an=Sn-Sn-, and am,n=Sm,n-Sm-l,n-Sm,n-1+Sm-l,n-i. 

The last equation may be visualized as A = (A + B + C+ D) - (B + D) - (C + D) 

+D where A =amn, B=m - akn, C= o& am, and D==0 - akl. 
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B A 

D C 

FIGURE 1 

Since this figure somewhat resembles a Mondrian painting [5, p. 169], we will 
refer to an application of (2.27) as Mondrianing. 

Let Aj(x) = i = j, cleilx where j>0. If T converges at x to s, writing 

Tn(x) Aj(x), 
n_?j>o 

expressing An(x) in terms of partial sums as in (2.27), observing that if all indices are 
large every partial sum in (2.27) is close to s and that (2.27) has an equal number of 
positively and negatively signed terms, we find that 

(2.28) lim An(x) = 0. 
min ni- oD 

From the hypothesis of Theorem 2.2, it follows that (2.28) holds for every x in a 
set of positive measure. From (2.28) and the Cantor-Lebesgue Theorem it follows 
that lim11n11_. an=O, which is (2.25). 

We now prove (2.26). From Lemma 2.3 and (2.27) we have that for each x of 
F, there is a constant C(x) such that 

(2.29) IAj(x)l ? C(x) for allj > 0. 

Since F has positive measure we may find a subset F' c F of positive measure on 
which (2.29) holds uniformly, that is, 

(2.30) 1Aj(x)I < C Vx eF', IF'I > 0. 

From this it follows by the same argument used in the proof of the Cantor- 
Lebesgue Theorem that we must also have 

(2.31) 1CjI < D for allj, 

which is statement (2.26). 
It remains to discuss the " best possible " aspects of Theorem 2.2. It is well known 

that (2.25) is best possible even in one dimension. In fact, a one-dimensional 
trigonometric series with coefficients going to zero arbitrarily slowly but which is 
nonetheless convergent almost everywhere may easily be found. For example, 

(2.32) E exp (inkx) 
(2.32)~~~~~~~~~~~~ 
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is the Fourier series of an L2 function (since Ek 
- , k-2 converges) and so convergent 

almost everywhere (Carleson [1]), but the nk may be chosen as rapidly increasing 
as desired, thus allowing (2.32) to have arbitrarily slowly decreasing coefficients. 

EXAMPLE 2.1. Let M(x) = x-,C dmeimx - 0 be a one-dimensional trigonometric 
series which converges to zero outside of a set M, where M is a set of multiplicity 
with IMI =0. For the construction of such an M see [23, Vol. I, Chapter IX, ?6]. 
Let 8(y)= UO ein' and let 

(2.33) L(x,y) = M(x)8(y). 

Then 
M,N Msin (N+ I)y 

Lm,N(x = mnei(mx+ny) - =M ame sind(y/ 2) 

Since whenever x 0 M and y - 0 the first factor tends to 0, and the second factor is 
bounded by csc (y /2), L(x, y) converges to zero for almost every (x, y). However, 
if dk is any nonzero coefficient of M(x), then 'kn=dk for every n so that although 
the coefficients of L are bounded, they do not tend to 0 as the second index in- 
creases. This shows that (2.26) cannot be improved. 

REMARK. We can deduce that cn -?0 as IIIn II- oo if we start with a different 
mode of convergence. If T(x) = C Cin., converges on a set E of positive measure 
with respect to every regular method of convergence, then limllInjIl j - cn = 0. Let k = 2 

for simplicity. In particular, T converges with respect to rectangles with sides 
parallel to the m and n axes and of eccentricity < 3 and also with respect to rec- 
tangles with sides parallel to the lines m = n and m =-n and of eccentricity ? 3. 
By Mondrianing the former we get 

A m,(X) = am ei(mx + ny) + a_m,ei( -mx+nY) + am, -ei(mx - ny) + a - m,ei mx - nmy) -- 0 

if < lmr/nI <3. Mondrianing the latter yields Am,n(X) -? 0 whenever (m, n) is 
near an axis and, in particular, whenever Im/nI ?3 or Im/ni < -. Hence, 
lim max{m,n4 - Am,n(x) = 0 for all x in E. By the Cantor-Lebesgue Theorem, 
lim 

1jj(m,n)jjj--o am,n=o. 

It has recently been shown by R. Cooke [3] that the above result holds for series 
in two variables and circular convergence on a set of full measure. Subsequently, 
A. Zygmund [25] has reduced his hypothesis to circular convergence on a set of 
positive measure. Neither result has been extended to k > 2, at this writing. 

III. Relationships between modes of convergence and summability. 

THEOREM 3.1. If 

(3.1) T(x) = E ei" 

converges at each x of a set E, then T(x) is spherically Abel summable at almost 
every x in E. In particular, if the complement of E is empty (or even countable), then 
the conclusion holds everywhere on E. 
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Proof. An application of Lemma 2.3 shows that it is sufficient to prove the follow- 
ing lemma concerning numerical series. 

LEMMA 3.1. If >m>0 cm converges to s and has all partial sums bounded, then it is 
spherically Abel summable to s; that is, Zm>o c_e ImIlh =s(h) exists for every h > 0 
and limh O s(h) =s. 

This lemma is, in turn, a consequence of the following lemma of standard type. 
Before we state the lemma we must develop some additional notation. Let 

p E Qk with l's in the i1, i2, i, places and O's in the remaining k-r places. Then 
00 co 00 

>jam = E E * ** am 
(p) mj1=?m12=? mtr =O 

where mj is fixed if j {i1, i2, .il, }. In particular, if p = 0, :(p) am = am. Further, 

00 00 00 

Zt am = ZL ...Z * * L jam 
(p) mt,=O misj1=O mis+1`= mir=Q 

where the prime indicates that one of the summations has been omitted. If p=0, 
set 2(p) am = 0. Note that if p # 0 and if all the mj with j 0 {i, . . ., i} are fixed, 
2(p) am denotes a single sum while p am denotes an infinite family of sums, one 
for each choice of s and min, s= 1, 2,. . ., r, m,=0, 1, 2,. If p#0, we define 
l\PAm to be AiA ..Ai A where AiAA =-AM "Mi lMiM+1 ..Mk-AMJ 1,M+ 1^+1 Mk 
and A0Am =Am. 

LEMMA 3.2. Let Y2m>O cm converge to s and have all partial sums bounded. Then 

, cmAm(h) exists for all h >0 and limh-c _ cmAm(h) =s provided the functions 
Am(h) satisfy 

(3.2a) J LPAm(h)l < c 
(p) 

for each p E Qk, where c is independent of both h (h > 0) and of the values of the mj's 
corresponding to the indices not summed; 

(3.2b) lim I IPAm(h)I = 0 
h-O (p) 

for each fixed p Ec Qk, fixed choice of omitted summation, and fixed set of mj's 
corresponding to the indices not summed; and 

(3.2c) Ao(h) = 1. 

Proof. The proof is a direct application of Abel's partial summation formula: 

k Nj+1 Nil Ni2 N,t 

(3.3) > : anAn = Z Z 5 . 2 ml\PAm. 
i = 01 ni=O PCfk nt, = O n2 =? nir=O 

Here Sm = Xm>u>o au where mi1 = ni1,..., min = ni,, m} = N + 1 if j {i1,..., ij} 
We apply (3.3) with am= cm, Am= Am(h). We are given 

(3.4) 5sm1 ? B. 
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Given any e> 0 there is a number ,u such that 

(3.5) iSm-S1 < e/(2*2kC) if JIm || > ,t 

where c is the constant of (3.2a). 
In (3.3) if we put ao = 1, am = 0 for m # 0, we obtain 

N1 Nr 

(3.6) 1 = Ao(h)= . _APAm(h). 
(p) nil = O nr= O 

This follows since (3.2c) holds and Sm =1 for every m. By virtue of (3.6) we may 
assume s=0 and replace (3.5) by 

(3.7) ISmI < e/(2.2kc) if |im ? >,. 

Now 

N1 Nr 

n,l=? nir 0 

1- 1 - 00 00 - 0 0 00- 

< B J APAm(h)J +B AP E Am(h)I 
(3.8) ni1=? n12= 0 1r= n2 = ? ni7 ==? = 0 

ll-1 -00 00 

+ .. +B E ~ E I AP AAm(h) I 
ni = 1 n11= ? njr-1 =0 

yk- E E E A /\PAm(h)J. 
n, = ni2 = n, = g 

Each term in brackets may be chosen < e/(2 2k ,urB) if h is chosen small enough 
(say h < ho) by (3.2b). Applying (3.2a) to the last term in (3.8) yields 

Ni Nr elII el I611I 61eI 
(3.9) | ... SmPAM < 2 -k r +2 2k r + +2 2 r 2 2k 

n,1=0 n,,r=0 m rr+ 2r++ 2 r+ 2 2 

We also observe that 

(3.10) ISN1+1.N1+1AN1+1 Nk+l(h)J < 2 2 C < C.2 if all Ni > 

Combining (3.9) if pA 0 and (3.10) if p = 0 with Abel's partial summation formula, 
we see that if E>0 is given, one may choose first U = ,U(E) sufficiently large and 

then ho = ho((, e) = ho(e) sufficiently small so that, whenever Nl,..., Nk> and 

0<h<ho(e), 
k Nj+1 

i=1 nj=O<E 
This completes the proof of Lemma 3.2. Note that the proof shows that (3.2c) 
could have been replaced by the slightly more general 

(3.2c') lim Ao(h) = 1. 
h-0 
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To prove Lemma 3.1 it remains only to show that Am(h) = e - lmlh satisfies (3.2). 
It is immediate that Ao(h) = 1 so (3.2c) holds. To ease notation let 

Q = (1, 1,..., 1,0,0,.. .,0) 

have its first r entries equal to 1 and its remaining k - r entries equal to 0. We must 
show 

N1 Nr 

(3.11) ... IAAnl... nrNr+l+l ...Nk+lI ? C 
nl=O nr=o 

and, say, that 

Nj Nr-l 

(3.12) AQAn, ...n nr-lnrNr+,+l . Nk+1 (h)| ? as h O-- 
nl=O nr-l=0 

for each fixed choice of nr, Nr+1,..., and Nk. 

Let f(x) = e x I so that f(hm) = Am(h). Then 

r(ml +l1)h aIf 
AilAm(h) = x ,2 (Xl, m2h,..., mkh) dxl,... 

mlh Sx1 

and 

r(ml + 1)h (Mr + 1)h/ Q 
(3.13) AQAm(h) = . .-) f(x1, X + .h . mkh)(dx)Q 

mlh J axh 

An easy induction shows that 

(3. 14) (alax)Qf(X) _ C(i + jXl -(r-1l))e-lX1. 

Hence, the left-hand side of (3.11) may be majorized by 

(3.15) c ... f(1 + lxi-(r-1))e-1x1(dx)Q, 

where x = (xl... Xr,x (Nr + 1 + )h.., (Nk + )h). 
Let p21=x+ ** +x 2= r + 1 + I)h)2 + * + ((Nk + I)h)2 and transform 

(3.15) to polar coordinates. Since the integration depends only on p, the r -1 

angular integrations may be carried out separately so that (3.15) becomes 

(3.16) DI 1+(p2+c2)-(r-l)2 r-1 dp < D (pr-l+1)e-Pdp < oo. 
j0 exp ((p2+ C2Y1'2) P .10 

The proof of (3.12) is similar for we must now show that 

r ( f(nr+1)h \ Q 

(3w17) majors f(xth l et X-rh (Nr + 1 + )h, (Nk + h )h)(dx)Q 

which majorizes the left-hand side of (3.12) tends to O with h. 
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Given s>0, choose h so small that (n,+1+l)h<s and C2=((Nr?I+l)h)2+* 
+ ((Nk+ l)h)2 < 1. Then the integral corresponding to (3.16) is majorized by 

(3.18) cf~~~ {~~f8I+(p2+lI)-(r-l)I2 (3.18) C .. 
.e (dx)Q, 

where p2=x2+ .** +x,2. Transforming to polar coordinates shows the integrand 
to be integrable over [0, cO)r. A simple argument involving the definition of im- 
proper integrals then shows that (3.18) tends to 0 with s and hence h. This proves 
Theorem 3.1. 

REMARKS. Theorem 3.1 shows spherical Abel summability to be quite powerful. 
The theorem is somewhat surprising since different methods of convergence are 
quite incompatible. We consider now some examples which illustrate this incom- 
patibility. All of our examples will be two dimensional. 

EXAMPLE 3.1. There is a series which is square convergent at almost every point 
but which fails to converge restrictedly rectangularly at any point. 

Consider the series 

(3.19) a(x, y) = 2 31 exp (il2x) sin21 y exp (i(12-21)y) = > am e .i(mx+ 
E=2 m,n= - a: 

Whenever I sin y I < 1, which is to say at almost every point (x, y), the series con- 
verges absolutely. From the expansion 

(3.20) sin21 y = (2i) -21 E (2)ie2(l -j) 

it follows that the partial sums of a(x, y) coincide with the square partial sums of 
a(x, y) thought of as a double series so that a(x, y) is square convergent almost 
everywhere. 

Let e be any number greater than one. We will show that a(x, y) is not restrictedly 
rectangularly convergent with eccentricity e. The ratios of the coordinates of 
(2+y 12? - 212+ 8) where y and 8 may be 0 or -1 tend to one as I tends to infinity. 
In particular, these ratios become less than e if 1 is sufficiently large. If a(x, y) 
converges with eccentricity e at some point (xo, yo), Mondrianing (see (2.27)) shows 
that 

(3.21) jA12,12.21(xo,YO)1 = 1a12,12-21 exp (il2xo+(l2-21)yo)1 = 1a12,12_211 

tends to zero as / tends to infinity. But from (3.19) and (3.20) (see also (2.22)) 

(3.22) 1a1212.211 = 31(2i)2I(l) > 11/2 

which does not tend to zero. 
Another interesting example due to C. Fefferman [6] asserts that there exists a 

continuous function of two variables which has a Fourier series which does not 
converge almost everywhere for restricted rectangular sums. This example also 
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separates square and restricted rectangular convergence, since Fefferman [7], 
P. Sjolin [19], and N. Tevzadze [20] have shown that the Fourier series of a function 
in L2 converges almost everywhere for square sums. One should note that a(x, y) 
is not a Fourier series since by (3.22) the am,,, do not tend to zero. 

EXAMPLE 3.2. There is a series which is restrictedly rectangularly convergent 
at almost every point but which is triangularly divergent everywhere. 

Consider the series 
O0 ~~~~~~~~~~~00 

(3.23) b(x, y) = > 21 exp (i4'x) sin21 y = z bm,nei(mx+nY). 
l=l m,n= -1 

For each fixed 1, the series contributes terms with indices 

(3.24) (41, -21'), (41, -21+2), (41, -21+4), ..., (41, 21). 

In the lattice plane (see Figure 2) all of these points are contained within the set 
H={(m, n) I Iml ?n2}. Let an eccentricity e> 1 be specified. Since if 1 is sufficiently 
large all of the points of (3.24) lie outside of the region R = {(m, n) I e?- 1 < m/ni ? e} 
(precisely, when 4'l/e > (41)112), it follows that the restrictedly rectangular partial 
sums of eccentricity bounded by e eventually coincide with the ordinary partial 
sums of b(x, y). These, in turn, converge almost everywhere for if Isin y I<1, 
b(x, y) is majorized by 

00 00 

E21 1sin y 
121 < E nlsinY In < ?? 1=1 n=1 

and hence converges absolutely. Hence, b(x, y) converges restrictedly rectangularly 
almost everywhere. 

However, if we let t(R) denote the triangular partial sum given by 

(3.25) t(R) = E bm,n exp (i(mx0+ny0)) 
ml + lnlR 

where (x0, yo) is any fixed point, then if b converges triangularly at (x0, yo), in 
particular 

(3.26) t(R+ 1)-t(R) -*0 

as R -? oo. But t(41 - 1) is equal to the (41- 1)th partial sum of b(xo, yo) (since 
41-1+21 -<4' - 1, 1= 1, 2, 3,... -see Figure 2) whereas t(41) contains the same 
terms together with b4,,o exp (i4lx) so that (see (2.22)) 

(3.27) t(4')-t(4'-1) = b4',0 2= 2'22 21) > 

which contradicts (3.26). 
EXAMPLE 3.3. There is a series which is restrictedly rectangularly convergent at 

almost every point but which is circularly divergent everywhere. 
The same example b(x, y) mentioned above (see (3.23)) also is circularly diver- 

gent. The proof is similar to that of triangular divergence given in Example 3.2. 
Fix (xo, yo) and let 

(3.28) S(R) = E bm,n exp (i(mx0+nyo)). 
lml +)n]?R 
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n = em 
n/ 

FIGURE 2 

As above, to see that limR, O, S(R) does not exist it suffices to show that 

(3.29) S(421) - S(42 - 1) = b4' 0 exp (i4'x). 

Here, we wish to point out that Example 2.1 is even stronger than Example 3.3 
since the theorems of R. Cooke [3] and A. Zygmund [25] show (2.33) can converge 
circularly only in a set of zero measure since its coefficients do not tend to zero. 
Example 2.1 is a stronger example since it not only converges restrictedly but also 
converges unrestrictedly almost everywhere. The advantage of Example 3.3 is that 
it is easy to see that it is circularly divergent everywhere while the set of circular 
divergence of Example 2.1 is not known to us. 

EXAMPLE 3.4. In Example 3.2, one saw that the square partial sums of b(x, y) 
converge almost everywhere and that the coefficients of b(x, y) do not tend to zero. 
By rotating the torus with the change of variables x=x'+y' and y=x'-y' we 
obtain a series c(x',y') which is triangularly convergent almost everywhere. 
However, since the coefficients do not tend to zero, c(x', y') does not converge 
circularly in a set of positive measure by the Cooke-Zygmund result. Furthermore, 
the reasoning used in Example 3.2 shows that c(x', y') is nowhere convergent for 
square partial sums. 
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EXAMPLE 3.5. There is a series which is convergent at almost every point but 
which is triangularly divergent almost everywhere. 

To see this we shall define a series L(x, y) = M(x)8(y) of the type considered in 
Example 2.1. As before, 8(y) = 1 + 2 Zn= 1 cos ny. We choose M(x) = n bn sin nx 
to be the Fourier-Stieltjes series of a Lebesgue function F(x). The function F(x) 
is defined by F(x)=limp.O Fp(x) for - TT? x ? Twhere the continuous function 
Fp(x) satisfies Fp(O) = 0, Fp(7r) = Tr/2; Fp increases linearly by 2- P(7r/2) on each of the 
2P intervals of length (2/5)P with left-hand endpoint aco+ al(2) + + ap(25)P-l 

where each a: is 0 or (-)-r; Fp(x) is constant elsewhere on [0, -r]; and Fp is extended 
to [-Tr, 0] by Fp(x)=Fp(-x). A calculation similar to the one in [23, Vol. I, p. 195] 
shows that bn=O if n is even and 

00 

bn = 1)(n - 1)/2 j7 cos (-1--Tn(2)k) 
k = O 

if n is odd so that in any case Ibnl _ Iy(--5n)I where y(u) =i=O cos (7UC(2 )k), so that 
bnO--0 [23, Vol. II, pp. 147-148, and Theorem 11.16 on p. 151]. It follows that 
M(x) converges to zero almost everywhere but not everywhere [23, Vol. I, pp. 
347-348, especially the sufficiency part of Theorem 6.8 and the statement of 
Theorem 6.11]. The conjugate series M(x) = - 1bncos nx converges almost 
everywhere [23, Vol. II, p. 216, Theorem 4.1] and for every y, I{x I M(x)=y}I =0. 
This is so for otherwise the function u(z) = u(retx) = En= 1 bn(reix)n which is analytic 
on lzl < 1 (since bn > 0) would have a constant nontangential limit on a subset of 

Izl = 1 of positive linear measure [23, Vol. I, p. 100, Theorem 7.6; p. 105, ?8, first 
two sentences; and p. 253, Theorem 1.6] which would force all bn to be zero [23, 
Vol. II, p. 203, Theorem 1.9] which is impossible since M(x) does not converge to 
zero everywhere. 

By the argument used in Example 2.1 it follows that L(x, y) is convergent almost 
everywhere. To show that L(x, y) is triangularly divergent almost everywhere, it 
suffices to show that 

AN(X, y) = tN(X, y)-tN-l(X, y) = m,nei(mx+ny) 
Iml +Jnl =N 

does not tend to zero at almost every (x, y) E T2. Using several elementary 
trigonometric identities we find that 

N-1 

AN(X, y) = > bm sin mx(2 cos (N-m)y) +bN sin Nx 
m=1 

N-1 

= 2 E bm sin mx(cos Ny cos my+ sin Ny sin my)+o(1) 
m - 1 

N-1 
= cos Ny E bm{sin m(x-y)+ sin m(x+y)} 

m= 1 

N-1 

+sin Ny > bm{cos m(x-y)-cos m(x+y)}+o(1). 
m=1 
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For almost every (x, y) E T2, M(x-y)=M(x+y)=O and M(x-y) and M(x+y) 
exist. For such an (x, y), we have 

AN(x, y) = o(l) + sin Ny{M (x ? y)-M(x-y) + o(l)} + o(l) 

= sin Ny{M(x+y)-M(x-y)}+o(l). 

Since M~ is not constant on any set of positive measure, the quantity in braces is 
not zero almost everywhere. Since for almost every y, sin Ny does not tend to zero 
[23, Vol. I, p. 142, Corollary to Theorem 4.27], neither does A,(X, y) as was to be 
shown. 

This example is stronger than Example 3.2, but is somewhat less constructive 
since here the sets of convergence and divergence are not specified. 

REMARKS AND PROBLEMS. It should be mentioned explicitly that the above 
examples show most common regular methods are pairwise inequivalent, even on 
an almost everywhere basis. For example, b(x, y) is almost everywhere square 
convergent but is nowhere circularly convergent. 

We do not know of examples of series which are circularly convergent but not 
square (or, equivalently, triangularly) convergent on a set of positive measure. 
The situation may be summarized by the following diagram in which A -F1 B 
means that there is a trigonometric series convergent almost everywhere with 
respect to method A but convergent on no set of positive measure with respect to 
method B, while C -> D means that convergence with respect to method C on a 
set forces convergence with respect to method D almost everywhere on that set. 

CONVERGENCE 
(Unrestr icted RectangulIar ) _ 

RESTR ICTED TR IANGULAR >SPHER ICAL 
RECTANGULAR\/I 

SQUARE ;' 

FIGURE 3 
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Despite the basic incompatibility between various methods of convergence, 
if one sticks to a given method, consistency theorems of the form "convergence 
implies summability" are often true. For example, if the numerical series 

00 00 

(3.30) aij i=o j=o 

is square convergent to s, then the (C, 1) means 

(3.31) , 1 

where Sm,n,= :i= o =% aij, also converge to s. Similar theorems hold for spherical 
and triangular partial sums for here also the situation is essentially one-dimensional. 
However, one sometimes needs the additional assumption of boundedness of the 
partial sums for consistency. For example, the numerical series 2 bi, where boj = 1, 
j= 1, 2, . . ., bij =-1, i= 1, 2, . . ., bij = 0 otherwise is square convergent to O since 
all sn, =0 but has (C, 1, 1) means 

I 1 n n(n +2) 
(3.32) Ufln,f n (n+1)2 i = 0 

- 

6(n+ 1) 

and so is not (C, 1, 1) square summable. This is the motivation behind saying that a 
series converges in the sense of Pringsheim if it is unrestrictedly rectangularly 
convergent and has bounded partial sums. A typical consistency theorem is 

LEMMA 3.3. If the numerical series (3.30) converges in the sense of Pringsheim 
to s, then it is summable (C, 1, 1) to s, that is, 

(3.33) lim Um,n - lim 1 m n~S = S 
min{m, n) - (m+ l)(n + 1) min{m,n} - a> (m + l)(n + l) i =Q j=O 

Proof. Given e > 0 pick Mu so large that Isj -S s < e/3 if i and j are > p.. Then pick 
n and m so large that tzB/(m+1)<e/3 and p.B/(n+1)<e/3 where B=supi,j sij-sI 
is finite by hypothesis. Then 

~m,n 1 m 

(m + 1)(n+ 1) (m+ 1)(n + 1) o i ) 

1 j1 n + m jL-1 
n 

-(m+l1)(n +1) ^S=0 jE = +0(m+l)(n+l) j=0 j=0 +(m+l)(n+l)i=,j= 3 

<- + - + 3 33 

From Lemmas 2.3 and 3.3 we deduce 

THEOREM 3.2. If a trigonometric series converges on a set E of positive measure, 
then the series is (C, 1, 1) summable at almost every point of E. 
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Theorem 3.2 differs from the already known Lemma 3.3 only in that the hypoth- 
esis of boundedness of the partial sums has been removed. There are many similar 
classical theorems in which the hypothesis of bounded partial sums may be dropped. 
It would be repetitious to list any more of them. 

IV. Uniqueness of multiple trigonometric series. The problem of uniqueness for 
spherical summability has been discussed by Victor Shapiro in [16], where he 
proved 

THEOREM 4.1 (SHAPIRO). Given the multiple trigonometric series 

(4.1) ameim.x 

where the am are arbitrary complex numbers. Let q be a point on Tk. Suppose that 
(4.2a) ZR- 1 < 

ImMIR I amI =o(R) as R o, 

(4.2b) f *(x) andf*(x) are finite for x in Tk- {q}, 
(4.2c) f* is in L1 on Tk, 

(4.2d) f* is in L1 on Tk, 

where f*(x) is the lower Abel sum of the series (4.1) given by 

f*(x) = lim inf > ameimx- Imlh 
h- 0 

andf*(x), the upper Abel sum, is analogously defined. Then the series (4.1) is the 
Fourier series off*(x). 

A partial uniqueness theorem for triangular partial sums has been obtained 
by George Cross [4]. M. H. Nasibov [12] has proved uniqueness theorems for 
unrestricted and restricted convergence, but his hypotheses are rather strong. 
All of these theorems assume something about the rate of growth of the coefficients. 
The following theorem avoids this problem, but we have been able to prove it 
only in two dimensions. 

THEOREM 4.2. Let the trigonometric series 

(4.3) 2 am,nei(mx+ny) 

be convergent everywhere on T2 to the finite-valued Lebesgue integrable function 
f(x, y). Then (4.3) is the Fourier series off. 

Recall that convergent means unrestrictedly rectangularly convergent. Let 

fo(x, y) be defined by 

fo(x, Y) = lim inf 2 am,ne 
min{jmj,jnl} - c 

and f?(x, y) be defined analogously. Let q = (ql, q2) be any point of T2. Then a 
somewhat more general version of Theorem 4.2 is 
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THEOREM 4.2'. Suppose that 
(4.4a) f0(x, y) andfo(x, y) are finite for (x, y) in T2-{q}, 
(4.4b) fo is in L1 on T2 
(4.4c) fo is in L1 on T2. 

Then the series (4.3) is the Fourier series offo. 

COROLLARY 4.1. Suppose that the trigonometric series (4.3) converges to zero on 
T2. Then the series is identically zero, that is, all the coefcients are zero. 

The corollary is obviously Theorem 4.2 in the special case when f(x, y)=0. 
We proceed now to the proof of Theorem 4.2. The proof is an application of 
Shapiro's theorem. From Lemma 2.3 and Lemma 3.1 it is clear that conditions 
(4.2b, c, and d) are satisfied. To see that condition (4.2a) holds, by virtue of Theorem 
2.2, we need only prove 

LEMMA 4. 1. If 

(4.5) Iam,nI < C 

and 

(4.6) lim am,n = 0, 

then 

1< l Iam,n =o(R) asR-oo. 
R-1 < 1(m,n)l <R 

Proof. This is geometrically evident. For we write 

(4.7) Z Iam,nI lam,ni + l Iam,nI = A+B. 
R-1 < I(m,n)l?R R-1 < I (m,n) I<R R-1 < I (m,n) I?R 

11(m,n)ll>tu AIm, W11 < g 

If u is chosen sufficiently large each term of A will be arbitrarily small by (4.6). 
Since there are (asymptotically) only 27RT terms altogether (see Rademacher 
[13, p. 100]), it follows that A is o(R) as R -? oo. Once ,u is fixed, B is seen to have 
o(R) terms as R increases so that, by (4.5), B also is o(R) as R -? oo. This finishes 
Lemma 4.1 and, hence, Theorem 4.2. The proof of Theorem 4.2' uses the full 
strength of Shapiro's theorem and is similar to the proof just given. Instead of 
Lemma 3.1, one uses the fact that 

(4.8) fo(x) < *(x) < f*(x) < ?f(x). 

This last fact follows from Lemma 2.3, the fact that Am(h) = e -lmlh satisfies the 
hypotheses of Lemma 3.2, and an argument very close to the one which proves 
Lemma 3.2. 

If the dimension of the space is at least three, then we can prove only the follow- 
ing partial result. 

THEOREM 4.3. If, for every x in a set of positive measure, 

(4.9) E anein.x = 0, 

then all an are zero. 
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In order to prove this theorem we first need to establish the consistency of non- 
tangential Abel summability. 

Let z=`(z1, Z2,... Zk), Z=(zO, . . zk) where each zj is a complex number of 
modulus less than one and z? is a point of Tk, so that z = exp (ixj) for each j. We 
say that z tends nontangentially to z? if each z, tends nontangentially to z4. In 
other words there is a constant M so that 

(4.10) I4-zI/0(l- l,I) ?< M, i = 1,..., k. 

Note that M is necessarily bigger than or equal to one. 
If +(z)= Z"?O a.Zn converges whenever all IzjI < 1 (here zn= Znz72 . .* znk) and if 

+(z) tends to s as z tends nontangentially to z?, then we say that the series an(zO)n 
a e aeinX is summable A* to s. 

LEMMA 4.2. If 

= E ane "ix = S unrestricted rectangularly, 
n>O 

and 

?aneinx < B for all N, 

then I is summable A* to s. 

Proof. An application of Abel's summation by parts formula (3.3) shows that it 
is sufficient to prove that 

(4.11) IAP(wm)I < Mk 
(p) 

for each p c Qk, where M is given by (4.10); 

(4.12) limit >'IlAP(Wm)l = 0 
z-zO nontang (p) 

for each fixed p E Qk, fixed choice of omitted summation, and fixed set of mj's 
corresponding to the indices not summed; and 

(4.13) w?= 1, 

where w=(z1(zO)-1, . . ., Z)1). 

Refer to Lemmas 3.1 and 3.2 for the notation. The sufficiency of conditions 
(4.1l)-(4.13) is so similar to the proof of Lemma 3.2 that we omit it. Condition 
(4.13) holds by definition. To ease notation let Q=(1, .. ., 1, 0, . .., 0) have its 
first r entries equal to 1 and its remaining k - r entries equal to 0. We must show 

00 Go 

(4.14) . 
Q 

> j&\(w)(n,l nrNr+i. .Nk)j < Mk 
n1=O nr=O 

and, say, that 
00 00 

(4.15) A Q (W A(wnl n. Nr + 1'. Nk| ? 
nj=O n,-l=? 
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as w -? 1 nontangentially for each fixed choice of n,r Nr+i,..., and Nk. (Note that 
1 -wjl/(1 - Iwjl)= jz9-zjl/(1 - Izil).) 

Now 
AQ(W)(l,...Nk) n- n(w+ w1)WN. Nw' | i\ W) 1 k |= (Wl-Wnl +1). * wr-Wr r +wr + 1 ... Wk k| 

= W1Inj 
.. 

I * WkINkil -Wll | I-Wdl 
.. 

* *|-Wrl 

r 
< 

11 |1-Wjl*|Wjlnj 
j=1 

so that the left-hand side of (4.14) is dominated by 
r 00 \ r 

f[ (11-w I E Iw in) = 17 (I1-Wjl!(l-IwjI)) < Mr < Mk 
j=l nj=O j=l 

while the left-hand side of (4.15) is dominated by 
r-1 

I1_WrI 
17 

(11-Wj|/(1-IWjI)) -' I1-WrIMk1 
j=l 

which tends to zero as w -- 1, completing the proof of Lemma 4.2. 
Assume now that (4.9) holds on a set E of positive measure. By Lemma 2.3 

there is a set Fc E of full measure on which the partial sums are bounded. The 
function 

?(z)= E Zn 

n>O 

is absolutely convergent in {z: Izll <1, . . ., lZkl <l} since the coefficients are 
bounded by Theorem 2.2. Furthermore, by Lemma 4.2, +(z) has nontangential 
limit 0 at each point of F, and IF} > 0. These two facts are exactly the hypotheses of 
a theorem of Calderon whose conclusion is that an=O for every n [23, Vol. II, 
p. 321, Theorem 4.24]. 

REMARKS. It is an open question whether or not a uniqueness theorem holds for 
general series in dimensions greater than two. In dimension three Shapiro's 
theorem cannot be used because the analogue of Lemma 4.1 does not go through. 
In fact, one may easily find numbers almn such that a,,-n --0 as 11(1, m, n)ll oo but 

E |almnl | 0(R), 
R-1 <j(I,m,n)?<R 

for example, almn = (12 + m2 +n2)-114. Theorem 4.3 has little bearing on the question 
of uniqueness for general trigonometric series. For example, if k = 1, the series 

En sin nx is summable A* to zero at all points except x=0 (and, hence, a 
fortiori on a set of positive measure). This helps to illustrate the fact that the 

question of uniqueness is much more delicate for general trigonometric series than 
for trigonometric series of power series type. 

A different approach to the question of uniqueness may be made by considering 
the 2kth integral. For simplicity let k = 2 and ao,n = am,, = 0. Assume that for every 

(x, y) in T2 
00 00 

(4.16) E E am nei(mx +ny) = 0 
m=-oo n=-oo 
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unrestrictedly rectangularly. Form the continuous function 
00 00 

amnim ny (4.17) F(x, y) = e 
m= - con= - o 

We have the following consistency theorem. 

THEOREM 4.4. (See Zak [22].) If we assume (4.16) and set 

A(2'2)F(x, y; h, k) = F(x+h, y+k)-2F(x+h, y)+F(x+h, y-k) 

(4.18) -2F(x, y + k) + 4F(x, y)-2F(x, y-k) 

+F(x-h, y+k)-2F(x-h, y)+F(x-h, y-k) 
then for all (x, y) in T2 

(4.19) D('2,2F(x, y) = lim F(x,y; = 0 (h, k h 0) 
h,k-0O h k2 - (,#0 

where the limit is taken as h and k tend to zero jointly but with unrestricted ratio. 

Proof. Using Abel's partial summation formula (3.3) and observing that 

5m,n(x, y)I < B(x, y) (Lemma 2.3) we compute 

&(2'2)F(x, y;h, k) (000sin mh\2/sin nk\2 
2=2Z aZ,nei(mx +ny) I 

(4.20) h2k2 m=-co n=-oo mh 
!(nk! 

00 00 

= Z sm,n(X, y)Am,n(h, k) 
m=-oo n=-co 

where 

h /sin mh\2 sin (m+ Olh\2l r(sin nki2_ lsin (n+ 1)k 21 (4.2 1) Atmn(h, k) = -I ' I II LmhJ\ (m+1)h J I nk I \(n+1)k / A 

Decompose (4.20) into four terms. 

co 00 

(4.22) m-oo n = m= g n= -g +m n> Iml>u n= -it Iml> Inj> 

- A + B + C + D. 

If i is large, Sm,n is small for m and n > ,t so D is small since 
co 00 J x l sin U 21 sin V 21 

(4.23) ImnhkI$f j (sn)sv) du dv < oo. 

For the remaining terms note that 1sm,n(x, y)I< $B(x, y) by Lemma 2.3. Then A 
can be made small by choosing h and k small since, for each m and n, 

(4.24) lim Am,n(h, k) = 0. 
h,k-0O 

Similarly, if h and k are small B is small since for each m 
00 

lim lAm n(h, k)l 
(4.25) h,k 

f ( 
0 

ndh) 
1sO 1 sin 1v 2 1 Islin mh 2 srin (M+ A\ 12 
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while a symmetrical argument shows C small. 
Hence, (4.22) tends to zero with h and k, which proves Theorem 4.4 (see Robison 

[15, p. 67]). 
By virtue of Theorem 4.4, one would have a different proof of Theorem 4.2 

which would probably generalize to higher dimensions if one could prove 
CONJECTURE 1. Let F be continuous on T2. If 

(4.26) D(2 - 'T = 0 for all (x, y) in T2, 

then there are functions a(y), b(y), c(x), and d(x) such that 

(4.27) F(x,y) = ax+b+cy+d. 

COMMENTS. This would generalize Theorem 10.7 on p. 23 of [23, Vol. I]. Without 
loss of generality we may add the hypothesis that 

(4.28) F = 0 on the boundary of [-7r, 7r] x [-7r, 7r] 

and then attempt to deduce that F is identically zero on TP since F(x, y) may be 
replaced by 

G(x, y) = F(x, Y)-{ [F(x, 7r)-F(x, -7T)] 

+4IT2 [F(7r, -7r)+F(-7r, Ir)-F(7r, Ir)-F(-7r, -7)] 

+ 
I 

[F(7r, -7) + F(-7, - r) -F(r, ) - F(- 7, 7r)] y 

(4.29) 1 
-2[F(x, 7r) + F(x, -7) [F (-7, r) + F(-7r,-7r)-F(7r, 7r)-F(7r,-7r)] 

-4 [F(Ir, Ir)+F(-IT, Ir)+F(Ir, - r)+F(- 7, -7r)]} 

{2, [F(7T, y) -F(-7r, y)]}x-{2 [F(-7r, y) + F(7T, y)]} 

where G(x, y) differs from F(x, y) by a function of the form (4.27) and G(r, y) 
- G( -I, y) = G(x, IT) = G(x, - IT) = 0 as may be verified directly. We now observe 

LEMMA 4.3. Let F(x, y) be continuous on T2. If 

(4.30) F(x, y) = 0 on the boundary of [-Ir, Ir] x [-Ir, Ir] 

and 

(4.31) A(2,2)F(x, y; h, k) =- 0, 

then F(x, y)_ O. 

Proof. Setting x=y=0, h=k=7T and applying (4.18), it follows from (4.30) 
and (4.31) that F(0, 0)=0. Setting (x, y; h, k)=(0, 7T/2; 7T, 7T/2) and reasoning 
similarly shows that F(O; 7T/2) =0. From considering (x, y; h, k) = (-7T/2, 0; 7r/2, 7r) 
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we get F(-7T/2, 0) = 0. Proceeding inductively shows that F is zero on the countable 
dense set 

{(?' ?); (?'- 72) (-'2 
0 
?) (?-'2 (5 ?); 

(7T T) ( T 7T) (T 7T) (T T) 
05 

7r) 

(For example, setting (x, y; h, k)= (0, 7T/4; 7T, 7r/8) and using F(O, O) =F(O, 7T/2)=O, 

we find that F(O, 7r/4) = 0.) It then follows by continuity that F is identically zero. 
Because of Lemma 4.3, in order to prove Conjecture 1 it would suffice to prove the 
following mean value type statement. 

CONJECTURE 2. If F is continuous on T2 and D(2'21F-=0 on T2, then 

AX2,2)F(x, y; h, k)- 0. 

Conjectures 1 and 2 and Lemma 4.3 were stated in [8, esp. pp. 95-108], but 
without sufficient proof. 

Another approach to the question of uniqueness which yields only partial results 
may be made as follows. For simplicity we let k=2, ao,0=0 and consider the 
trigonometric series 

00 00 

(4.32) t = ne = n am,nei(mx?nY) 
m=-o n=-o 

Define (see Shapiro, [17]) 

(4.33) t= ( "2anei n12- ane? IX in) - (t(1), t2l1). 

Then tl) is a formal integral of t in the sense that 

(4.34) grad t (1) = &t (1)/cx + W9t 1/1My = t 

where the partial derivatives are computed termwise and the last equality is formal. 
Repeat the process forming t(2)=(t(1))(1), 

_(-Z aeinexm2/1nl4 -I anein xmnllnl4\ (tll9 t(ff2\ 
(4.35) t (2) Z ~ - nLln2~f , \~t 

V- nin. xmnl n14 - ein xn 2/ 1n14 
t 
(t22) t (2)J 

We find that t'2' is a formal second integral of t in the sense that 

(4.36) grad o grad t(2) +2 t-_+ 2 t2) = t. 

We may iterate the process. We obtain, again formally, 

grad o grad o grad t(3) 

(4.37) _ 3 +3 2 a (3) 23 b3 t__ =3 t 

t11+ ?3 tf~+ 3 
X____t_3_ 

+ ~22 
C9x3 C-X2 + -t112=12 
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where, for example, 

t 3) = t(3) = t (3) = anexI 2n) 

Higher order formal integrals are easily constructed. 
If we now replace partial differentiation by symmetric partial differentiation so 

that, for example, c91t)/cx is approximated by 

tf1)(x +h, y) - t(1)(x -h, y) 
2h 

and 83tf3) / x2 cy is approximated by 

tl12(x+ 2h, y+ h) -1(12x+2h,y-h)+tll2(x-2h, y+h)-tll2(x-2h,y-h)-2tll2(x,y+h)+2tll2(x, y-h) 

(2h)3 

then the left-hand sides of (4.34), (4.36), and (4.37) are approximated respectively by 

(4.38) ane inx .mh sin mh + nh sin nh\ 
\ (mh)2 +(nh)2 . 

mh sin mh + nh sin nh\2 
(4.39) an i. 

', (mh)2 +(nh)2 / 
and 

(4.40) aneinx(mhsjn mh+nh sin nh)3 

For the symmetric approximation to the pth derivative of the pth formal integral 
we of course obtain 

(4.41) anein. X(mh sin mh + nh sin nh\P ~ afle~ (mh)2 + (nh)2 

This motivates the following consistency theorem. (See also Lemma 4.2 and 
Theorem 4.4.) 

THEOREM 4.5. Suppose m =O anei"x =s and has bounded partial sums. Then if 

p >2, 

(4.42) lim Zanet'X(mh sin m)Sh+.nh n = 
h-~O+ m,__= ( (mh)2 nnh 

(Interpret (O sin 0 + 0 sin 0)/02 to be 1.) 
Proof. We apply Lemma 3.2 to 

(4.43) Am,n(h) = (mhsinmh+(nh)in nh) fP(mh, nh) 

where f(u, v) = (u sin u + v sin v)/(u2 + v2). Making use of inequalities of the type 

((4 + 1 )h f 
(4.44) JAm,n(h) - Am+l,n(h)l - |m fP(u, v) du, 



430 J. M. ASH AND G. V. WELLAND [January 

conditions (3.2a) are reduced to 

(4.45) Jo v)f(u, V) du dv < C 

(4.46) J | afP(u, v) du < C, 

(4.47) j +fP(u, v) dv < C 

and 

(4.48) jfp(u, v)I < C. 

To prove (4.45) change to polar coordinates and write 

(4.49) u vfP(u, v) du dv 

(4.49)~ ~ ~ ~~ r 1/2 r /rz2 

= f1712 *rdrdo+ ff. *rdrd6 = A+B. 

Now 

(4.50) = (-) T2i - ?pP1+J au Of P(P - lf au ,-V Pf- Au Ofv 

where 

Of r2(sin u+u cos u)-2u(u sin u+v sin v) (4.51) -r 

and 

(4.52) 
a 

-2f 8uv(u sin u+v sin v)-2r2[v sin u+u sin v+uv(cos u+cos v)] 
au av r6 

To estimate A replace sin u by u+ O(r3), sin v by v+ O(r3), cos u and cos v by 
1 + O(r3) to obtain that the numerators of (4.51) and (4.52) are O(r4) and O(r6) 
respectively as r tends to zero. We handle af/lv symmetrically and observe that 

(4.53) IfI ? 1. 

These estimates show that the integrand in A is O(r) = 0(1) as r ->- 0 so that the 
integral is finite. To estimate B, use (4.51) and (4.52) to show that aff/buu= O(1/r), 

af/lv= O(1/r) and a2f/lu av= O(1/r2) at infinity. Sincef= O(1/r) at infinity and the 
Jacobian is r, it follows that the integrand is 0(1l/rl+ (P-2)) at infinity and hence that 
B is finite since p > 2. 

We now consider (4.46). Using af"/lu =pfP - laf/lu and (4.53) we have 

(454) J fPl du?p af du+p fPlf du = p(A(v)+B(v)). 
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Again making third order estimates for sine and cosine we deduce from (4.51) that 

(4.55) < 2u3+2u(u4+v4) < <2u3 4u 
C9 u ~~~= (u 2?v2)2(2+ 

2 

so that A(v) < 2 for all values of v. Now let u > 1. Since r = (u2 + v2)12 > u ? 1 and 
r ? v, it follows from (4.43) and (4.51) that 

1,vI<2<2 _- 2U- (4.56) I - <2 2 _I _ 

and 

(t4 < r2(1 + u) + 2u(u + v) < 6 < 6 
(4.57) au ~~r4 r -u 

so that p > 2 implies 

(4.58) B(v) < X du= 12 < 12. 

The validity of (4.46) with C= 14p follows. The proof of (4.47) is symmetrical with 
the one just given. Also (4.48) is immediately clear from (4.53). 

We must next verify conditions (3.2b) which in this case follow from 

(4.59) f f f dudv-0 as h ? 0 for each n, 

r(m +l)Ch r x c9 
(4.60) +mh Jo fP du dv 0 ash +0 for each m, 

(4.61) lAm n(h)-Am+1,n(h) I -0 as h 0 for all m and n, 

(4.62) lAm,n(h)-Am,n+i(h)l -0 as h 0 for all m and n. 

For n fixed and ? > 0 given, we can choose h small enough so that the integral in 
(4.59) is less than or equal to 

2 
I a2du dv. 

Using a simple argument involving the definition of improper integrals and the 
finiteness of (4.45), we see that (4.59) tends to zero with e and hence h. 

The proof of (4.60) is symmetrical with that of (4.59). The verifications of (4.61) 
and (4.62) are routine. Finally, condition (3.2c) holds by the parenthetical remark 
following the statement of Theorem 4.5. This shows that the hypotheses of Lemma 
3.2 are satisfied and completes the proof of Theorem 4.5. Observe that p > 2 was 
necessary for the proof of (4.45) so that an approach to the theory of uniqueness via 
Theorem 4.5 would probably require at least three integrations. Actually, to avoid 
complications arising from terms with negative indices it might be better to use an 
even number of (hence at least four) integrations. 
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V. On the almost everywhere summability of double Fourier series. Let 
Kna(t) be the ath Fejer means of the series 2 + cos t + cos 2t+*. We have 

1 =sin (n?4I)t 
Dn(t) = K?(t) = 2 + cos t + * * * + cos nt 2 sin (t/2) 

and, in general, 

Kn(t) = E A~n_Dv(t)/Ax where A6 = (m?/) = (1+ )(13?)! (/+m) 

Consider the Fourier series S [f] of a real-valued function f(x, y) which is 
Lebesgue integrable over T2. We say that S [f] is (C, a, 1) summable to fat (x, y) if 

lim a%'8(f)(x, y) 
min {m,n}- 

X 

(5.1)1 r 
- lrn 2i J __f(x-s, y- t)Km(s)Kn1(t) ds dt = f(x, y). 

min {m,n)- * co v _a_ 

In particular, S[f] is (C, ac, 0) summable tof at (x, y) if 

lim or ? a )x,y 
min {m,n}- oo 

(5.2) 1iX X 
- lrnim 2 f(x-s, y-t)Kma(s)Dn(t) ds dt = f(x, y). 

min{m,n} -.o o7 JJ _ 

In [24], A. Zygmund showed that if f E LP(T2), p > 1, and if a > 0, 3> 0, then 
S [f] is (C, a, 1) summable to f(x, y) almost everywhere. 

In [11], B. Jessen, J. Marcinkiewicz, and A. Zygmund generalized the result by 
weakening the hypothesis that fe LP(T2) tof E (L log+ L)(T2), while still drawing 
the same conclusion. 

A recent example of C. Fefferman [6] shows that the results of R. A. Hunt [9] 
and L. Carleson [1] concerning convergence of Fourier series of functions of one 
variable do not extend to unrestricted or even to restricted rectangular convergence 
for multiple Fourier series. (Fefferman [7], P. Sjolin [19], and N. Tevzadze [20] 
independently also proved that functions in LP(Tk) (p > 1) have convergent Fourier 
series for square partial sums.) In other words, there exists a continuousfe L2(T2) 
for which S [f] is not summable (C, 0, 0) to f almost everywhere. 

However, we can give the following theorem. 

THEOREM 5.1. If, for almost every x in T', f(x, y) e L(log+ L)2(T1(y)) and if 

g(x)=JfT1 If(x,y)I(log+ If(x,y)1)2dyeL(T1(x)), then, for every positive a, f is 
summable (C, a, 0) almost everywhere. In particular, if f E LP(T2), p > 1, the con- 
clusion holds. 

THEOREM 5.2. Let a> 0. Under the hypotheses of the first part of Theorem 5.1 we 
have 

(5.3) j_f Ja'0(x, y)J dx dy < Aa j jfl(log+ Jfl)2 dx dy + A; 



1972] CONVERGENCE, UNIQUENESS AND SUMMABILITY 433 

and iff e L"(T2), p > 1, then 

(5.4) or au ?(x, y)I Idx dy < Ca f If(x, y)I Idx dy 

where 

(5.5) a, 0(x, y) = lim sup IrIX,0(x, Y)I. 
min {m, n oom 

We begin by proving Theorem 5.2. We will only prove (5.3) since the proof 
of (5.4) is similar. Without loss of generality let 0 < a < 1. Since IKm(x) satisfies 
the conditions 

(5.6) 1 < - f IKm(x)I dx = Cm(a) < CO, for all m, 

(5.7) max IKn(x)I 0 as n -- oo for each 8, 
6?jxj<?3 

and 

(5 .8) Knx'(x) I _ min {2n, A n -aIx |- + 1} 

it follows that if h(x) e L'(T'), then 

(5.9) C f 
1 Kmx(t) I h(x- t) dt - h(x) 

as m -*> o for almost every x [23, Vol. I, p. 94]. From (5.6) and (5.9) we deduce 
that for h e L'(Tl) 

(5.10) or *(h)(x) = lim sup!_ IKx(t)I Ih(x-t) I dt CxIh(x) 

for almost every x. 
Let 

M2f(x, y) = sup j!f Dn(t)f(x, y-t) dt | 

For almost every x, f(x, y) e L(log+ L)2 as a function of y. For such x's we have 

(5.11) M2f(x, y) dy < A If(x, y)I(log+ If(x, y)I)2 dy+A. 

(See R. Hunt [9, p. 235].) Integrating (5.1 1) with respect to x we find that M2 e L'(T2) 
and 

(5.12) f M2f(x, y) dy dx < A f Ifl(log+ Jfl)2 dy dx+2,7A. 
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Now fix a y for which M2f(x, y) is integrable as a function of x. For almost every x 
we have by (5.10) and the definition of M2, 

ra, 0)(x, y = sup Ksm(su D(t)f(x-s, y-t) dt1ds 
(5.13) 1 ' 

< lim sup - S K,m(s)IM2f(x -s, y) ds < CaM2f(X, y). 

Since (5.13) holds almost everywhere, combining (5.12) and (5.13) proves (5.3). 
The argument that proves Theorem 5.1 from Theorem 5.2 is classical. We repro- 

duce the proof here for completeness. (See [11, p. 221].) First apply (5.3) to the 
function Af where A>0 is a constant obtaining 

(5.14) af'O(f)(x,y) dx dy < Aa, f If(log+ IAf1)2 dx dy+Aa 

Let e > 0 be given. Choose A so large that 

(5.15) AxZ/A < S2/8. 

Decompose f, f=f '+ f" where f' is a trigonometric polynomial, 

(5.16) Jf If" Idxdy <4 

and 

(5.17) Aa J If"l(log Alff'f)2 dx dy < 2 

(See [23, Vol. II, p. 304].) From (5.16) and Tchebycheff's inequality 

(5.18) j{(x,y)l If"(x,y)l > e/2}1 < e/2. 

From (5.15), (5.17), (5.14) applied to f", and Tchebycheff's inequality we have 

(5.19) I{(x, y)Iaa*(f )(x, y) > -/2}1 < E|2. 

From (5.18) and (5.19) we see that if E(e) is the set of all (x, y) for which either 

If"l > e/2 or a* ?(f") > e/2, then E(e) has measure < e. Since 

am,n(f) )-f= um,n(f') -f'+ am,n(f") f", 

we see that, outside the set E(e), 

(5.20) limsup |Om,n(f)-f1 _ *r?(f")+ lf"1 < = 
min {m,n1- ci 22 

Now if am,n did not converge almost everywhere, it would fail to converge on a 
set F, IFj >0. Write 

F= U Fn-= U (x Y) lim sup Iam,,n(f)-f I > 
n=1 n=1 min (m,n}x-: n 
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Some Fn would have positive measure, say IF,.I > 3 >0. Picking e <min {1/no, 6} 
and applying (5.20) would yield a contradiction, since F0 co E(e) but IFno > 8> 
> IE(e)J. Hence, U,rn does converge almost everywhere. This proves Theorem 5.1. 

The space L(log+ L)2 is not the largest possible space that might be used in the 
statements of Theorems 5.1 and 5.2. Sjolin [19] has proved that the hypothesis 
for the convergence of the Fourier series in one variable may be weakened from 
"f(x) belongs to L(log+ L)2 on T1" to "f(x) belongs to L(log+ L)(log+ log+ L) on 
T1' ". It is clear that as further results are obtained in the theory of functions of one 
variable, one may correspondingly weaken the hypotheses in the first parts of 
Theorems 5.1 and 5.2 while still obtaining the same conclusions. 
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