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Convergence within a polyhedron: Controller design for

time-delay systems with bounded disturbances

P.T. Nam1, P.N. Pathirana2, H. Trinh2

1 Department of Mathematics, Quynhon University, Binhdinh, Vietnam

2 School of Engineering, Deakin University, Geelong, VIC 3217, Australia

Abstract: This paper considers linear systems with state/input time-varying delays and

bounded disturbances. We study a new problem of designing a static output feedback con-

troller which guarantees that the state vector of the closed-loop system converges within a

pre-specified polyhedron. Based on the Lyapunov-Krasovskii method combining with the free-

weighting matrix technique, a new sufficient condition for the existence of a static output

feedback controller is derived. Our condition is expressed in terms of linear matrix inequali-

ties with two parameters need to be tuned and therefore can be efficiently solved by using a

two-dimensional search method combining with convex optimization algorithms. To be able to

obtain directly an output feedback control matrix from the derived condition, we propose an

appropriate combination between a state transformation with a choice of a special form of the

free-weighting matrices. The feasibility and effectiveness of the derived results are illustrated

through five numerical examples.

1 Introduction

Within recent years, the stabilization problem of linear systems with time-delays in the state

and the input has received much considerable attention from researchers [1–8]. Based on the

Lyapunov-Krasovskii method combining with the free-weighting matrix technique, a state feed-

back stabilization condition was first reported [2] for linear systems with two time-varying delays

in the state and the input. This condition was given in terms of linear matrix inequalities with

four parameters need to be tuned. For the case where there is a constant time delay in both

the state and the input, by eliminating some free-weighting matrices, the authors [3–5] derived

some simpler state feedback stabilization criteria which are given in terms of linear matrix

inequalities and require only one tuned parameter. In practice, the assumption of full state
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information is a limiting one and it is more practical if only output information is used for

the controller design purpose [7–11]. To our knowledge, there are few results dealing with

output feedback stabilization problem for linear systems with time delays in the state and the

input [7,8]. By using the Lyapunov method and delay-decomposition technique, the authors [7]

proposed two methods for designing static and integral output feedback controllers for linear

systems with one unknown constant time delay in both the state and the input. By using the

sliding mode control method, a static output feedback stabilization condition for linear systems

with state and input time-varying delays was reported in [8].

On the other hand, disturbances are unavoidable in practical control systems due to mod-

elling errors, linearization approximations, unknown disturbance signals, measurement errors,

etc. For systems with bounded disturbances, a central concept that has received considerable

attention is the so-called reachable set, which is the set of all the states starting from the

origin by inputs with peak value [12, 13]. The exact shape of reachable sets of a perturbed

system is, in general, very complex and hard to obtain. Hence, it is usually approximated

by outer bounding simple convex shapes like balls or ellipsoids or boxes. So far, the problem

of reachable set bounding for systems with time delays and bounded disturbances has been

studied extensively [13–27]. Very recently, the authors [27] considered a new problem which

deals with the design of a state feedback controller such that reachable sets of the closed-loop

system are contained in a pre-specified ellipsoid. This is an interesting and meaningful problem

since the pre-specified ellipsoid can be chosen according to practical situations or special design

requirements. For instance, given a set of finite points in state space D = {ξi : i = 1, · · · , r}
and it is required to design a controller such that reachable sets of the closed-loop system do

not contain any point ξi. As pointed out in [27], one first finds an ellipsoid ϵ(P ) (as large as

possible) that does not contain any point ξi and then design a controller such that reachable

sets of the resulting closed-loop system are contained in the ellipsoid ϵ(P ). Note that, in such a

situation, it is clear that a polyhedron, which is an intersection of halfspaces ( [28], page 31) can

express the above requirement better, i.e., there exists a polyhedron Ω, which is larger than the

ellipsoid ϵ(P ) and does not contain any point ξi (for a visual illustration, see Figure 1, where

the rectangle ABCD contains the ellipse ϵ(P ) but does not contain any point ξi, i = 1, · · · , 8).
Hence, the controller design problem for the case where reachable sets are contained in a poly-

hedron Ω will be easier than for the case where reachable sets are contained in an ellipsoid ϵ(P )
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Figure 1: Rectangle ABCD and ellipse ϵ(P )

which is smaller than the polyhedron Ω.

Motivated by the above, in this paper, we consider linear systems with state/input time-

varying delays and bounded disturbances. We solve a new problem of designing a static output

feedback controller, which guarantees that the state vector of the closed-loop system converges

within a pre-specified polyhedron. To solve this problem, we employ the Lyapunov-Krakovskii

method and the free-weighting matrix technique [29, 30] with a choice of a special form of

the free-weighting matrices. A new sufficient condition for the existence of a static output

feedback controller is derived and expressed in terms of linear matrix inequalities with two

parameters need to be tuned and can be efficiently solved by using a two-dimensional search

method combining with convex optimization algorithms such as the Matlab’s LMI toolbox [31].

Furthermore, to reduce the conservatism of our derived convergence condition, we use the recent

effective techniques in stability analysis for time-delay systems, i.e. the Wirtinger-based integral

inequality [32, 33] and the reciprocally convex combination inequality [34]. Also, for the case

where disturbances are not present, the derived convergence condition is reduced to a static

output feedback exponential stabilizability condition, which is shown to be less conservative

than existing ones [2–5, 7, 35]. Lastly, the feasibility and effectiveness of the obtained results

are illustrated through five numerical examples.
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2 Problem statement and preliminaries

Consider the following linear system with state/input time-varying delays and bounded distur-

bances

ẋ(t) = Ax(t) + A1x(t− τ1(t)) +Bu(t) + B2u(t− τ2(t)) +Dω(t), t ≥ 0, (1)

y(t) = Cx(t),

x(θ) = ϕ(θ), θ ∈ [−h, 0],

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the control input vector, y(t) ∈ R
p is the

measured output vector, ω(t) ∈ R
k is the disturbance vector satisfying

ωT (t)ω(t) ≤ ω2, (2)

ω is a given positive scalar, matrices A ∈ R
n×n, A1 ∈ R

n×n, B ∈ R
n×m, B2 ∈ R

n×m, C ∈ R
p×n,

D ∈ R
n×k are given constant matrices, C is assumed to be a full-row rank matrix, τ1(t) and

τ2(t) are time-varying delays satisfying





0 ≤ τ1(t) ≤ τ1M , τ̇1(t) ≤ d1M ≤ 1,

0 ≤ τ2(t) ≤ τ2M , τ̇2(t) ≤ d2M ≤ 1,

where τ1M ≥ 0, τ2M ≥ 0, d1M and d2M are known constants, h = max{τ1M , τ2M}, ϕ(θ) ∈
C1([−h, 0],Rn) is an initial function with its norm defined as

∥ϕ∥c = max{ max
t∈[−h,0]

||ϕ(t)||, max
t∈[−h,0]

||ϕ̇(t)||}. (3)

With the following static output feedback control law

u(t) = Ky(t) (4)

where K ∈ R
m×p, the closed-loop system is obtained as follows

ẋ(t) = (A+BKC)x(t) + A1x(t− τ1(t)) +B2KCx(t− τ2(t)) +Dω(t). (5)

Given q non-zero row matrices Lj ∈ R
1×n, j = 1, · · · , q and q positive scalars bj > 0, j =

1, · · · , q. It is easy to see that {x ∈ R
n : Ljx = bj} and {x ∈ R

n : Ljx = −bj} are two parallel

(n−1)-planes in R
n and the set Ωj = {x ∈ R

n : |Ljx| ≤ bj} is the area between the two parallel
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planes. Then, the set Ω =
∩q

j=1 Ωj is a polyhedron [28] and the main problem of this paper is

stated as follow:

Problem: Find a static output feedback controller (4) such that every solution x(t, ϕ) of the

closed-loop system (5) satisfies

lim sup
t→∞

|Ljx(t, ϕ)| ≤ bj, j = 1, · · · , q. (6)

This means that the state vector of the closed-loop system (5) converges within the given poly-

hedron Ω as t tends to infinity. Note that if rank([LT
1 LT

2 · · · LT
q ]) = n then Ω is bounded and

it is called a polytope [28] in R
n.

The following lemmas are useful for our main results.

Lemma 1: For a given positive scalar δ, let V (t) be a Lyapunov function for system (5). If

V̇ (t) + 2δV (t)− 2 δ
ω2ω

T (t)ω(t) ≤ 0, ∀t ≥ 0, then we have

lim sup
t→∞

V (t) ≤ 1.

Proof: Putting v(s) = e2δsV (s) and taking the derivative of v(s) in s, we have

v̇(s) = e2δs
(
V̇ (s) + 2δV (s)− 2δ

ω2ω
T (s)ω(s)

)
+

2δ

ω2ω
T (s)ω(s)e2δs

6 2δe2δs.

Integrating from 0 to t both sides of the above inequality, we obtain

v(t)− v(0) ≤ e2δt − 1, ∀t ≥ 0,

and hence

V (t) ≤ 1 + e−2δt|V (0)− 1|, ∀t ≥ 0.

This implies that lim supt→∞
V (t) ≤ 1. The proof of Lemma 1 is completed

The Wirtinger-based integral inequality [32] and the reciprocally convex combination in-

equality [34], which has been reformulated by [32], are used in this paper.

Lemma 2: (The Wirtinger-based integral inequality [32]) For a given n × n-matrix R > 0, any

differentiable function φ : [a, b] → R
n, then the following inequality holds

∫ b

a

φ̇(u)Rφ̇(u)du ≥ 1

b− a
(φ(b)− φ(a))TR(φ(b)− φ(a)) +

12

b− a
ΩTRΩ,
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where Ω = φ(b)+φ(a)
2

− 1
b−a

∫ b

a
φ(u)du.

Lemma 3: (The reciprocally convex combination inequality [32, 34]) For given positive integers

n,m, a scalar α ∈ (0, 1), a n × n-matrix R > 0, two n × m-matrices W1,W2. Define, for all

vector ξ ∈ R
m, the function Θ(α,R) given by

Θ(α,R) =
1

α
ξTW T

1 RW1ξ +
1

1− α
ξTW T

2 RW2ξ.

If there is a matrix X ∈ R
n×n such that


R X

⋆ R


 > 0, then the following inequality holds

min
α∈(0,1)

Θ(α,R) ≥


W1ξ

W2ξ




T 
R X

⋆ R




W1ξ

W2ξ


 .

Lemma 4: (Schur Complement Lemma [31]) Let R be a symmetric positive definite matrix. For

any matrices P, S with appropriate dimensions, where P = P T , then


 P S

ST R


 > 0

if and only if P − SR−1ST > 0.

3 Main results

To use conveniently the output information in designing a static output feedback controller,

we first take the following state transformation to re-present the output matrix in a canonical

form:

x(t) = Hz(t), (7)

where H = [C+ null(C)] is a nonsingular matrix, C+ denotes the Moore-Penrose inverse of C,

null(C) denotes an orthogonal basis for the null-space of C. Then, system (1) is transformed

into the following system

ż(t) = Az(t) + A1z(t− τ1(t)) +Bu(t) + B2u(t− τ2(t)) +Dω(t), t ≥ 0 (8)

y(t) = Cz(t),
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z(θ) = H−1ϕ(θ) := φ(θ), θ ∈ [−h, 0],

where A = H−1AH, A1 = H−1A1H, B = H−1B, B2 = H−1B2, D = H−1D and C = CH.

With the choice of matrix H as above, the output matrix C is now in a canonical form, i.e.

C = [Ip 0]. Note that condition (6) is equivalent to the following condition

lim sup
t→∞

|LjHz(t, φ)| ≤ bj, j = 1, · · · , q (9)

and the polyhedron Ω corresponds to the polyhedron Ω = {z ∈ R
n : |LjHz| ≤ bj, j = 1, · · · , q}.

The following notations are needed in order to derive our main results. For two nonsingular

matrices Z11 ∈ R
p×p and Z22 ∈ R

(n−p)×(n−p), matrices Z21 ∈ R
(n−p)×p, G ∈ R

m×p, K ∈ R
m×p,

and two n× n positive-definite matrices R1, R2, we denote the following

Z =


Z11 0p×(n−p)

Z21 Z22


, G̃ =


 G 0m×(n−p)

0(n−m)×p 0(n−m)×(n−p)


, K̃ =


 K 0m×(n−p)

0(n−m)×p 0(n−m)×(n−p)


,

C̃ =


 C

0(n−p)×n


, Z = diag{Z, · · · , Z, In} ∈ R

11n×11n, G = diag{G̃, · · · , G̃} ∈ R
11n×11n,

B̃ = [B 0n×(n−m)] ∈ R
n×n, B̃2 = [B2 0n×(n−m)] ∈ R

n×n, D̃ = [D 0n×(n−k)] ∈ R
n×n,

AT
c = [A A1 0n×7n − In D̃] ∈ R

n×11n, BT
c = [B̃ 0n×2n B̃2 0n×7n] ∈ R

n×11n,

µ1(t) =
1

τ1(t)

∫ t

t−τ1(t)
zT (s)ds, µ2(t) =

1
τ1M−τ1(t)

∫ t−τ1(t)

t−τ1M
zT (s)ds,

µ3(t) =
1

τ2(t)

∫ t

t−τ2(t)
zT (s)ds, µ4(t) =

1
τ2M−τ2(t)

∫ t−τ2(t)

t−τ2M
zT (s)ds,

F = Z−1, ω̃(t) = [ωT (t) 01×(n−k)]
T ,

ξT (t) =
[
zT (t)F T zT (t− τ1(t))F

T zT (t− τ1M)F T zT (t− τ2(t))F
T zT (t− τ2M)F T

µ1(t)F
T µ2(t)F

T µ3(t)F
T µ4(t)F

T ż(t)F T ω̃T (t)
]
∈ R

1×11n,

ζT0 (t) =
[
zT (t)F T

∫ t

t−τ1M

zT (s)F Tds

∫ t

t−τ2M

zT (s)F Tds
]
∈ R

1×3n,
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ei = [0n×(i−1)n In 0n×(11−i)n]
T , for i = 1, · · · , 11,

ρ(t) = [e1 τ1(t)e6 + (τ1M − τ1(t))e7 τ2(t)e8 + (τ2M − τ2(t))e9] ∈ R
11n×3n,

Γ1 = [e1 − e2
√
3(e1 + e2 − 2e6) e2 − e3

√
3(e2 + e3 − 2e7)] ∈ R

11n×4n,

Γ2 = [e1 − e4
√
3(e1 + e4 − 2e8) e4 − e5

√
3(e4 + e5 − 2e9)] ∈ R

11n×4n,

R̃1 =


R1 0

0 R1


, R̃2 =


R2 0

0 R2


 and Υj =

1
b2j
HTLT

j LjH, j = 1, · · · , q.

Note that, from the above notations and with some simple computations, we can verify that

BKCZ = B̃K̃C̃Z = B̃ ×


 KZ11 0m×(n−p)

0(n−m)×p 0(n−m)×(n−p)


 ∈ R

n×n.

By letting G = KZ11, then system (8) with a static output feedback controller u(t) = KCz(t)

is rewritten as follows:

[AT
c Z + BT

c G]ξ(t) = 0. (10)

Now we are in a position to introduce the main result in the form of the following theorem.

Theorem 1: If there exist a positive scalar δ > 0, a scalar λ, a positive-definite 3n × 3n-

matrix P , six positive-definite n× n-matrices Q1, Q2, S1, S2, R1, R2, q positive-definite n× n-

matrices Pj, j = 1, · · · , q, two 2n× 2n-matrices X1, X2, two nonsingular matrices Z11 ∈ R
p×p,

Z22 ∈ R
(n−p)×(n−p), and two matrices Z21 ∈ R

(n−p)×p, G ∈ R
m×p such that the following matrix

inequalities hold

P −




Pj 0 0

0 0 0

0 0 0


 > 0, j = 1, · · · , q, (11)

Pj − ZTΥjZ > 0, j = 1, · · · , q, (12)

Θi =


R̃i Xi

⋆ R̃i


 > 0, i = 1, 2, (13)
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Σ(τ1, τ2, δ) < 0, ∀(τ1, τ2) ∈ {0, τ1M} × {0, τ2M}, (14)

where

Σ(τ1, τ2, δ) = 2ρ(t)P [e10 e1 − e3 e1 − e5]
T + 2δρ(t)PρT (t)

+e1(Q1 + S1 +Q2 + S2)e
T
1 − e−2δτ1M e3Q1e

T
3

−e−2δτ1M (1− d1M)e2S1e
T
2 − e−2δτ2M e5Q2e

T
5

−e−2δτ2M (1− d2M)e4S2e
T
4 + e10(τ

2
1MR1 + τ 22MR2)e

T
10

−e−2δτ1MΓ1Θ1Γ
T
1 − e−2δτ2MΓ2Θ2Γ

T
2

+(e1 + λe10)(AT
c Z + BT

c G + ZTAc + GTBc)− 2
δ

ω2 e11e
T
11, (15)

then with the static output feedback controller u(t) = GZ−1
11 y(t), every solution of the closed-

loop system (8) converges within the given polyhedron Ω.

Proof: Consider the following Lyapunov-Krasovskii functional

V = V1 + V2 + V3, (16)

where

V1 =ζT0 (t)Pζ0(t),

V2 =

∫ t

t−τ1M

e2δ(s−t)zT (s)F TQ1Fz(s)ds+

∫ t

t−τ1(t)

e2δ(s−t)zT (s)F TS1Fz(s)ds

+

∫ t

t−τ2M

e2δ(s−t)zT (s)F TQ2Fz(s)ds+

∫ t

t−τ2(t)

e2δ(s−t)zT (s)F TS2Fz(s)ds,

V3 =τ1M

∫ 0

−τ1M

∫ 0

v

e2δużT (t+ u)F TR1F ż(t+ u)dudv

+ τ2M

∫ 0

−τ2M

∫ 0

v

e2δużT (t+ u)F TR2F ż(t+ u)dudv.

Taking the derivatives of Vi, i = 1, 2, 3 in t, we have

V̇1 + 2δV1 = 2ζT0 (t)P ζ̇0(t) + 2δζT0 (t)Pζ0(t)

= ξT (t)
{
2ρ(t)P [e10 e1 − e3 e1 − e5]

T + 2δρ(t)PρT (t)
}
ξ(t), (17)

V̇2 + 2δV2 = zT (t)F T (Q1 + S1 +Q2 + S2)Fz(t)− e−2δτ1M zT (t− τ1M)F TQ1Fz(t− τ1M)

9
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−e−2δτ1(t)(1− τ̇1(t))z
T (t− τ1(t))F

TS1Fz(t− τ1(t))

−e−2δτ2M zT (t− τ2M)F TQ2Fz(t− τ2M)

−e−2δτ2(t)(1− τ̇2(t))z
T (t− τ2(t))F

TS2Fz(t− τ2(t))

≤ ξT (t)
{
e1(Q1 + S1 +Q2 + S2)e

T
1 − e−2δτ1M e3Q1e

T
3 − e−2δτ2M e5Q2e

T
5

−e−2δτ1M (1− d1M)e2S1e
T
2 − e−2δτ2M (1− d2M)e4S2e

T
4

}
ξ(t), (18)

V̇3 + 2δV3 = τ 21M żT (t)F TR1F ż(t)− τ1M

∫ t

t−τ1M

e2δ(s−t)żT (s)F TR1F ż(s)ds

+τ 22M żT (t)F TR2F ż(t)− τ2M

∫ t

t−τ2M

e2δ(s−t)żT (s)F TR2F ż(s)ds

≤ ξT (t)
{
e10(τ

2
1MR1 + τ 22MR2)e

T
10

}
ξ(t)

−τ1Me−2δτ1M
{∫ t

t−τ1(t)

żT (s)F TR1F ż(s)ds+

∫ t−τ1(t)

t−τ1M

żT (s)F TR1F ż(s)ds
}

−τ2Me−2δτ2M
{∫ t

t−τ2(t)

żT (s)F TR2F ż(s)ds+

∫ t−τ2(t)

t−τ2M

żT (s)F TR2F ż(s)ds
}
.

(19)

Using Lemma 2, we obtain the following estimation

−
∫ t

t−τ1(t)

żT (s)F TR1F ż(s)ds

≤ − 1

τ1(t)

(
z(t)− z(t− τ1(t))

)T

F TR1F
(
z(t)− z(t− τ1(t))

)
− 12

τ1(t)

(z(t)
2

+
z(t− τ1(t))

2

− 1

τ1(t)

∫ t

t−τ1(t)

z(s)ds
)T

F TR1F
(z(t)

2
+

z(t− τ(t))

2
− 1

τ1(t)

∫ t

t−τ1(t)

z(s)ds
)

= −ξT (t)
1

τ1(t)

{
[e1 − e2]R1[e1 − e2]

T + 3[e1 + e2 − 2e6]R1[e1 + e2 − 2e6]
T
}
ξ(t). (20)

Similarly, we also obtain

−
∫ t−τ1(t)

t−τ1M

żT (s)F TR1F ż(s)ds

≤ −ξT (t)
1

τ1M − τ1(t)

{
[e2 − e3]R1[e2 − e3]

T + 3[e2 + e3 − 2e7]R1[e2 + e3 − 2e7]
T
}
ξ(t), (21)

−
∫ t

t−τ2(t)

żT (s)F TR2F ż(s)ds

≤ −ξT (t)
1

τ2(t)

{
[e1 − e4]R2[e1 − e4]

T + 3[e1 + e4 − 2e8]R2[e1 + e4 − 2e8]
T
}
ξ(t) (22)
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and

−
∫ t−τ2(t)

t−τ2M

żT (s)F TR2F ż(s)ds

≤ −ξT (t)
1

τ2M − τ2(t)

{
[e4 − e5]R2[e4 − e5]

T + 3[e4 + e5 − 2e9]R2[e4 + e5 − 2e9]
T
}
ξ(t). (23)

Adding (19)-(23), using (13) and Lemma 3, we obtain

V̇3 + 2δV3 ≤ ξT (t)
{
e10(τ

2
1MR1 + τ 22MR2)e

T
10 − e−2δτ1MΓ1Θ1Γ

T
1 − e−2δτ2MΓ2Θ2Γ

T
2

}
ξ(t). (24)

Combining (10) with the free-weighting matrix technique [29,30], we have

2ξT (t)(e1 + λe10)[AT
c Z + BT

c G]ξ(t) = 0. (25)

By adding (17), (18), (24) and (25), we obtain

V̇ (t) + 2δV (t)− 2
δ

ω2 ω̃
T (t)ω̃(t) ≤ ξT (t)Σ(τ1, τ2, δ)ξ(t). (26)

By some simple computations, we can verify that

[ ∂2

∂τ 2i
Σ(τ1, τ2, δ)

]
≥ 0, i = 1, 2. (27)

Consequently, Σ(τ1, τ2, δ) is convex with respect to τ1 and τ2. Hence, if condition (14) holds

then we have

V̇ (t) + 2δV (t)− 2
δ

ω2 ω̃
T (t)ω̃(t) ≤ 0, ∀t ≥ 0. (28)

This follows that lim supt→∞
V (t) ≤ 1 due to Lemma 1. On the other hand, using (11) and

(12), we have

zT (t)Υjz(t) ≤ zT (t)F TPjFz(t) ≤ V (t), j = 1, · · · , q.

This implies that inequality (9) holds. The proof of Theorem 1 is completed.

Remark 1: Note that for each j = 1, · · · , q, matrix inequality (12) is a quadratic matrix inequal-

ity. By using singular value decomposition technique, we can reduce matrix inequalities (12)

to linear but more conservative matrix inequalities. Indeed, for each j = 1, · · · , q, assuming

that [Uj, Yj, Vj] is a singular value decomposition of matrix LjH, then HTLT
j LjH = VjY

T
j YjV

T
j .
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Since LjH ∈ R
1×n is a non-zero matrix, matrix Yj has a form Yj = [sj 0 · · · 0] ∈ R

1×n, where

sj is a non-zero scalar. This implies that

Υj = Vj




s2j
b2j

0 0 · · · 0

0 0 0 · · · 0
...

...
... · · · ...

0 0 0 · · · 0



V T
j .

For a small positive scalar ϵ > 0, we denote

Υϵ
j = Vj




s2j
b2j

0 0 · · · 0

0 ϵ 0 · · · 0

0 0 ϵ · · · 0
...

...
...

. . .
...

0 0 0 · · · ϵ




V T
j .

Then Υϵ
j is positive-definite matrix and Υϵ

j ≥ Υj. Hence, matrix inequalities (12) can be

replaced by more conservative matrix inequalities Pj −ZTΥϵ
jZ > 0, j = 1, · · · , q. These matrix

inequalities are equivalent to the following linear matrix inequalities due to Lemma 4

Pj ZT

Z (Υϵ
j)

−1


 > 0, j = 1, · · · , q. (29)

Also note that matrix inequality (14) cannot be simplified into linear matrix inequality (LMI).

However, when λ and δ are fixed, then (14) is reduced to LMI. Therefore, we can now use a

two-dimensional search method combining with convex optimization algorithms such as the

Matlab’s LMI toolbox [31] to solve matrix inequalities (11), (29), (13) and (14). Note that the

two parameters λ and δ are independent, hence in practice one can use parallel computing to

find the two feasible parameters. Furthermore, parameter δ is the exponential rate, therefore

it is positive and finite, i.e. it belongs to an interval. This helps to reduce partly the difficulty

in searching for the two feasible parameters. On the other hand, the appropriate combination

between a state transformation (7) with the choice of a special form of matrices G̃ and Z allows

us to obtain an output feedback control matrix K = GZ−1
11 .

Remark 2: Since the two time-varying delays considered in this paper are independent, the

Lyapunov-Krasovskii functional (16) must be constructed by using different matrices for each
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delay. In this paper, we use the Wirtinger integral and the reciprocally convex combination

inequality, which are known as recent effective techniques with moderate variables. Therefore,

the number of variables in our derived conditions is moderate. However, the number of variables

can be reduced for the following three special cases: (i) τ1(t) ≡ τ2(t); (ii) τ1M = τ2M ; and (iii)

τ1(t), τ2(t) are non-differentiable or their derivatives are unknown. For case (i), we let Q1 = Q2,

R1 = R2 and S1 = S2. For case (ii), we let Q1 = Q2, R1 = R2. Finally, for case (iii), we let

S1 = S2 = 0.

Remark 3: Note that Σ(τ1, τ2, δ) is convex with respect to τ1 and τ2. It follows that if the

condition (14) holds for ∀(τ1, τ2) ∈ {0, τ1M}×{0, τ2M} then it also holds for ∀(τ1, τ2) ∈ {0, τ̃1M}×
{0, τ̃2M} where τ̃1M ≤ τ1M and τ̃2M ≤ τ2M . This means that the condition (14) is monotonic

increasing with respect to the delays’ bounds τ1M and τ2M . So, we can use a two-dimensional

search to calculate the maximum allowable values of the delays’ bounds τ1M and τ2M .

Remark 4: The assumption that the derivatives of the time-varying delays are less than one

is usually referred to as slow time-varying delays. For the case where the time-delays are non-

differentiable or their derivatives are unknown, then this assumption is not needed and can be

removed. By letting S1 = S2 = 0 and by following the same lines as in the proof of Theorem 1,

we can obtain a similar result. Note that this result is more conservative than the one derived

with the assumption that the derivatives of the time-varying delays are less than one.

Remark 5: For the case where the initial condition is zero, then V (0) = 0. Consequently, from

the proof of Lemma 1, we have V (t) ≤ 1, ∀t ≥ 0. Similar to the proof of Theorem 1, we obtain

|LjHz(t, 0)| ≤ bj, ∀t ≥ 0, ∀j = 1, · · · , q.

Hence, the condition stated in Theorem 1 guarantees that all reachable sets of the closed-loop

system (8) are bounded by the polyhedron Ω for all time.

For the case where the system (1) does not have any disturbance, by setting ω(t) ≡ 0

and D = 0, then the convergence condition in Theorem 1 is reduced to a static output feed-

back exponential stabilizability condition for system (1). Here, let us recall the definition of

exponential stabilizability of system (1).
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Definition 1: Given a positive scalar δ > 0, system (1) without any disturbance is δ-stabilizable

with a static output feedback controller (4) if every solution x(t, ϕ) of the closed-loop system

(5) satisfies

∃N > 0 : ∥x(t, ϕ)∥ ≤ N∥ϕ∥ce−δt, ∀t ≥ 0. (30)

The positive scalars δ andN are called the convergence rate and the stability factor, respectively.

Remark 6: From the state transformation (7), it is easy to see that

λ1||x(t)||2 ≤ ||z(t)||2 ≤ λ2||x(t)||2 (31)

where λ1 = λmin

(
(H−1)T (H−1)

)
and λ2 = λmax

(
(H−1)T (H−1)

)
. This implies that if system

(8) is δ-stablizable with stability factor N then system (1) is also δ-stablizable with stability

factor
√

λ2

λ1

||H−1||N . Therefore, to study δ-stabilizability for system (1), we only need to study

δ-stabilizability for system (8).

Let us denote that

Ξ(τ1, τ2, δ) = 2ρ(t)P [e10 e1 − e3 e1 − e5]
T + 2δρ(t)PρT (t)

+e1(Q1 + S1 +Q2 + S2)e
T
1 − e−2δτ1M e3Q1e

T
3

−e−2δτ1M (1− d1M)e2S1e
T
2 − e−2δτ2M e5Q2e

T
5

−e−2δτ2M (1− d2M)e4S2e
T
4 + e10(τ

2
1MR1 + τ 22MR2)e

T
10

−e−2δτ1MΓ1Θ1Γ
T
1 − e−2δτ2MΓ2Θ2Γ

T
2

+(e1 + λe10)(AT
c Z + BT

c G + ZTAc + GTBc).

Similarly, we also get a sufficient condition for δ-stabilizability of system (8) via a static output

feedback controller (4) as follow

Theorem 2: For a given positive scalar δ > 0, if there exist a scalar λ, a positive-definite 3n×3n-

matrix P , six positive-definite n×n-matrices Q1, Q2, S1, S2, R1, R2, two 2n× 2n-matrices X1,

X2, two nonsingular matrices Z11 ∈ R
p×p, Z22 ∈ R

(n−p)×(n−p), and two matrices Z21 ∈ R
(n−p)×p,

G ∈ R
m×p such that condition (13) and the following matrix inequality hold

Ξ(τ1, τ2, δ) ≤ 0, ∀(τ1, τ2) ∈ {0, τ1M} × {0, τ2M}, (32)
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then system (8) without any disturbance is δ-stabilizable. The static output feedback controller

is u(t) = GZ−1
11 y(t). Moreover, every solution of the closed-loop system satisfies

∥z(t, φ)∥ ≤
√

β2

β1

∥φ∥ce−δt, ∀t ≥ 0, (33)

where

β1 =λmin(diag{F T , F T , F T} × P × diag{F, F, F}),

β2 =(1 + τ 21M + τ 22M)λmax(diag{F T , F T , F T} × P × diag{F, F, F})

+ τ1Mλmax

(
F T (Q1 + S1)F

)
+ τ2Mλmax

(
F T (Q2 + S2)F

)

+
τ 31M
2

λmax(F
TR1F ) +

τ 32M
2

λmax(F
TR2F ).

Proof: Also consider the Lyapunov-Krasovskii functional (16) and similarly, we obtain

V (t) ≤ V (0)e−2δt, ∀t ≥ 0. (34)

Denoting ζT1 (t) = [zT (t)
∫ t

t−τ1M
zT (s)ds

∫ t

t−τ2M
zT (s)ds]. Note that for all s ∈ [−h, 0], we

have ||z(t+ s)||2 ≤ ||zt||2c and ||ż(t+ s)||2 ≤ ||zt||2c . By some computations, we have

||ζ1(t)||2 ≤ ||z(t)||2 + τ1M

∫ t

t−τ1M

||z(s)||2ds+ τ2M

∫ t

t−τ2M

||z(s)||2ds

≤ (1 + τ 21M + τ 22M)||zt||2c (35)

and

||z(t)||2 ≤ ||ζ1(t)||2. (36)

Combining (34), (35) with (36), we obtain the following inequality

β1||z(t)||2 ≤ β1||ζ1(t)||2 ≤ V (t) ≤ β2||zt||2c , ∀t ≥ 0, (37)

which implies inequality (33). This completes the proof of Theorem 2.

Remark 7: (Minimization stability factor) From (37), the stability factor is N =
√

β2
β1
. When

matrices P and F are found, we can further find a scalar α1 ≥ β1 such that α1||z(t)||2 ≤ V (t).

To find α1, we can use an one-dimensional search method for the following inequality

α1




In 0 0

0 0 0

0 0 0


 ≤ diag{F T , F T , F T} × P × diag{F, F, F}. (38)
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Hence, the stability factor N can be reduced to a minimal one N1 =
√

β2

α1

. In Example 3 of the

next section, we show that N1 is smaller than N .

Remark 8: Consider an extended system of (1) as follows

ẋ(t) =Ax(t) + A1x(t− τ1(t)) + A2x(t− τ2(t)) + Bu(t) + B2u(t− τ2(t)). (39)

By re-notating AT
c = [A A1 0n×n A2 0n×5n−In 0n×n] ∈ R

n×11n, with A2 = H−1A2H, then the

result in Theorem 2 also gives a δ-stabilizability criterion for system (39) via a static output

feedback controller (4). Note that the authors in [3–5, 7] only considered the case where in

system (39), A1 = 0 and τ2 is a constant time delay (i.e, only one constant time delay in both

the state and the control input).

Remark 9: Assume that the matrix inequality Ξ(τ1, τ2, 0) < 0 holds. Since ρ(t) is bounded,

we can choose a small enough scalar δ0 > 0 such that Ξ(τ1, τ2, δ0) < 0. Hence, we have an

asymptotic stabilizability criterion for system (8) via static output feedback controller (4) as

given in the following corollary.

Corollary 1: System (8) without any disturbance is asymptotically stabilizable via a static

output feedback controller (4) if Ξ(τ1, τ2, 0) < 0 and (13) hold.

4 Numerical examples

In this section, we give five examples to illustrate the feasibility and effectiveness of our results

on static output feedback control for two cases: (i) in the presence of bounded disturbances;

and (ii) no disturbances. For the case (i), we will design a static output feedback controller,

which guarantees the state vector of the closed-loop system converges within a pre-specified

polyhedron Ω (Example 1 and Example 2). For the case (ii), we will design a static output

feedback controller which guarantees δ-stability of the closed-loop system (Example 3, Example

4 and Example 5).

Example 1: (Convergence condition) Consider system (1) in the presence of disturbances ω(t),
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which is bounded by ω = 0.3, and

A =




−1 0 0.3 0

−0.1 0.2 1 0

−0.3 0.1 −2 0.2

0 0 0 −1.2



, A1 =




−2 −0.1 0 −0.2

−0.2 0.3 0.3 0

0.1 0 −2 −0.2

0 0 0 0.1



,

B =




1

1

0

0



, B2 =




0

1

0

1



, D =




1

0

0

0



, C =


−1 −1 2 0.2

0.2 1 0.3 1


 .

The two time-varying delays, τ1(t) and τ2(t) satisfying





0 ≤ τ1(t) ≤ 0.5, τ̇1(t) ≤ 0.05,

0 ≤ τ2(t) ≤ 0.6, τ̇2(t) ≤ 0.05.

(40)

Given a polyhedron Ω = {x ∈ R
4 : |Ljx| ≤ bj, j = 1, 2} where L1 = [1 1 0 0], L2 =

[0 0 1 1], b1 = 0.2, b2 = 0.1. We design a static output feedback controller, which guarantees

the state vector of the closed-loop system converges within the given polyhedron Ω.

By solving the linear matrix inequalities (11), (13), (14) and (29) with ϵ = 0.01 and two

parameters need to be turned δ and λ, we obtain δ = 0.1, λ = 0.48 and a static output

feedback control matrix K = [0.3581 −0.7808]. For a disturbance ω(t) = 0.3 sin(t), two time-

varying delays τ1(t) = 0.5 sin2( t
10
) and τ2(t) = 0.6 sin2( t

12
), Figure 2 shows that the trajectory

of L1x(t) = x1(t) + x2(t) of the closed-loop system converges within the specified 0.2-bound,

and L2x(t) = x3(t) + x4(t) converges within the specified 0.1-bound. Also, Figure 3 shows that

the vector (L1x(t), L2x(t)) converges within the rectangular with dimensions 0.4× 0.2.

Example 2: (Convergence condition) Consider a three-dimensional system (1) with disturbances

ω(t) is bounded by ω = 0.2, and

A =




−0.8 0.1 0.5

−0.1 0.2 1

−0.3 0.1 −2


 , A1 =




0.1 −0.1 0

−0.2 0.3 0.3

0.1 0 1.5


 ,
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Figure 2: Trajectories of x1(t) + x2(t) and x3(t) + x4(t) of the closed-loop system.
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Figure 3: Trajectory of (L1x(t), L2x(t)) converges within a 0.4× 0.2 rectangular.

B =




1

1

1


 , B2 =




1

1

0


 , D =




1

0

1


 , C =


1 0 1

0 1 0


 .

The two time-varying delays τ1(t) and τ2(t) satisfying




0 ≤ τ1(t) ≤ 1, τ̇1(t) ≤ 0.1,

0 ≤ τ2(t) ≤ 0.6, τ̇2(t) ≤ 0.1.

(41)

Given a box Ω = {x ∈ R
3 : |xj| ≤ bj, j = 1, 2, 3} where b1 = b2 = 0.2, b3 = 0.05. We design

a static output feedback controller which guarantees the state vector of the closed-loop system
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Figure 4: Trajectory of the closed-loop system, x(t), converges within the given box Ω = {x ∈
R

3 : |xj| ≤ bj, j = 1, 2, 3}.

converges within the given box Ω.

By solving the linear matrix inequalities (11), (13), (14) and (29) with ϵ = 0.01 and two

parameters need to be turned δ and λ, we obtain δ = 0.05, λ = 0.23 and a static output

feedback control matrix K = [−0.8316 − 2.3089]. For a disturbance ω(t) = 0.2 sin(t), Figure

4 shows that the trajectories of the closed-loop system converges within the given box Ω.

Example 3: (Static output feedback control) Consider the system in Example 1, where there

are no disturbances, i.e., ω(t) ≡ 0, and two time-varying delays in both the state and input

satisfying 



0 ≤ τ1(t) ≤ 0.5, τ̇1(t) ≤ 0.1,

0 ≤ τ2(t) ≤ τ2M , τ̇2(t) ≤ 0.1.

(42)

In this example, we find the maximal allowable delay τ2M such that the system is 0.1-stabilizable

via a static output feedback controller.

By using Theorem 2 with a pre-specified convergence rate δ = 0.1, the allowable value

of τ2M is found to be 1.47. The output feedback control matrix and parameter are K =

[0.2117 −0.3928] and λ = 1.14, respectively. By Theorem 2 and Remark 7, the stability factor is

N = 44.6578 and the minimal value is N1 = 13.7191. Moreover, we have
√

λ2
λ1

||H−1|| = 6.0805,
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Figure 5: Trajectories of the closed-loop system in Example 3

which implies the following estimation

||x(t)|| ≤
(√λ2

λ1

||H−1||
)
N1||φ||ce−0.1t ≤ 83.4191||φ||ce−0.1t, ∀t ≥ 0.

Figure 4 shows trajectories of the closed-loop system where two time-varying delays are chosen

as τ1(t) = 0.5 sin2( t
5
) and τ2(t) = 1.47 sin2( t

14.7
).

Example 4: (State feedback control) Consider system (1), which was studied in [2], with two

unknown constant delays in the state and input and

A =




0 0 0 0

0 0.5 0 0

−0.5 0 0.3 0

0 0 0 1



, A1 =




−2 −0.5 0 0

−0.2 −1 0 0

0.5 0 −2 −0.5

0 0 0 −1



, B =




1

1

1

0



, B2 =




0

1

1

1



.

By using Corollary 1 with τ2M = 0.1, the allowable value of τ1M , which ensures system is

asymptotically stabilizable, is 0.77, while Theorem 4 in [2] provided a smaller value, 0.56. The

state feedback control matrix and parameter are obtained asK = [−5.0329 −1.9171 1.5028 −
0.4175] and λ = 1.42. Note that the approaches in [3–5,7] are available for linear systems with

only one delay and the approach in [8] is available for linear systems without instantaneous

input (i.e. B = 0). Therefore, the approaches [3–5,7, 8] can not be applied to this example.
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Example 5: (State feedback control) Consider a pendulum system (1), which was studied in [7],

with time delay τ2 is an unknown constant and A1 = A2 = 0, B = 0,

A =




0 1 0 0

−21.54 0 14.96 0

0 0 0 1

65.28 0 −15.59 0



, B2 =




0

8.10

0

−10.31



.

In this example, the allowable values for τ2M are derived in Table 1. The state feedback control

matrix and parameter are K = [−4.9687 − 1.4262 − 2.7016 − 0.7382] and λ = 0.86.

Table 1: Computed upper bounds, τ2M , for Example 5

Methods τ2M improvement (%)

Fridman et al. [35] 0.0384 100 (%)

Du et al. [7] 0.0768 200 (%)

Theorem 2 0.2130 554 (%)

5 Conclusion

The paper has considered the problem of designing a static output feedback controller for linear

systems with state/input time-varying delays and bounded disturbances. A new sufficient con-

dition for the existence of a static output feedback controller, which guarantees the state vector

of the closed-loop system converges within a pre-specified polyhedron, has been derived. For

the case where the disturbances are not present, the derived convergence condition is reduced

to a static output feedback exponential stabilizability condition. Five numerical examples have

been given to illustrate the feasibility and the effectiveness of the obtained results.
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