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Abstract

A stage-structured predator-prey model (stage structure for both predator and prey)

with modified Leslie-Gower and Holling-II schemes is studied in this paper. Using the

iterative technique method and the fluctuation lemma, sufficient conditions which

guarantee the global stability of the positive equilibrium and boundary equilibrium

are obtained. Our results indicate that for a stage-structured predator-prey

community, both the stage structure and the death rate of the mature species are the

important factors that lead to the permanence or extinction of the system.
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1 Introduction

Since the pioneer work of Aiello and Freedman [], the stage-structured population mod-

els have been investigated extensively and many excellent results have been obtained (see

[–]). Recently, Huo et al. [] considered a stage-structured predator-prey model with

modified Leslie-Gower and Holling-type II schemes as follows:

x′
(t) = rx(t) – dx(t) – re

–dτx(t – τ),

x′
(t) = re

–dτx(t – τ) – bx(t) –
ay(t)x(t)

x(t) + k
,

y′(t) = y(t)

(

r –
ay(t)

x(t) + k

)

,

(.)

where x, x, and y represent the population densities of immature prey, mature prey and

predator at time t, respectively; r is the birth rate of immature prey x; d denotes the

death rate of the immature prey x; r is the intrinsic growth rate of predator y; b represents

the strength of intra-specific competition in the mature prey; a represents the maximum

value that mature x can be captured by predator y, and the meaning of a is similar to a;

k and k measure the protection degree that the environment could afford for prey x and

predator y, respectively; τ is the time tomaturity for prey; re
–dτx(t– τ) represents the

prey who were born at time t – τ and survive and become mature at time t.
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In [], the authors analyzed the dynamics of system (.), specially, by using the iterative

technique, the authors obtained a set of sufficient conditions which guarantee the exis-

tence of a unique globally attractive positive equilibrium. Li et al. [] found that some of

the conditions in [] are redundant, and they obtained the following result.

Theorem A Suppose that

(H) λ = re
–dτakb – akrb – arre

–dτ > 

holds, then the system (.) has a unique globally attractive positive equilibria E.

As we can see, [] and [] only considered the stage structure of immature andmature of

the prey species, yet they ignored that of the predator ones. Already, several scholars had

proposed and investigated the dynamic behaviors of the predator-prey system with stage

structure for predator species [–, , –]. Indeed, Wang and Chen [] considered

the following predator-prey system with stage structure for the predator population:

ẋ(t) = x(t)
(

r – ax(t – τ) – by(t)
)

,

ẏ(t) = kbx(t – τ)y(t – τ) – (D + v)y(t),

ẏ(t) =Dy(t) – vy(t).

In [], the authors studied the asymptotic behavior of the above system. When a time

delay due to gestation of the predators and a time delay from a crowding effect of the prey

are incorporated, they establish conditions for the permanence of the populations and

sufficient conditions under which a positive equilibrium of the above system is globally

stable; Zhang and Luo [] argued that above system is not a realistic model because it is

an autonomous system, and they incorporated a type IV functional response into above

system; by using the continuation theorem of coincidence degree theory, the existence

of multiple positive periodic solutions for the system is established. Recently, Chen et al.

[, ] studied the persistence and extinction property of the following stage-structured

predator-prey system (stage structure for both predator and prey, respectively):

ẋ(t) = r(t)x(t) – dx(t) – r(t – τ)e
–dτx(t – τ),

ẋ(t) = r(t – τ)e
–dτx(t – τ) – dx(t) – b(t)x


(t) – c(t)x(t)y(t),

ẏ(t) = r(t)y(t) – dy(t) – r(t – τ)e
–dτy(t – τ),

ẏ(t) = r(t – τ)e
–dτy(t – τ) – dy(t) – b(t)y


(t) + c(t)y(t)x(t),

where x(t) and x(t) denote the densities of the immature andmature prey species at time

t, respectively; y(t) and y(t) represent the immature and mature population densities of

predator species at time t, respectively; ri(t), bi(t), ci(t) (i = , ) are all continuous func-

tions bounded above and below by positive constants for all t ≥ . dij, τi, i, j = ,  are all

positive constants. There are many interesting properties of this system, for example, due

to the influence of the stage structure, the extinction of the predator species could not di-

rectly imply the permanence of the prey species. The extinction of the prey species could
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not lead to the extinction of the predator species. Under certain assumptions, the system

would be broken, which means that both predators and prey species would be driven to

extinction. However, all the works of [–] did not take the functional response of the

predator species into consideration.

Now, stimulated by the work of [, , –], we consider the following stage-structured

predator-prey model (stage structure for both predator and prey, respectively) with mod-

ified Leslie-Gower and Holling-type II schemes:

x′
(t) = rx(t) – dx(t) – re

–dτx(t – τ),

x′
(t) = re

–dτx(t – τ) – dx(t) – bx(t) –
ay(t)x(t)

x(t) + k
,

y′
(t) = ry(t) – dy(t) – re

–dτy(t – τ),

y′
(t) = re

–dτy(t – τ) – dy(t) –
ay


(t)

x(t) + k
,

(.)

where d and d represent the death rate of mature prey x and mature predator y, re-

spectively; τ is the time length of the prey species from immature ones to mature ones,

τ is the time length of the predator from immature ones to mature ones. Other parame-

ters have the same biological meaning as that of system (.). All parameters are positive

constants in system (.).

The initial conditions for system (.) take the form of

xi(θ ) = ϕi(θ ) > , yi(θ ) = ψi(θ ) > , θ ∈ [–τ , ], i = , , (.)

where τ = max {τ, τ}. For continuity of the initial conditions, we assume that

x() = ϕ() =

∫ 

–τ

re
duϕ(u)du,

y() = ψ() =

∫ 

–τ

re
duψ(u)du.

(.)

Integrating both sides of the first and third equation of system (.) (see []) over the

interval (, t) leads to

x(t) =

∫ t

t–τ

re
–d(t–u)x(u)du,

y(t) =

∫ t

t–τ

re
–d(t–u)y(u)du.

(.)

This suggests that the dynamics of model (.) is completely determined by its second

and fourth equations. Therefore, in the rest of this paper, we investigate the asymptotic

behavior for the subsystem of system (.) as follows:

x′
(t) = re

–dτx(t – τ) – dx(t) – bx(t) –
ay(t)x(t)

x(t) + k
,

y′
(t) = re

–dτy(t – τ) – dy(t) –
ay


(t)

x(t) + k
.

(.)
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The organization of this paper is as follows: The main results are stated and proved in

Sections  and , respectively. In Section , several examples together with their numerical

simulations are presented to illustrate the feasibility of ourmain results.We end this paper

by a brief discussion. For more work on the Leslie-Gower predator-prey system, one may

refer to [–] and the references cited therein.

2 Main results

For convenience, we denote

λ
def
= re

–dτ – d, λ
def
= re

–dτ – d.

Let x′
(t) = , y′

(t) =  in system (.), we can get four equilibria as follows:

E = (, ), E =

(

λ

b
, 

)

def
= (x∗, ),

E =

(

,
λk

a

)

def
= (, y∗),E

(

x∗
, y

∗


)

,

where E is an interior equilibrium point in system (.). The components of E are given

by

y∗
 =

λ(k + x∗
)

a
,

where x∗
 is a positive solution of the second order equation as follows:

abx
 + (akb + aλ – aλ)x +C = ,

where C = akλ – akλ, we can see that there exists a unique x∗
 >  if C < , i.e.,

 < akλ < akλ. (.)

E, E are two of the boundary equilibria of the system (.) if λ > , λ > .

Consequently, we have the following theorem.

Theorem . Assume that inequality (.) holds, then system (.) admits a unique posi-

tive equilibrium point E.

Theorem . Suppose that

(H) λ > , λ > ,

(H) λ = b(akλ – akλ) – aλλ > 

hold, then the unique positive equilibrium E is globally attractive.

Remark . If d = d = , τ �= , that is, we only consider the stage structure of the

predator species and ignore the death rate of the mature predator and prey species, in this
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case, (H) holds naturally, and λ in condition (H) would reduce to

(

H′


)

λ = re
–dτakb – akbre

–dτ – are
–dτre

–dτ > .

Noting that re
–dτ < r, (H

′
) is weaker than (H) in Theorem A, this means that the stage

structure of predator species has benefit for the coexistence of the system.

Remark . Suppose that τ = , i.e., we did not consider the stage structure of the preda-

tor species, then λ and λ in Theorem . become λ = r – d > , λ = λ – (akb –

ar + ad)d + (akb + are
–dτ )d > , respectively.

(i) If d = , d �= , in this case, λ > λ, that is, introducting the mortality item of the

predator species improving the coexistence rate of the two species.

(ii) If d �= , d = , in this case, λ > λ, that is, introducting the mortality item of the

prey species decreasing the chance of coexistence of both species.

Theorem . Suppose that

(H) λ < , λ < 

holds, then both of the predator and prey species will be driven to extinction, that is, E is

globally attractive.

Theorem . Suppose that

(H) λ > , λ < 

holds, then E is globally attractive.

Remark . From [], we know that E(, , ) of the system (.) is unstable, which

implies the extinction of both predator and prey species is impossible. However, if the

death rates of the mature prey and predator species are large enough, (H) in Theo-

rem.would hold, and consequently both the prey and the predator specieswill be driven

to extinction. By constructing a suitable Lyapunov function, Korobeinikov [] showed

that the unique positive equilibrium of the traditional Leslie-Gower predator-prey model

is globally attractive, which means that it is impossible for the predator species to be-

come extinct. However, Theorem . shows that if the death rate of the mature predator

species is large enough, (H) would hold and the predator species will be driven to ex-

tinction. Theorems . and . show that the death rates of the mature predator and prey

species are two of the essential factors to determine the persistent property of the sys-

tem.

Theorem . Suppose that

(H) λ > , λ < min

{

kb,
akλ

ak

}

holds, then E is globally attractive.
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Corollary . If the parameters of system (.) satisfy the condition (.), then system

(.) has a unique positive equilibrium point E′(x∗
 ,x

∗
, y

∗
 , y

∗
), where x

∗
 =

rx
∗
(–e

–dτ )

d
, y∗

 =

ry
∗
(–e

–dτ )

d
.

Corollary . If the parameters of system (.) satisfy the conditions (H) and (H), then

E′ is globally attractive.

Corollary . If the parameters of system (.) satisfy the condition (H), then E′
 =

(, , , ) is globally attractive.

Corollary . If the parameters of system (.) satisfy the condition (H), then E′
 =

(x∗,x∗, , ) is globally attractive, where x∗ =
rx∗(–e

–dτ )
d

.

Corollary . If the parameters of system (.) satisfy the condition (H), then E′
 =

(, , y∗, y∗) is globally attractive, where y∗ =
ry∗(–e

–dτ )
d

.

3 Proof of themain results

Now let us state several lemmas which will be useful in proving the main results.

Lemma . Assume that x(θ ) ≥ , y(θ )≥  are continuous on θ ∈ [–τ , ], and x() > ,

y() > . Let (x(t), y(t))
T be a any solution of system (.), then x(t) > , y(t) >  for all

t > .

The proof of Lemma . is similar to the proof of Theorem  in [], so we omit its proof.

Lemma . [] Consider the following equation:

x′(t) = bx(t – δ) – ax(t) – ax
(t),

x(t) = φ(t) > , –δ ≤ t ≤ ,

and assume that b,a > , a ≥ , and δ ≥  is a constant. Then

(i) if b ≥ a, then limt→+∞ x(t) = b–a
a

;

(ii) if b ≤ a, then limt→+∞ x(t) = .

Lemma . (Fluctuation lemma []) Let x(t) be a bounded differentiable function on

(α,∞), Then there exist sequences γn → ∞, σn → ∞ such that

(i) x′(γn) →  and x(γn) → lim supt→+∞ x(t) = x as n→ ∞,

(ii) x′(σn) →  and x(σn) → lim inft→+∞ x(t) = x as n→ ∞.

Lemma . Assume that x(θ ), y(θ ) ≥  are continuous on θ ∈ [–τ , ], and x() > ,

y() > . Let (x(t), y(t))
T be a any solution of system (.). If λ > , then

lim inf
t→+∞

y(t) ≥
kλ

a
.

Proof From the second equation of system (.), we have

y′
(t) ≥ re

–dτy(t – τ) – dy(t) –
ay


(t)

k
.
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Since λ > , and by applying Lemma .(i), and the standard comparison theorem, we

have

lim inf
t→+∞

y(t) ≥
k(re

–dτ – d)

a
=
kλ

a
> .

This completes the proof of Lemma .. �

Now we start to prove the above results.

Proof of Theorem . From the first equation of system (.), we have

x′
(t) < re

–dτx(t – τ) – dx(t) – bx(t).

According to condition (H), we know re
–dτ – d > . By applying Lemma .(i), and

the standard comparison theorem, we have

lim sup
t→+∞

x(t) ≤
λ

b
.

So, for any small constant ε > , there exists a T >  such that

x(t)≤
λ

b
+ ε

def
= M

()
 , t > T. (.)

For t > T + τ, substituting (.) into the second equation of system (.), we have

y′
(t) < re

–dτy(t – τ) – dy(t) –
ay


(t)

M
()
 + k

.

According to condition (H), we have re
–dτ – d > . By applying Lemma .(i), and

the standard comparison theorem, we have

lim sup
t→+∞

y(t) ≤
λ(M

()
 + k)

a
.

Then, for the above ε, there exists a T > T + τ, such that

y(t) <
λ(M

()
 + k)

a
+ ε

def
= M

()
 , t > T. (.)

For t > T + τ, substituting (.) into the first equation of system (.), we have

x′
(t) > re

–dτx(t – τ) – dx(t) – bx(t) –
aM

()
 x(t)

k

= re
–dτx(t – τ) –

(

d +
aM

()


k

)

x(t) – bx(t).

Let

re
–dτ –

(

d +
aM

()


k

)

def
= .
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Then substituting (.) and (.) into , we have

 =
b(akλ – akλ) – aλλ

akb
–
a

k

(

λ

a
+ 

)

ε.

Then, for small enough ε >  and condition (H), we have

 = re
–dτ –

(

d +
aM

()


k

)

> . (.)

By applying Lemma .(i), and the standard comparison theorem, we have

lim inf
t→+∞

x(t) ≥
λ –

aM
()


k

b
.

Then, for the above ε > , there exists a T > T + τ, such that

x(t) >
λ –

aM
()


k

b
– ε

def
= m

()
 , t > T. (.)

For t > T + τ, substituting (.) into the second equation of system (.), we have

y′
(t) > re

–dτy(t – τ) – dy(t) –
ay


(t)

m
()
 + k

.

By applying Lemma .(i), and the standard comparison theorem, we have

lim inf
t→+∞

y(t) ≥
λ(m

()
 + k)

a
.

Then for the above ε > , there exists a T > T + τ, such that

y(t) >
λ(m

()
 + k)

a
– ε

def
= m

()
 , t > T. (.)

According to (.), (.), (.), and (.), we obtain

 <m
()
 < x(t) <M

()
 ,  <m

()
 < y(t) <M

()
 , t > T. (.)

Then for t > T + τ, substituting (.) and (.) into the first equation of system (.), we

have

x′
(t) < re

–dτx(t – τ) – dx(t) – bx(t) –
am

()
 x(t)

k +M
()


= re
–dτx(t – τ) –

(

d +
am

()


k +M
()


)

x(t) – bx(t).

According to the inequalities (.) and (.), we have re
–dτ – (d +

am
()


k+M
()


) > . By ap-

plying Lemma .(i), and the standard comparison theorem, we have

lim sup
t→+∞

x(t) ≤

λ –
am

()


k+M
()


b
.
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Then, for the above ε > , there exists a T > T + τ, such that

x(t) <

λ –
am

()


k+M
()


b
+

ε



def
= M

()
 , t > T. (.)

From inequalities (.) and (.), we obtain

x(t) <M
()
 <M

()
 , t > T. (.)

For t > T + τ, substituting (.) into the second equation of system (.), we have

y′
(t) < re

–dτy(t – τ) – dy(t) –
ay


(t)

M
()
 + k

.

By applying Lemma .(i), and the standard comparison theorem, we have

lim sup
t→+∞

y(t) ≤
λ(M

()
 + k)

a
.

Then for above ε > , there exists a T > T + τ, such that

y(t) <
λ(M

()
 + k)

a
+

ε



def
= M

()
 , t > T. (.)

From inequalities (.), (.), and (.), we have

y(t) <M
()
 <M

()
 , t > T. (.)

For t > T + τ, substituting inequalities (.) and (.) into the first equation of system

(.), we have

x′
(t) > re

–dτx(t – τ) – dx(t) – bx(t) –
aM

()
 x(t)

k +m
()


= re
–dτx(t – τ) –

(

d +
aM

()


k +m
()


)

x(t) – bx(t).

According to inequalities (.) and (.), we can obtain re
–dτ – d –

aM
()


k+m
()


> . By

applying Lemma .(i), and the standard comparison theorem, we have

lim inf
t→+∞

x(t) ≥

λ –
aM

()


k+m
()


b
.

Then, for the above ε > , there exists a T > T + τ, such that

x(t) >

λ –
aM

()


k+m
()


b
–

ε



def
= m

()
 , t > T. (.)
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According to the inequalities (.), (.), and (.), we can obtain

x(t) >m
()
 >m

()
 , t > T. (.)

Substituting inequality (.) into the second equation of system (.), we have

y′
(t) > re

–dτy(t – τ) – dy(t) –
ay


(t)

m
()
 + k

, t > T + τ.

By applying Lemma .(i), and the standard comparison theorem, we have

lim inf
t→+∞

y(t) ≥
λ(m

()
 + k)

a
.

Then, for the above ε > , there exists a T > T + τ, such that

y(t) >
λ(m

()
 + k)

a
–

ε



def
= m

()
 , t > T. (.)

According to the inequalities (.), (.), and (.), we can obtain

y(t) >m
()
 >m

()
 , t > T. (.)

For t > T, according to (.), (.), (.), and (.), we have

m
()
 <m

()
 < x(t) <M

()
 <M

()
 ,

m
()
 <m

()
 < y(t) <M

()
 <M

()
 .

(.)

Repeating the above process, we get four sequences

M
(n)
 =

λ –
am

(n–)


k+M
(n–)


b
+

ε

n
, M

(n)
 =

λ(M
(n)
 + k)

a
+

ε

n
,

m
(n)
 =

λ –
aM

(n)


k+m
(n–)


b
–

ε

n
, m

(n)
 =

λ(m
(n)
 + k)

a
–

ε

n
.

(.)

For i = , , we claim that M
(n)
i are monotonic decreasing sequences, and m

(n)
i are mono-

tone increasing sequences. In the following we will prove this claim by induction. First of

all, according to inequalities (.), we have

m
()
i <m

()
i , M

()
i <M

()
i , i = , .

Second, we suppose that our claim is true for n, that is,

m
(n–)
i <m

(n)
i , M

(n)
i <M

(n–)
i , i = , . (.)
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Noting that

M
(n+)
 =

λ –
am

(n)


k+M
(n)


b
+

ε

n + 
, M

(n+)
 =

λ(M
(n+)
 + k)

a
+

ε

n + 
,

m
(n+)
 =

λ –
aM

(n+)


k+m
(n)


b
–

ε

n + 
, m

(n+)
 =

λ(m
(n+)
 + k)

a
–

ε

n + 
.

(.)

According to inequalities (.), (.), and (.), one could easily see that

M
(n+)
i <M

(n)
i , m

(n)
i <m

(n+)
i , i = , .

Then for t > Tn, we have

 <m
()
 <m

()
 < · · · < x(t) <M

(n)
 < · · · <M

()
 <M

()
 ,

 <m
()
 <m

()
 < · · · < y(t) <M

(n)
 < · · · <M

()
 <M

()
 .

Therefore the limits ofM
(n)
i ,m

(n)
i (i = , , n = , , . . .) exist. Denote that

lim
t→+∞

M
(n)
 = x, lim

t→+∞
m

(n)
 = x,

lim
t→+∞

M
(n)
 = y, lim

t→+∞
m

(n)
 = y


.

Consequently, x ≥ x, y ≥ y

. In order to complete the proof, we just need to show that

x = x, y = y

. Letting n → +∞ in (.), we have

bx = λ –
ay



x + k
, ay = λ(x + k),

bx = λ –
ay
x + k

, ay

= λ(x + k).

It follows from the above four equations that

aλ(x + k) = a(λ – bx)(x + k),

aλ(x + k) = a(λ – bx)(x + k).
(.)

Subtracting the first equation of (.) from the second equation, we get

(

aλ + aλ – ab(x + x) – kab
)

(x – x) = .

Suppose that x �= x, it follows from the above equation that

aλ + aλ – kab = ab(x + x). (.)

Substituting (.) into (.), we find x and x both satisfy the following equation:

ab(λ – bx)(x + k) = aλ(aλ + aλ – akb – abx + akb). (.)
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Simplifying equality (.), we get

ab
x + ab(akb – aλ – aλ)x +D = , (.)

where

D = a(aλλ + bakλ – bakλ) + aλ(aλ – akb).

According to condition (H), we can immediately obtain

–λ = aλλ + bakλ – bakλ < .

It implies that

aλ – bak < .

Therefore, we have D < , that is, equation (.) has only one positive root. Then x =

x, and consequently, y = y

. Obviously, conditions (H), (H) imply inequality (.), so

system (.) has a unique positive equilibrium E(x∗
, y

∗
). That is,

lim
t→+∞

x(t) = x∗
, lim

t→+∞
y(t) = y∗

.

This completes the proof of Theorem .. �

Proof of Theorem . It follows from the first equation of system (.) that

x′
(t) < re

–dτx(t – τ) – dx(t) – bx(t).

According to first inequality of condition (H), we have re
–dτ – d < . By applying

Lemma .(ii) and the standard comparison theorem, we have lim supt→+∞ x(t)≤ . That

is,

lim
t→+∞

x(t) = .

Then, for any ε > , there exists a T >  such that

 < x(t) < ε.

Therefore, it follows from the second equation of system (.) that

y′
(t) < re

–dτy(t – τ) – dy(t) –
ay


(t)

ε + k
, t > T + τ.

Similar to the above analysis, we also have

lim
t→+∞

y(t) = .

Therefore, E = (, ) is globally attractive. This completes the proof of Theorem .. �
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Proof of Theorem . According to the first inequality of condition (H), we have re
–dτ –

d > . Therefore from the proof of Theorem ., we know that

lim sup
t→+∞

x(t) ≤
λ

b
. (.)

And for any small positive constant ε > , there exists a T >  such that

y′
(t) < re

–dτy(t – τ) – dy(t) –
ay


(t)

M
()
 + k

, t > T + τ.

According the second inequality of condition (H), we have re
–dτ –d < . By applying

Lemma .(ii) and the standard comparison theorem, we have lim supt→+∞ y(t)≤ . That

is,

lim
t→+∞

y(t) = .

Then, for any small ε > , there exists T > T + τ, such that

 < y(t) < ε, t > T. (.)

Substituting inequality (.) into the first equation of system (.), we have

x′
(t) > re

–dτx(t – τ) – dx(t) – bx(t) –
aεx(t)

k

= re
–dτx(t – τ) –

(

d +
aε

k

)

x(t) – bx(t), t > T + τ.

Since re
–dτ – d > , we can choose sufficiently small ε >  such that re

–dτ – d –
aε
k

> . By applying Lemma .(i), and the standard comparison theorem, we have

lim inf
t→+∞

x(t) ≥
re

–dτ – d –
aε
k

b
=

λ –
aε
k

b
.

For the above formula, letting ε → , we have

lim inf
t→+∞

x(t) ≥
λ

b
. (.)

From inequalities (.) and (.), we get

λ

b
≤ lim inf

t→+∞
x(t)≤ lim sup

t→+∞

x(t) ≤
λ

b
.

Then we have

lim
t→+∞

x(t) =
λ

b
= x∗.

Therefore, E(x∗, ) is globally attractive. This completes the proof of Theorem .. �
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Proof of Theorem . According to the fluctuation lemma, there exist two sequences

γn → ∞, σn → ∞ such that x′
(γn) → , x(γn) → lim supt→+∞ x(t) = x, and y′

(σn) → ,

y(σn) → lim inft→+∞ y(t) = y

as n → ∞. Since from Lemma ., we know x ≥ . In or-

der to prove limt→∞ x(t) = , we only need to prove x = , so for getting a contradiction,

we suppose that x > . Since for λ > , and according to Lemma ., we know y

> , it

follows from the first equation of the system (.) that

x′
(γn) = re

–dτx(γn – τ) – dx(γn) – bx(γn) –
ay(γn)x(γn)

x(γn) + k

≤ re
–dτ sup

t≥γn–τ

x(t) – dx(γn) – bx(γn) –
ax(γn)

x(γn) + k
inf
t≥γn

y(γn).

Letting n → ∞ in the above inequality, we obtain

 ≤ λ – bx –
ay



x + k
,

that is,

 ≤ λ(x + k) – bx(x + k) – ay

. (.)

From the second equation of system (.), by a similar argument, we have

 ≥ kλ – ay

. (.)

It follows from inequalities (.) and (.) that

 ≤ aλ(k + x) – abx(k + x) – akλ.

Simplifying the above inequality, we have

abx

 + (akb – aλ)x + akλ – akλ ≤ . (.)

According to the second inequality of condition (H), we know akλ–akλ > , akb–

aλ > , then only x <  can ensure (.) holds. And x <  contradicts the hypothesis

x > , then we get

lim
t→∞

x(t) = .

Then, for any small enough ε > , there exists a T > , such that

 < x(t) < ε, t > T . (.)

Substituting inequality (.) into the second equation of system (.), we have

y′
(t) < re

–dτy(t – τ) – dy(t) –
ay


(t)

ε + k
, t > T + τ.
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According to second inequality of condition (H), we know re
–dτ –d > . By applying

Lemma .(i), and the standard comparison theorem, we have

lim sup
t→+∞

y(t) ≤
λ(ε + k)

a
.

Letting ε →  in the above inequality, we have

lim sup
t→+∞

y(t) ≤
λk

a
. (.)

According to Lemma . and (.), we obtain

λk

a
≤ lim inf

t→+∞
y(t)≤ lim sup

t→+∞

y(t) ≤
λk

a
.

Then we have

lim
t→+∞

y(t) =
λk

a
= y∗.

This completes the proof of Theorem .. �

4 Numerical simulations

The following examples show the feasibility of our main results.

Example .

x′
(t) = e–.x(t – ) – .x(t) – .x(t) –

y(t)x(t)

x(t) + 
,

y′
(t) = .e–.y(t – ) – .y(t) –

y(t)

x(t) + 
,

(.)

where r = ; r = .; d = .; d = .; τ = ; τ = ; d = .; d = .; b = .; a = ;

a = ; k = ; k = . One could easily verify that λ ≈ re
–dτ – d = . > , λ ≈

re
–dτ – d = . > , λ ≈ b(akλ – akλ) – aλλ = . > , which shows

conditions (H) and (H) hold. According to Theorem ., system (.) has a unique and

globally attractive positive equilibrium E(., .). Figure  indicates the dynamical

behavior of system (.).

Example .

x′
(t) = e–.x(t – ) – .x(t) – .x(t) –

y(t)x(t)

x(t) + 
,

y′
(t) = .e–.y(t – ) – .y(t) –

y(t)

x(t) + 
,

(.)

where r = ; r = .; d = .; d = .; τ = ; τ = ; d = .; d = .; b = .; a = ;

a = ; k = ; k = . By simple computation, one could see that λ ≈ –. < , λ ≈

–. < , which shows condition (H) holds. It follows from Theorem . that the
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Figure 1 Dynamics behaviors of system (4.1) with the initial values (ϕ(θ ),ψ (θ ))T = (0.6, 0.09)T ,

(1, 0.5)T , and (1.5, 1)T , θ ∈ [–1, 0].

Figure 2 Dynamics behaviors of system (4.2) with initial values (ϕ(θ ),ψ (θ ))T = (0.3, 0.1)T , (0.6, 0.4)T ,

and (0.9, 0.8)T , θ ∈ [–1, 0].

solution E(, ) of system (.) is globally attractive. Figure  shows the feasibility of this

case.

Example .

x′
(t) = .e–x(t – ) – .x(t) – .x(t) –

y(t)x(t)

x(t) + 
,

y′
(t) = .e–.y(t – ) – .y(t) –

y(t)

x(t) + 
,

(.)

where r = .; r = .; d = .; d = .; τ = ; τ = ; d = .; d = .; b = .; a = ;

a = ; k = ; k = . By computation, we have λ ≈ . > , λ ≈ –. < , which

shows condition (H) holds. It follows from Theorem . that the boundary equilibrium

E(., ) of system (.) is globally attractive. Figure  supports this assertion.

Example .

x′
(t) = .e–.x(t – ) – .x(t) – .x(t) –

y(t)x(t)

x(t) + .
,

y′
(t) = .e–.y(t – ) – .y(t) –

.y(t)

x(t) + 
,

(.)
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Figure 3 Dynamics behaviors of system (4.3) with initial values (ϕ(θ ),ψ (θ ))T = (0.05, 0.09)T ,

(0.13, 0.1)T , and (0.19, 0.2)T , θ ∈ [–2, 0].

Figure 4 Dynamics behaviors of system (4.4) with initial values (ϕ(θ ),ψ (θ ))T = (0.09, 0.07)T , (0.1, 0.2)T

and (0.3, 0.4)T , θ ∈ [–1, 0].

where r = .; r = .; d = .; d = .; τ = ; τ = ; d = .; d = .; b = .;

a = ; a = .; k = .; k = . By computation, we have λ ≈ ., λ ≈ . > ,

λ –
akλ
ak

≈ –. < , λ – kb ≈ –. < , which shows condition (H) holds. It

follows from Theorem . that the solution E(, .) of system (.) is globally attrac-

tive. Figure  shows the feasibility of this case.

Example .

x′
(t) = e–.x(t – ) – .x(t) – .x(t) –

y(t)x(t)

x(t) + 
,

y′
(t) = .e–.y(t – ) – .y(t) –

y(t)

x(t) + 
,

(.)

where r = ; r = .; d = .; d = .; τ = ; τ = ; d = .; d = .; b = .; a = ;

a = ; k = ; k = . And so akλ ≈ . > . ≈ akλ > , which shows condi-

tion (.) holds. However, λ ≈ –. < , and so, condition (H) does not hold. A nu-

meric simulation (Figure ) shows that the system still admits a unique globally attractive

positive equilibrium E(.,.).
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Figure 5 Dynamics behaviors of system (4.5) with initial values (ϕ(θ ),ψ (θ ))T = (0.1, 0.09)T , (0.5, 0.2)T ,

and (1, 0.9)T , θ ∈ [–1, 0].

5 Conclusion

Huo et al. [] and Li et al. [] studied the stability property of the positive equilibrium of

a stage-structured predator-prey model with modified Leslie-Gower and Holling-type II

schemes. In those two papers, the authors only consider the stage structure of prey species

and ignore that of predator species. Stimulated by [–], we consider a model with stage

structure for both predator and prey species. By applying an iterative technique and the

fluctuation lemma, sufficient conditions which guarantee the global attractivity of all the

nonnegative equilibria are obtained. Our study indicates that both the stage structure of

the species and the death rate of the mature predator and prey species are the important

factors on the dynamic behaviors of the system. If the death rates of the mature prey and

predator species are too large or the degree of the stage structure of the species is large

enough, then at least one of the species will be driven to extinction. We would like to

mention here that Example . shows that our result in Theorem . has room for im-

provement. We conjecture that condition (.) is enough to ensure the global attractivity

of the positive equilibrium. We leave this for future work.
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