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Convergent close-coupling calculations of electron-hydrogen scattering
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The convergence of the close-coupling formalism is studied by expanding the target states in an
orthogonal L Laguerre basis. The theory is without approximation, and convergence is established
by simply increasing the basis size. We present convergent elastic, 2s, and 2p differential cross
sections, spin asymmetries, and angular-correlation parameters for the 2p excitation at 35, 54.4, and
100 eV. Integrated and total cross sections as well as T-matrix elements for the first five partial
waves are also given.
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I. INTRODUCTION

The electron-hydrogen scattering problem is an ideal
testing ground for any scattering theory as this is the
only electron-atom scattering problem where the target
wave functions are known exactly. This relatively sim-
ple problem continues to attract considerable interest as
there are still significant discrepancies between theory
and experiment.

The close-coupling equations for electron-hydrogen
scattering, in principle, provide a complete description of
the scattering process if they are solved without approx-
imation and if correct thr""-body boundary conditions
are applied to the channels with three free particles in
the asymptotic region. They are derived by taking an ex-
pansion of the electron-hydrogen atom wave function over
the complete set of target states. Because there are an
infinite number of discrete and continuum target states,
methods must be devised in order to render the equations
numerically soluble. One method which suggests itself is
to replace the integration over the continuum states of
the close-coupling equations by a numerical quadrature.
The convergence of such a method can be determined by
increasing the order of the quadrature until scattering
amplitudes are stable to a specified accuracy, for exam-
ple I'%%uo. This approach has two drawbacks Firstly, th. is
quadrature still leaves an infinite sum over the discrete in-
elastic states of the target which needs further treatment.
Secondly, a quadrature formula applied in the most obvi-
ous way will use regular Coulomb functions in the calcu-
lation of the potentials. Numerical difficulties in calcu-
lating integrals involving transitions between continuum
channels have made this an unattractive proposition to
date.

There is, however, another approach to evaluating the
sum over discrete and integral over continuum target
states which treats them on an equal footing and is re-
ferred to as the pseudostate method. A set of Lz func-

tions is chosen in which to diagonalize the target Hamil-
tonian so that the wave functions for the channels over
which we calculate T-matrix amplitudes are accurately
determined. The remaining states from such a diagonal-
ization have negative and positive eigenenergies. The as-
sumption implicit in this method is that, when the set of
functions is carefully selected, as their number increases
without limit, they form a basis for the Hilbert space of
the target. Thus the expectation is that answers one ob-
tains by solving the coupled-channel equations, when the
sum and integral over the true target states are replaced
by a discrete sum over the pseudostates, will converge
with sufficiently large basis sets.

In terms of testing the basic assumptions of the pseu-
dostate method and understanding its theoretical jus-
tification the work of several groups deserves mention.
Early numerical calculations for the electron-hydrogen
problem utilizing pseudostates were carried out by Burke
and Webb [I]. They demonstrated that the inclusion of
a few pseudostates significantly reduced the cross sec-
tions for scattering, bringing them into better agreement
overall with experiment. It was soon realized that with
pseudostates one often has the problem that spurious
resonance features are introduced into the model cross
sections. A study of the convergence properties of pseu-
dostate sets was undertaken by Burke and Mitchell [2].
They considered the model of electron-hydrogen scatter-
ing that only treats states of zero orbital angular mo-
mentum. Progressing systematically by including more
states, they concluded from their study of the singlet
L = 0 partial wave amplitude that the model calcu-
lations were converging except in the neighborhood of
the pseudoresonance features. This work while exploring
the numerical advantages of pseudostates did not pur-
sue the deeper question of the nature of the quadrature
rules that pseudostate target expansions induced, nor did
they attempt to establish the relationship between pseu-
dostates and true target continuum states. The pioneer-
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ing work in this connection was carried out in a series of
papers proposing a method commonly referred to as the
J-matrix method of atomic scattering [3]. Through the
use of a I aguerre function basis the nature of the quadra-
ture could be explored. The quadrature rules were of a
Gaussian type and the underlying orthogonal polynomi-
als were shown by Yamani and Reinhardt [4] to be those
of the Pollaczeck class. They were also able to demon-
strate the manner in which each pseudostate derived from
a finite subset of the Laguerre basis is related to the con-
tinuum functions; apart from an overall normalization
constant, the pseudostates were the Fourier expansions
of the continuum functions truncated to the N-function
basis set. The nature of the convergence was studied by
Stelbovics and Winata [5], who showed the convergence
rate was very slow with the pointwise convergence being
of conditional type only.

An important advance in the theory of this model of
electron-hydrogen scattering was provided by Poet [6],
who solved it using a method which relied on the separa-
ble nature of the potential of the three-body Schrodinger
equation. The solutions of the differential equation were,
as a result, obtainable analytically and the physical
three-body scattering wave function could be constructed
by matching linear combinations of the solutions to the
physical boundary conditions. The resulting equations
were simpler than those of the close-coupling formulation
and could be solved to a high degree of accuracy. A later
comparison by Poet [7] confirmed the earlier conclusions
by Burke and co-workers concerning the convergence of
the pseudostate method. Further studies involving basis
sets comprising Slater functions were undertaken by Oza
and Callaway [8, 9] for this model. They considered basis
sets of up to nine states and found that pseudoresonance
behavior was still present although the size and extent
of the pseudothreshold behavior appeared diminished for
the largest basis. This conclusion was in the same vein
as that deduced earlier by Heller and Yamani [10] in a
10-state J-matrix calculation.

The work described so far left an important question
unanswered. Were pseudoresonances a necessary feature
of the close-coupling method, which could only be elimi-

nated by some averaging technique as used in [8]? Bray
and Stelbovics [ll] demonstrated this was not the case.
By extending the Laguerre basis size to as many as 30
states, they showed that close-coupling equations yield
convergent results at all energies, for scattering and ion-
ization channels, in complete agreement with Poet [6,
7]. This is a most important result as it means that
close-coupling equations are valid at all energies, and that
pseudoresonances are simply an indication of the lack of
convergence in amplitudes as a function of the number
of basis states.

With this information we apply the close-coupling
formalism using the Laguerre basis states to the full

electron-hydrogen problem, i.e., we treat the full set of
partial waves. This leads to very-large-scale calcula-
tions that require an expansion of the momentum-space
method of solution of the close-coupling equations used

by McCarthy and Stelbovics [12], upon which this work
is based.

In Sec. II we present the close-coupling formalism and
address the issue of nonunique solutions. In Sec. III
we show how to solve the Lippmann-Schwinger equation
minimizing the amount of computational resources nec-
essary for a particular basis set. In Sec. IV we present our
results and compare with experiment and other theories,
followed by conclusions in Sec. V.

II. THEORY

In this section we give a derivation of the close-coupling
equations in operator form, with sufficient boundary con-
ditions to ensure the uniqueness of the T-matrix coupled
equations. The derived form carries over directly to the
form applicable to finite-basis expansions of the target
states.

The Hamiltonian for the nonrelativistic electron-
atomic hydrogen scattering problem is given by

H = K&+v&+K2+v2+v3,

where Kq and K2 are, respectively, the projectile- and
target-electron kinetic energy operators, and vq, v2,
and vs are the projectile-proton, target-proton, and
projectile-target potentials.

The solution of the full Schrodinger equation

(E —H)l@s) = 0 (2)

requires the determination of a wave function possessing
the symmetry

(rq, rq) = (—1) 4 (rz, rq)
= ( 1) P„@ (r—y, r2)) (3)

A. Exact target states

In the close-coupling method the wave function (3) is
expanded over the complete set, discrete and continuous,
of target states P, (r) as

(4)

Here the states P, (r) are the exact eigenstates of the tar-
get Hamiltonian with

(6)(~.+")l~,) =~, l~,).
The functions fs(r), by consideration of (Pzgkl4' ) in

(4) and (5), must satisfy

(&~ lfl') = (—1)'(W~lf,'). (7)

In standard close-coupling formulations, see Ref. [13]
for example, the symmetry condition (3) is imposed by
making the expansion (4) manifestly symmetric by writ-

where S is the total spin and P„ denotes the space ex-
change operator.
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ing

+(-1) 4'(ri)F; (»)]. (8)

However, such an expansion does not lead to a unique
solution for the Fs(r); if one takes a particular solution
of (8) [for example, the fs(r) is one such solution] then
so are

Fs(r) = fs(r) + ) c,,P, (r)

Using (13) we express (2) as

0 = (E —H)I&l@s)
=(E—H)-,'[1+(—1) P„]IzlC ), (16)

where we introduced the operator [1+i
—1)eP„]/2, which

commutes with H, to symmetrize l@ ) numerically. If
l@s) already had the required symmetry then this oper-
ator would be redundant. Without the condition (15) it
amounts to the explicit symmetrization (8) which yields
nonunique solutions.

Using Iz as a projection operator we write (16) as

0 = I2(E —H) [1 + (—1) P„]Izl4' )

for discrete i, and which we split to get

I,(E K, --K, -~,)I,le ) =I,V'r, ]e ), (18)

for continuous i, where the arbitrary constants cs satisfy

cs + (-1)'c,', = 0. (»)
Note that the cs. are only defined for either i and j both
discrete or both continuous.

To avoid this problem of nonunique solutions for Fs(r)
we impose the condition (7) to the manifold of solutions.
It is seen this, in conjunction with (11) selects the so-
lution Fs = fs We ar.e now in a position to derive
our close-coupling equations. We avoid summation over
channel indices throughout by using projections over the
complete set of target states labeled in an obvious man-
ner for coordinates of electrons 1 and 2. Defining the
identity operators Iq and I2 by

w ere

V = vs+vs+ (—1) (H —E)P„ (»)
We impose condition (15) with the aid of (14) in the E
term above,

( 1) EI2P—„I2l@ ) = ( 1) EIzI—qIqP„I3]@ )

= EI~Izl~')
= (—1) E(1 —8)IzP„Iz]@ )

+E8I~I3]@s), (20)

where 8 is an arbitrary constant and incorporates condi-
tion (15) for 8 g 0. So instead of using Vs in (18) we
use Vs(8) where

V'(8) = v, + ~, E8I, + (--1)s[H - E(1 8)]P„-

(21)

)/. I 4')(0

we write the multichannel expansion (4) as

(12) Rather than solving explicitly for the functions fs(r)
we form the Lippmann-Schwinger equation for the T ma-
trix

l~') = I21~')

and hence

(13) Ts (kglI3VS(8)I2]@s&yl)

where lkP) are the asymptotic states satisfying

(22)

P„l@s)= I&P„I2]4's). (14)

Writing Itl@ ) instead of l@s) explicitly indicates that
the multichannel expansion for the complete wave func-
tion is being used. The symmetry condition (7) can then
be expressed more usefully as

Iz]@' ) = (—1) IqP„Iz]@ ). (»)

Iz(E —Kq —K2 —v2)I3]kp) = 0, (23)

and where the notation (+) indicates outgoing spherical
wave boundary conditions. Combining (18), (22), and
(23) the T matrix for the transition of the target in state
P;, to state P; on impact of projectile ko is then given
by the Lippmann-Schwinger equation

(ky lTs]y k ) (ky lVs(8)]y k ) )I d3k ( O''I ( )14" )( O''I I4'o c)
(24)

Any nonzero 8 will have implemented the symmetry con-
dition (15), and leads to a unique answer independent of
8. So even though the V-matrix elements have an ar-
bitrary constant the solution of the integral equation is
independent of this constant. This is confirmed by our
numerical investigations.

Previous work done by McCarthy and Stelbovics [12]
using momentum-space coupled channel formalism for
electron-atom scattering did not employ the symmetry
condition (15). This is equivalent to taking 8 = 0 above.
The nonuniqueness manifested itself as instability in the
off-the-energy-shell T matrix only, and so did not cause
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great concern. Stelbovics [14] has shown analytically that
this is indeed the case by studying the nature of the ho-
mogeneous solutions of the 8 = 0 Lippmann-Schwinger
equation (24). He then used this analysis to obtain new
V-matrix elements, similar to (21), which yield unique so-
lutions off the energy shell as well. Here we have derived
the new form in a simpler way. Even though on-shell am-
plitudes are unique even if e = 0, we find that numerical
instability occurs when a large number of channels is in-
volved. This problem disappears whenever we introduce
a nonzero 8. It has been utilized in all our calculations,
where we have taken 8 = 1/2.

B. Square-integrable states

In practice no numerical method for solving the cou-
pled T-matrix equations in the form (24) has yet been
implemented. The difficulty is the fact that in order to
solve this integral equation it must be closed by allow-
ing the index i to run over the same complete range as
i', which leads to singular V-matrix elements whenever
both i and i' are in the continuum. In principle this is
not an insurmountable problem as there is an integral
over these elements, but numerically this has proved to
be an unattractive option to date.

A number of approximate methods can be applied.
The simplest is to truncate the range of i' to some fi-

nite set of bound states, thus ignoring the effect of other
bound states and the continuum. Unfortunately their
effect is important and their omission leads to noncon-
vergent amplitudes. Alternatively one can use Feschbach
formalism to include the effect of the truncated states by
adding a complex nonlocal polarization potential which is
calculated from the truncated states. The latter has been

I

)/ P, (rz)f, (ri) = lim ) P; (rz)f; (ri).
J i=1

(26)

With these definitions, the sum and integral in (12) and
the Lippmann-Schwinger equation (24) become a single
sum over N, with the target states and energies being
replaced by IP,. ) and s, , respectively. So instead of Ii
and Iz, we define

I"=).
I 4"")(4,

N

I,"=) ly,
" )( &

and have

(27)

the major approach of Bray, Konovalov, and McCarthy
[15] who have attempted to calculate the polarization po-
tential ab initio with fewer and fewer approximations.

The approach that is taken in this work is to diago-
nalize the hydrogen target Hamiltonian in a set of I
functions which when extended to completeness form a
basis for the target Hilbert space. The use of I~ functions
eliminates the problem of singular continuum-continuum
V-matrix elements. Also most importantly, with a known
basis the convergence of the expansions can be studied
in a systematic manner with increasing number of basis
functions.

We introduce a finite set of N square-integrable states
IPN) which satisfy

(25)

and have the property

(kyNITSNIyNk ) (kyNIVSN(g)IyNk ) + ) dskj i I ( )I i' ( i' I I ip )
E —e —k'~+ z0i/=1

for the physical T-matrix elements. The projection op-
erator Ii is replaced by IiN in calculating the matrix el-
ements of V (8) in (21), and Iz is replaced by I~ in

(23) which yields the sN energies in the Green's function
of (28).

The states IPN) are obtained by diagonalizing the tar-
get Hamiltonian (25), for each l of the target electron, in
the Laguerre basis (A,.i(r) which has the form

A(k —1)!
( (2l + 1 + A:)!

x exp( —Ar/2)I q'+, (Ar),

(A.)'+'

(3O)

where the I&+i (Ar) are the associated Laguerre poly-
nomials, and I!- ranges from 1 to the basis size N~. The

where for the physical T-matrix elements of interest we
must have lg, ) = IPN) and lg, , ) = IPN) to sufficiently
high precision. With these definitions we have

(ky, lTsly, .k, ) = h (kyNITsNIy, ".k, )

I

constant A is arbitrary and is chosen so that the lowest

energy states are essentially the exact hydrogen eigen-
states. For convenience take A = 2 for all l. This gives
the exact 1s state from the diagonalization for No ) 1.
The rate of convergence to other exact hydrogen bound
states for this A as a function of Ni has been given by
Bray, Konovalov, and McCarthy [15]. We have estab-
lished that convergence is independent of the value of A

in [11], though the rate of convergence would certainly
be affected by choosing an inappropriate value.

This choice of basis we consider to be very important.
Unlike the Slater basis, the Laguerre basis is orthogonal,
and so does not suffer from any linear dependence prob-
lems as the basis size is increased. With this basis we are
able to obtain as many as 100 orthonormal states upon
diagonalization of the Hamiltonian for each /. Thus, this
basis is ideal for convergence studies. Furthermore, the
nature of the quadrature in (26) has been studied in de-

tail by a number of authors, see Refs. [4, 16, 17] for exam-

ple. It is a Gaussian-type quadrature and the underlying

orthogonal polynomials are of the Pollaczeck class. It
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can be shown that the weights of the negative energy
L2 states converge to unity in Eq. (26) in the limit of
large N and that limN ~P, = P;, limN ~ f, = f,
This ensures that the limiting procedure (29) gives the
correct T-matrix amplitudes (24) for the transitions to
the 1s, 2s, and 2p levels. We also mention for complete-
ness (although it has no bearing on the calculations re-
ported here) that the positive energy L2 states cannot
converge to the non-L2 regular Coulomb functions. It
can be shown [4, 5] that the Gaussian weight function
together with the positive-energy weights in the quadra-
ture (26) define a renormalization of the Lz states so that
they approximate the true continuum functions for the
first few oscillations in coordinate space at each positive
pseudostate energy. A proper consideration of such nor-

I

malizations would be required if one was to use the L'~

approximated T-matrix equations to model difFerential
ionization cross sections.

III. SOLUTION OF THE
LIPPMANN-SCHWINGER EQUATION

We shall omit the bars as well as explicit N~ depen-
dence in the V-matrix elements to simplify the notation.
Subsequent discussion refers only to the Lz states, and
there should be no confusion with the exact target eigen-
states.

The partial wave Lippmann-Schwinger equation corre-
sponding to (28) for the reduced T-matrix elements is

(Lk~&tn II T II notpkpLp) = (Lk~&~n II V (6) II notokoLo)

) dk'k' " (L'k't'n'
ll

Ts~
II nplpk L ) (31)

A ) j

where the projectile is denoted by linear momentum k and orbital momentum L, while the target state is denoted by
principal quantum number n and orbital angular momentum t. The total orbital angular momentum is denoted by
J, and

E = s„,~, + kp/2 = s„~ + k„&/2 (32)

is the on-shell energy. The V-matrix elements are evaluated using (21).
It is our aim to perform very large multichannel calculations so it is important to reduce the amount of computer

resources necessary to solve (31). Instead of solving (31) directly, which involves complex T-matrix elements, we
rewrite it as

(L4i&n II T II notokoLo) = (L4«n II V (8) II nptpkpLp)

NIi V" n' ' 'L'+) ) P dk'k"( "'"ll () II" )(L'k't'n'IIT" lln & k L)&00 0 0
l' L' n'=1 &n'l'—

NL I

—i~ ) .k~ i (Lk~(tn II V"(e) II
n't'k~ i L')(L'k t

t'n'
ll
T"

II notokoLo),

(33)

where the symbol P indicates that the integral is of the principal value type, and k„ i is defined for 1 & n' & NP ( N~
for which

k„i = /2(E —s„i ) (34)

is real. In this case we say that the channel n't, ' is open (there are ¹&,of these), and if E ( s„ t we say that this
channel is closed. We can use purely real arithmetic if we introduce the K-matrix formulation by letting

N

(Lk„tin II K II nplpkpLp) = ) ) (Lk„)in II T II
n't'k„ t L')

x (6i i,6r, r.„6~~, + ivrk~ l'(L'k&'t'f n'
ll K II nolokoLp)) .

(35)
With this definition (33) becomes

(Lk i« II K II no&okoLo) = (Lk t« II V (8) II noto"oLo)

+) ) I dk'k" ( "' (L'k't' 'IIK" II t k L ) (36)
t', L' n'= j E —e ~)~ —k'~ 2n
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dk'(4~ i Ik')(k'~4~ ~ ) (38)

is satisfied for each n' = 1 to Laguerre basis size Np to
three significant figures.

Denoting the combinations of Lk„~ln by f, Lokolsno
by i, and L'k'l'n' by n we write (36) as

KsJ Vs J(8) + ) ut VsJ(8)KsJ (39)

where the single sum over n contains the sum over N„ t

quadrature points kI". ' in (37), and the single index on
I I

m„ indicates the complete range of m". ' . To solve this
equation we form a closed set of linear equations by let-
ting f run over the same range as n. We replace f by n'
to indicate this and have

V„; (8) = ) b„„—ur„V„„(8) K„,

= ) 6„„/m„—V„„(8) m„K„, . (40)

As both b„„/m„and VsJ(8) are symmetric on inter-
change of n and n' we need to solve the linear system of
the form AX = B, where A is a real symmetric matrix.

which is solved for the K matrix using real arithmetic,
and the T matrix is obtained by solving the much smaller
set of equations (35).

There are a number of methods for calculating princi-
pal value type integrals. McCarthy and Stelbovics [12)
used an on-shell subtraction to remove the singularity,
and so they used a single quadrature rule to represent
the integral over k' in (36). This method does not work
very well when there is a large number of channels. This
is due to the fact that as the singularity is difFerent for
each n'l' one of the quadrature points often falls near the
singularity resulting in a very large subtraction which
loses precision. We get around this difficulty by choosing
a different quadrature rule for each n'l' Fu. rthermore,
rather than using a subtraction, we simply ensure that
for each open channel n'l' the singularity is exactly in
the middle of an interval which contains an even number
of Gaussian points. Thus, for some arbitrary function I'
we write

F k" N
dk'k' = ) m" ' F(k" '

)E —s„( —k'z/2 j=1

(37)
I ~lwhere the weights m" ' contain Gaussian-type weights as

well as the Green's function. In practice we take N„ t

to be the same for each channel n'l' In our. calculations
our largest Laguerre basis size has N~ = 13 (see next sec-
tion), in which case we find that we require the number of
quadrature points N„Ill to be as big as 55. It is generally
the case that the larger the basis size the more quadrature
points are necessary. This is unfortunate as it means that
the size of the matrices grows more rapidly than would
be the case if only the basis size was increased. To de-
termine approximately how many quadrature points are
necessary we check that the identity

We do this using LAPACK routines [18] that store A in
compact form. This way we use the minimal amount of
storage space. The usage of real arithmetic and symmet-
ric matrices reduces the storage by a factor of 4. This is
invaluable as for our 70-channel calculations (see below),
the matrix A occupies —30M of storage [(55x 70)2 x 4/2],
where 4 is the number of bytes required to store a real
number, and we divide by two since the symmetric matrix
is stored in compact form. This allows the linear system
to be solved in the core memory of our IBM RS6000/540
computer which has 64M of core memory. Storage of the
direct (no S dependence) and exchange (have S depen-
dence) V-matrix elements (21), also real and symmetric,
adds a further 60M of required storage space.

The required K&s~ are calculated by direct substitution
of the solution of (40) for the KS~ into (39). Having
calculated the K&s~ we recover the Tg,

~ by solving (35)
which in the simplified notation we write as

Kq,
' ——) Tq~q', (6'l, + i~kg Kq~,', ) . (41)

fl
Note that the sum in (39) contains all channels, open and
closed, as well as the quadrature points, whereas the sum
in (41) contains only the open channels.

This procedure is carried out for each value of S (S = 0
for singlet, S = 1 for triplet) of partial wave J, with as

many partial waves taken as necessary for convergence
to better than 1%. Typically, we take J = 0 to 80 with
higher partial waves taken care of by either an extrap-
olation or by analytic Born subtraction as discussed by
McCarthy and Stelbovics [12].

The relation between the reduced T-matrix elements
and various physical observables may be found in Refs.
[12, 19]. For completeness, we present the definitions of
the calculated observables here. Writing the amplitude
for the excitation of the 2p mt = n (n = —1,0, 1) substate
as a„, the A, R, and I parameters are given by

A = (apao)/o's» R—:Re(apaq)/os» (42)
I =—Im(aoa&)/o2„= Lz/~8, —

~he~~ rr2„ is the difFerential cross section, the notation
() indicates a spin weighted sum, and L~ is the angu-
lar momentum transferred perpendicular to the scatter-
ing plane (see review of Anderson, Gallagher, and Hertel
[20]). The spin asymmetry A„~ for the nl channel is re-
lated to the ratio of triplet to singlet scattering for that
channel r„t by

(43)+ Tnl

The relationship between the I and L~ parameters is
particularly worth noting given the remarkable quanti-
tative agreement between experiment and the coupled-
channel optical (CCO) theory of Bray and McCarthy [21]
in electron-sodium scattering for this and other param-
eters This agreem. ent is found for singlet, triplet, and
averaged spin states. As the CCO theory [21] is an ap-
proximation to the CC theory presented here we also ex-
pect excellent quantitative agreement with such param-
eters in the simpler case of electron-hydrogen scattering.
Unfortunately, this does not prove to be the case.
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IV. RESULTS

The major discrepancy between theory and experiment
for electron-hydrogen scattering is for angular correlation
parameters A and R of the 2p excitation. So we apply our
theory to those energies where there are most measure-
ments of these parameters namely at 35 and 54.4 eV. We
also look at the higher energy of 100 eV to get a broad
energy spectrum.

Our aim is to present a series of large basis close-
coupling calculations which demonstrate convergence of
the close-coupling approach. In the partial wave solution
of the close-coupling equations discussed above, conver-
gence with target states, denoted by nl, must be demon-
strated separately for n and I.

In Figs. 1—9 the three left-hand pictures have target
states with /m~ = 2, and examine the convergence as Nt
is increased for each l (n = l + 1 to N1). The largest N1,
which we take to be the same for each l, that our local
computers can handle for this l ~ is 13, i.e., 13s, 12p,
and lid states. This leads to a 70-channel calculation as
for J & l an s state leads to a single channel, a p state
generates 2 channels, and a d state generates 3 channels.
These calculations are denoted by 70CC. In the three
center pictures convergence is examined for fixed Nt, but
with increasing l up to and including f states, i.e. , l~s„=
3. The largest calculation that we could perform which
had f states has Nt = 10 for each l, i.e., 10s, 9p, 8d, and
7f states. This leads to an 80-channel (80CC) calculation
for J & 3. Note that even though the 80CC calculation
has 10 more channels than the former, it has a total of
34 states, while the 70CC treats 36 states. The three
right-hand pictures compare our results with some other

theories and if available, experiment. We do not present
our quantitative results as they are extremely extensive
but they may be readily obtained by corresponding with
the authors.

In Fig. 1 we look at the differential cross sections for
the ls, 2s, and 2p channels at 35 eV. We find excel-
lent convergence as a function of both N~ and I „ for
all channels. The convergence is excellent at all angles
perhaps with the exception of the very backward angles.
There is good agreement with other nonperturbative the-
ories, the coupled-channel optical model (6CCO) of Bray,
Konovalov, and McCarthy [19] and the intermediate en-

ergy R-matrix method (IERM) of Scholz et aL [22]. The
exact second-order theory (DWB2) of Madison, Bray,
and McCarthy [23] is a little above the other theories,
but as it is a perturbative theory we do not expect it to
have converged at this relatively low energy.

Figure 2 looks at the convergence in the spin asymme-
tries (43) at 35 eV. We see that for these parameters the
convergence is again very good, but is not quite as rapid
as for the differential cross sections. Convergence at the
very backward angles for the 2p channel hss not been
achieved which is probably due to the difficulty associ-
ated with getting a convergent ratio of difFerential cross
sections where they are very small. Comparison with
other theories shows quite a bit of variation. There is
considerable agreement with the IERM theory and to a
lesser extent with the 6CCO theory. The DWB2 results
have quite a difFerent quality at the intermediate angles
for the 2s and 2p channels.

In Fig. 3 we look at the angular correlation parame-
ters, for which there is an extensive set of measurements.
Once again we see that convergence as a function of N1 is
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FIG. 1. DifFerential cross sections at 35
eV for the 1s, 28, and 2p channels calculated
with the indicated number of Laguerre ba
sis states. The left-hand column has calcula-
tions which include d states, so convergence
is examined as the basis size is increased for
each l. The center column fixes the basis
size for each l, and demonstrates convergence
as l is increased from s and p states to d
snd f states. The right-hand column com-
pares the 70CC calculation with other theo-
ries. The coupled-channel optical calculation
of Bray, Konovslov, sud McCsrthy [19], in-
termediate energy R-matrix method of Scholz
et al. [22], snd the distorted-wave second-
order Born calculation of Madison, Bray, and
McCsrthy [23] sre denoted by 6CCO, IERM,
sud DWB2, respectively. Quantitative re-
sults may be obtained by corresponding with
the authors.
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to be very poor at intermediate to backward angles .
Having looked at pictorial results it is instructive to

examine the actual T-matrix elements for the most sig-
nificant partial waves, as well as the integrated and to-
tal cross sections. In Table I we present the 35-eV T-
matrix elements for the 52CC, 70CC, and 80CC calcu-
lations, and compare them with the IERM results. We
also give the integrated 1s, 2s, 2p, and total cross sec-
tions, which show convergence and good agreement with
IERM. The IERM TR-matrix elements [22] are related to

our T-matrix elements by

TR = 2—vriy kfk, T, (44)

where kf and k; are the final and incident linear momenta
of the projectile. The difference in the 70CC and 80CC
results gives a good indication of the convergence, since
the two calculations not only treat each partial wave with
a different number of states, but also treat a difFerent
number of partial waves. If the 70CC and 80CC calcu-

TABLE I. T-matrix elements (real and imaginary parts) for the first five partial waves J, and integrated and total cross
sections (in units of ao) at 35 eV. The numbers in brackets indicate powers of 10.

Channel 52CC 70CC 80CC IERM
1$-1$
ls-2s
ls-2p
ls-ls
1$-2$
1$-2p

-2]
[-2]
[-2]
-2]
-2]
-3)

-6.74[
-1.19
1.31

-8.63[
-1.09[
-6.18[

-2]
-2]
-2]
-1]
-3]
-2)

-8.37[
1.83[
2.73[

-1.41[
2.46[
1.71[

-6.86[
-1.24[
1.16[

-8.61[
-1.03[
-6.11[

-2]-8.26 [-2]
-2] 1.78[-2]
-2] 2.79[-2]
-2]-1.41[-1]
-2] 1.95[-3)
-3) 1.72[-2]

-6.75[
-1.28[
1.21[

-8.63[
-1.09[
-6.40[

-2]
-2]
-2]
-2]
-2]
-3]

-8.39[
1.87[
2.73[

-1.41[
2.34[
1.71[

-2]
-2]
-2]
-1]
-3]
-2]

-1.36[-2] 1.65[-2]
1.32[-2] 2.94[-2]

-1.03[-2] 1.19[-3]
-6.79[-31 1.73[-2]

ls-ls
1$-2s
1s-2p
1s-2@+
1$-ls
1$-2$
1$-2p
1$-2@+

-2]
-2]
-2]
-2]
-2]
-3]
-4)
-3]

-2.24[
1.51 [
1.07[
1.14[

-6.83[
3.90[

-4.64[
6.48[

-2)
-2]
-2]
-4]
-2]
-2]
-3)
-3)

-2.01[
1.73[
1.24[

-1.54[
-3.14[
1.40[
3.50[
6.06[

-2)
-2]
-2]
-2]
-2]
-3]
-4)
-3)

-2.24[
1.51[
1.06[
1.15[

-6.87[
3.69[

-S.67[
6.68[

-2)
-2]
-2]
-4]
-2]
-2]
-3]
-3]

-2.00[
1.78[
1.28[
2.72[

-3.17[
1.39[
3.66[
6.30[

-2.25[
1.52[
1.07[
1.14[

-2)
-2]
-2]
-2]

-6.84[-2]
3.81[-3]

-5.01[-4)
6.61[-3]

-2.01[-2)
1.78[-2]
1.24[-2]

-4.96[-4]
-3.14[-2]
1.41[-2]
3.55[-3]
6.06[-3]

1.45[-2] 1.73[-2]
1.17[-2] 1,32[-2]
1.26[-2] 5.12[-4]

3.46[-3] 1.36[-2]
1.08[-4] 4.02[-3]
7.31[-3] 6.93[-3]

ls-ls
ls-2s
1s-2p
1$-2p+
ls-ls
ls-2$
1$-2p
1$-2p+

-1.43[-2]
6.51[-3]
2.38[-2]

-1.o2[-s]
-2.70[-2]
9.31[-3]
6.96[-3)
4.21[-3]

-1.79[
3.93[
1.07[

-2.76[
-7.31[
7.37[
1.07[

-1.22[

-2]
-3]
-2]
-3]
-3)
-3)
-2]
-3]

-2]
-3]
-2]
-4]
-2]
-3]
-3]
-3)

-1.46[
6.39[
2.36[

-4.69[
-2.72[
9.19[
6.96[
4.27[

-2]
-3]
-2]
-3]
[-3]
-3]
-2]
-3]

-1.76[
4.05[
1.14[

-2.53[
-7.36
7.37[
1.08[

-1.06[

-2]
-3]
-2]
-4]
-2]
-3]
-3]
-3]

-1.44[
6.54[
2.38[

-4.79[
-2.71[
9.31[
6.92[
4.24[

-2]
-3]
-2]
-3]
-3)
-3]
-2]
-3]

-1.79[
4.03[
1.12[

-2.80[
-7.32[
7.44[
1.08[

-1.30[

5.38[-3] 3.36[-3]
2.53[-2] 1.17[-2]
2.56[-4]-3.40[-3]

8.64[-3) 6.97[-3]
7.53[-3] 1.11[-2)
5.60[-3]-1.03[-3]

1$-ls
ls-2s
1s-2p
1$-2@+
ls-ls
1$-2$
1$-2p
1$-2p+

-1.01[
4.67[
2.42[
2.14[

-4.90[
2.75[
1.00[

-2.14[

-2]
-3]
-3]
-5]
-3]
-3]
-2]
-3]

-1.10[-2]
1.oo[-s]
2.45[-2]

-3.07[-3]
-1.20[-2]
5.44[-3]
1.57[-2]
2.08[-4]

-1.12[
1.11[
2.41[

-3.00[
-1.21
5.32[
1.58[
3.09[

-2]
-3]
-2]
-3]
[-2]
-3)
-2]
-4]

-9.92[-3]
4.76[-3]
2.43[-3]

-1.57[-4]
-4.94[-3]
2.72[-3]
1.01[-2]

-2.21[-3]

-1.10[
1.18[
2.45[

-3.03
-1.21
5.38[
1.56[
1.56[

-2]
-3]
-3]
-4]
-3]
-3]
-2)
-3]

[-sl
[-2)
-3]
-2)

4]

-1.58[
-4.88[
2.81[
1.02[

-2.12[

-2]-1.01[
-3] 4.58[
-2] 2.71[

1.56[-4] 4.60[-3]
2.43[-2] 2.71[-3]

-2.92[-3] 8.86[-4]

4.35[-3] 2.50[-3]
1.62[-2) 1.03[-2)
3.92[-4]-2.15[-3]

ls-1$
1$-2s
1$-2p
1s-2p+
1$-1$
1s-2$
1$-2p
1$-2@+

~2s
0'2p

0'g

[-sl
[-4]
[-2]
[-sl
[-3]
[-sl
-2]
-3]

-7.45
2.30
1.98

-2.86
-7.01
1.72
1.82[

-1.64[

-5.12[
4.96[

-5.79[
7.97[

-3.70[
2.03[
5.43[

-1.20[

-3]
-3]
-4]
4]

-3]
-3]
-3]
-3]

0]
-1]
0]
1]

5.33[
2.48[
2.26[
1.07[

-3]
[-5]
-21

-3]
-3]
-3]
-2]
-3]

-7.50[
-1.89
1.97[

-2.83[
-7.03[
1.62[
1.81 [

-1.64[

-5.16[
5.08[

-4.50[
1.14[

-3.70[
1.96[
5.54[

-1.18[

-3]
-3]
-4]
-3]
-3]
-3]
-3]
-3]

5.37[ 0]
2.50[-1]
2.27[ 0]
1.08[ 1]

-7.37[-3]
3.27[-4]
1.98[-2]

-2.53[-3]
-7.06[-3)
1.60[-3]
1.81[-2]

-1.63[-3]

-3]
-3]
-4]
-4)
-3]
-3)
-3]
-3]

0]
-1]
0]
1]

5.33[
2.52[
2.23[
1.07[

-4.98[
4.76[
2.92[
7.55[

-3.68[
2.04[
5.63[

-1.16[

-3.30[-4] 5.39[-3]
1.97[-2]-4.84[-4]

-2.77[-3) 1.73[-3]

1.16[-3) 2.02[-3]
1.85[-2] 5.56[-3]

-1.29[-3]-1.02[-3]

2.58[-1]
2.06[ 0]
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lations are significantly difFerent then comparison with
the 52CC elements gives an indication as to whether the
lack of convergence is due to insufficient N~ or t ~. We
see that, in general, agreement between the theories is
very good; however, on occasion the IERM differs signif-
icantly from the others, which are in good agreement with
each other. The IERM method involves matching outside
the interaction region, uses T-matrix averaging, and in-
cludes corrections based on the plane-wave second-order
Born approximation to make allowance for configurations
not included in the IERM expansion of the three-body
scattering wave function. As our method has no such ap-
proximations we suggest this is a possible source for the
discrepancies.

The differential cross sections for the ls, 2s, and 2p
channels for electron hydrogen scattering at 54.4 eV are
given in Fig. 4. Convergence is clearly demonstrated.
Agreement with experiment and other theories is quite
good, though our results are systematically a little lower
than the measurements. At this energy as well as at
100 eV there is a large pseudostate calculation of van
Wyngaarden and Walters [24]. This is a 40CC calcula-
tion with N~ = 8 and l ~ = 2, where they also tried
to take care of higher t by employing a distorted-wave
second-order Born approximation. They used Slater-type
orbitals for their basis which was chosen to get good
second-order Born terms. We denote their results by
vWW40CC.

The corresponding ssymmetries are given in Fig. 5.
Here we see that while convergence for the ls and 2s
channels is evident at all angles, it is not so clear for
the 2p channel. Clearly larger calculations are necessary

to establish convergence at all angles for the asymme-

try of the 2p channel. Agreement with other theories is
rather mixed with the DWB2 calculation standing out
most from the others.

The 54.4-eV angular correlation parameters are given
in Fig. 6. Very good convergence is evident at all angles
for each parameter. Agreement with experiment, two in-

dependent sets of measurements, is very good at forward
angles, but poor at intermediate angles for A, and back-
ward angles for the R parameter. The difFerent theories
tend to support each other, as do the two sets of measure-
ments. The agreement with the measurements of the I
parameter is also particularly disappointing since there is

very good agreement between the various theories. Hav-

ing established convergent close-coupling results we are
forced to claim that the close-coupling theory is unable
to explain the existing measurements of the angular cor-
relation parameters.

Again it is instructive to look at the T-matrix elements
given in Table II together with the integrated and to-
tal cross sections. We see that agreement between the
70CC, 80CC, and IERM theories is generally very good,
though there are some significant differences on occasion.
Given the nature of the agreement of the T matrices we
were puzzled by the oscillations at backward angles of the
IERM A and R parameters. Since IERM is a hybrid the-
ory which uses partial-wave T-matrix elements for J & 5
from an entirely separate pseudostate calculation, we cal-
culated the angular correlation parameters for the IERM
method using the T-matrix elements for J & 5 from our
70CC calculation. The resulting A and R were free of the
oscillations at the backward angles, but otherwise very
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calculated with the indicated number of La-
guerre basis states. See Figs. 1 and 4 for
definition of other theories and more detail.
The measurements denoted by o are due to
Williaxns [28,31], those denoted by C3 are due
to Weigold, Frost, and Nygaard [32].
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similar to those presented. This confirmed our suspicion
that the oscillations in the IERM results are likely to be
due to numerical problems. The integrated cross sections
show remarkable convergence, and are in excellent agree-
ment with IERM, and good agreement with experiment.

In Fig. 7 we present the differential cross sections at
100 eV. Clearly our results have converged, and are in
very good agreement with other theories. Agreement
with the elastic measurements is a little disappointing

as all of the models lie a little lower than the experiment,
but are in complete agreement with each other.

The corresponding asymmetries are given in Fig. 8.
As at 54.4 eV, the covergence for the 1s and 2s channels
is obtained at all angles, whereas it hss not been estab-
lished for some angles of the 2y channel. Agreement with
the 6CCO and vWW40CC results is quite good, but it is
surprising to see a large discrepancy with the DWB2 cal-
culations at this relatively high energy. Whenever there

TABLE II. T-matrix elements (real and imaginary parts) for the first five partial waves J, and integrated and total cross
sections (ao) at 54.4 eV. The numbers in brackets indicate powers of 10.

Channel 52CC 70CC 80CC IERM
1$-1$
1$-2$
ls-2p
ls-ls
1$-2$
ls-2p

-2]
4]

-3]
-2]
-3]
-4]

-5.56[
-5.88[
9.50[

-7.54[
-5.79[
3.91[

-2]
-2]
-2]
-2]
-3]
-2]

-6.11[
1.62[
1.58[

-8.93[
7.85[
1.32[

-5.65[
-1.33[
1.02[

-7.54[
-5.73[
3.46[

-2]
-3]
-2]
-2]
-3]
4]

-6.16[
1.55[
1.64[

-8.94[
7.68[
1.32[

-2]
-2]
-2]
-2]
-3]
-2]

[-2]-6.12[-5.59
-1.69[
9.35[

-7.54[
-5.96[
2.98[

1.69[
1.47[

-8.95[
7.85[
1.30[

-3]
-3]
-2]
-3]
-4]

-2]
-2]
-2]
-2]
-3]
-2]

-2.00[-3] 1.54[-2]
1.07[-2] 1.72[-2]

-6.02[-3] 6.78[-3]
-8.89[-5] 1.41[-2]

1$-1$
ls-2s
1s-2p
1s-2p+
ls-ls
ls-2s
ls"2p
1$-2p+

-2.33[
1.SO[
6.73[
6.71[

-5.08[
5.31[
8.85[
4.89[

-2]-1.72[
-2] 1.20[
-3] 5.80[
-3] 1.01[
-2]-2.19[
-3] 1.04[
-4] 3.35[
-3] 3.86[

-2]
-2]
-3]
-3]
-2]
-2]
-3]
-3]

-2]
-2]
-3]
-3]
-2]
-2]
-3]
-3]

-2.42
1.28
6.66
6.93[

-5.10[
5.24[
8.43[
4.92[

1.32[
-2.21[
1.O5[
3.38[
3.93[

-3]
-2]
-3]
-4]
-3]

[-2]-1.82[
[-2] 1.16[
[-3] 5.73[

-2.39[-2]
1.3O[-2]
6.49[-3]
6.53[-3]

-5.09[-2]
5.27[-S]
7.47[-4]
4.78[-3]

-2]
-2]
-3]
-3]

-2.19[
1.04[
3.36[
3.60[

-1.73 [-2]
1.21[-2]
5.73[-3]
5.25[-4]

1.24[-2] 1.16[-2]
7.40[-3] 6.46[-3]
7.39[-3] 1.33[-3]

4.80[-3] 1.01[-2]
9.98[-4] 3.76[-3]
5.27[-3] 4.48[-3]

ls-ls
1$-2$
1$-2p—
1$-2@+
ls-ls
ls-2$
1$-2p
1$-2p+

-1.25[-2]-1.28[-2]
8.90[-3] 3.97[-3]
1.39[-2] 5.89[-3]
5.00 [-4]-1.34[-3]

-2.32 [-2]-6.73[-3]
8.13[-3] 5.81[-3]
6.30[-3] 6.70[-3]
2.60 [-3]-5.03[-4]

-2]
-3]
-2]
-4]
-2]
-3]
-3]
-3]

-1.21[
9.12[
1.42[
5.14[

-2.33[
8.20[
6.25[
2.68[

-1.29[
3.98[
5.90[

-1.42[
-6.77[
5.87[
6.67[

-4.96[

-2]
-3]
-3]
-3]
-3]
-3]
-3]
-4]

-1.27[
8.99[
1.38[
4.84[

-2.32[
8.10[
6.17[
2.52[

-2]
-3]
-3]
-3]
-3]
-3]
-3]
-4]

-2]-1.28[
-3] 4.04[
-2] 5.91[
-4]-1.54[
-2]-6.79[
-S] 5.76[
-S] 6.73[
-S]-6.28[

8.38[-3] 3.50[-3]
1.52[-2] 6.O2[-3]
1.73[-3]-1.48[-3]

7.79[-3] 5.37[-3]
6.71[-3] 6.96[-3]
3.77[-3]-1.06[-4]

ls-ls
1$-2s
1$-2p
ls-2@+
ls-ls
ls-2s
1$-2p
1$-2p+

-8.42 [-3]-8.92 [-3]
4.5O[-3] 2.62[-S]
1.64[-2] 2.05[-3]

-1.98[-3]-5.88[-4]
-1.1O[-2]-4.37[-3]
6.17[-3] 2.58[-3]
1.14[-2] 6.08[-3]
7.75 [-5]-1.39[-3]

-8.57[
2.73[
2.44[

-6.49[

-3]
-3]
-2]
-3]
-2]
-3]
-2]
-5]

-8.26[
4.61[
1.65 [

-1.90[
-1.10[
6.10[
1.14[
8.46[

-3]
-3]
-3]
-4]

-4.29[-S]
2.66[-3]
6.08[-3]

-1.S7[-3]

-8.87[
2.58[
2.10[

-7.06[
-4.32[
2.60[
6.05[

-1.45[

-3]
-3]
-3]
-4]
-3]
-3]
-3]
-3]

-8.35[-3]
4.68[-3]
1.63[-2]

-2.00[-3]
-1.10[-2]
6.19[-3]
1.12[-2]
2.31[-5]

4.03[-3] 2.51[-3]
1.68[-2] 2.32[-3]

-1.49[-3]-4.53 [-4]

5.43[-3] 2.35 [-3]
1.18[-2] 6.25[-3]
5.85 [-4]-1.19[-3]

ls-ls
ls-2s
1$-2p
1$-2@+
ls-ls
ls-28
1$-2p
1$-2@+

0 ls
&2s

&2p

Og

1.76(12)[-1]
2.26( 9)[0]

-3]
-3]
-4]
-4]
-3]
-3]
-3]
-3]

-5.73[
2.23[
1.56[

-2.83[
-6.12[
3.64[
1.S5[

-1.42[-3]-1.05[

3.01[ 0]
2.08[-1]
2.32[-1]

8.58 [ 0]

-3]-5.69[
-3] 2.62[
-2]-2.17[
-3] 1.17[
-3]-3.53[
-3] 1.52[
-2] 3.73[

-3]
-3]
-2]
-3]
-3]
-3]
-2]
-3]

-5.82[
2.26[
1.54[

-2.76[
-6.14[
3.63[
1.34[

-1.42[

-3]
-3]
-5]
-4]
-3]
-3]
-3]
-3]

0]
-1]
0]
0]

3.03[
2.08[
2.32[
8.56[

-5.57[
2.69[

-9.73[
1.50[

-3.51 [
1.55 [
3.71[

-1.06[

-5.72[-3]
2.45[-3]
1.56[-2]

-2.52[-3]
-6.17[-3]
3.57[-3]
1.35[-2]

-1.41[-3]

3]
-3]
-4]
4]

-3]
-3]
-3]
-3]

0]
-1]
0]
0]

3.02[
2.12[
2.26[
8.52[

-5.49[-
2.68[
3.07[
1.50[

-3.48[
1.58[
3.85[

-1.02[

1.39[-3] 2.73 [-3]
1.57[-2]-2.66[-4]

-2.58[-3] 6.42[-4]

3.09[-3] 1.52[-3]
1.39[-2] 4.02[-3]

-1.13[-3]-9.22 [-4]

2.O7[-1]
2.27[ 0]

The estimates of the 2s and 2p integrated cross sections are due to van Wyngaarden and Walters [24].
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is a problem with convergence it is instructive to look at
the T-matrix elements which are given together with the
integrated and total cross sections, which demonstrate
excellent convergence, in Table III. Comparing 52CC
and 70CC elements for the Is-2p channel we see excellent
agreement from which we would have expected almost

indistinguishable asymmetries. To 6nd the cause of the
problem we replaced just the J = 0 T-matrix elements
of the 52CC calculation with those of the 70CC calcu-
lation, i.e., a change of at most 1%. We found that the
resultant asymmetry varied from the 52CC by as much
as 10% at the backward angles. As the differential cross

TABLE III. T-matrix elements (real and imaginary parts) for the first five partial waves J, and
integrated and total cross sections (a&&) at 100 eV. The numbers in brackets indicate powers of 10.

J 8
0 0

Channel

1$-1$
18-28
18-2p
18-18
18-2$
18-2p

52CC

-2]
-3]
-3]
-2]
-3]
-3]

-3.89[
9.97[
7.30[

-4.74[
7.47[
7.16[

-4.40[-2]
2.75[-3]
5.21[-3]

-5.47[-2]
-6.74[-4]
2.50[-3]

70CC

-2]
-3]
-3]
-2]
-4]
-3]

[-2)
-3]
-3]
[-2)
-3]
-3]

-3.85
9.92[
7.33[

-4.72
7.34[
7.09[

-4.43[
2.69[
5.22[

-5.48[
-5.83[
2.51[

80CC

-2]
-3]
-3]
-2]
-4]
-3]

-4.40[
2.44[
5.34[

-5.47[
-7.45[
2.61[

-3.91[-2]
1.00[-2]
6.69[-3]

-4.74[-2]
7.49[-3]
7.01[-3]

1 0 ls-18
18-2$
1s-2p—
1$-2p+
ls-ls
1$-2$
1s-2p
1$-2p+

-1.22[-2]
6.55[-3]
2.43[-3]
1.09[-3]

-1.32[-2]

-2]
-3]
-3]
-3]
-2]

-2.23[
8.27[
2.78[
3.06[

-3.38[
4.86[
1.09[
2.68[

-3] 6.24[-3]
-3] 2.16[-3]
-3] 1.86[-3]

-2.25[
8.21[
2.79[
3.03[

-3.39[

-2]
-3]
-3]
-3]
-2]

4.85[-3]
1.10[-3]
2.64[-3]

-2]
-3]
3]
3]

-2]
-3]
-3]
3]

-1.25[
6.53[
2.44[-
1.07[-

-1.34[
6.29[
2.19[
1.84[-

-2]
-3]
-3]
-3)
-2]
-3]
-3]
-3]

-2.25[
8.22[
2.83[
3.12[

-3.38[
4.85[
1.11[
2.70[

-2]
-3]
-3]
-4]

-1.23[
6.60[
2.32[
8.57[

-1.33[-2]
6.28[-3]
2.10[-3]
1.75[-3]

2 0 ls-18
ls-28
1s-2p-
1$-2p+
18-18
1$-28
ls-2p
ls-2p+

-3]
-3]
-3]
-4]
-3]
-3]
-3]
-5]

-7.87[
2.84[
2.73[

-3.41[
-5.16[
3.72[
3.27[

-3.01[

-1.15[-2]
7.25[-3]
6.40[-3]
6.51[-4]

-1.78[-2]
5.94[-3]
4.04[-3]
1.31[-3]

-2]
-3]
-3]
-4]
-2]
-3]
-3]
-3]

-1.18[
7.20[
6.32[
5.75[

-1.80[
5.92[
3.98[
1.26[

-3]
3]
3]

-4]
-3]
-3]
-3]
-5]

-7.83[
2.95[-
2.67[-

-3.98[
-5.21[
3.75[
3.23[

-4.79[

-2]
-3]
-3]
-4]
-2]
-3]
-3]
-3]

-1.17[
7.26[
6.30[
5.44[

-1.78[
5.97[
4.03[
1.22[

-7.84[
2.97[
2.60[

-4.78[
-5.17[
3.77[
3.20[

-1.30[

-3]
-3]
-3]
4]

-3]
-3]
-3]
-4]

3 0 1$-1$
ls-28
1s-2p-
ls-2p+
1$-1$
ls-28
ls-2p
1$-2p+

3]
3]

-3]
4]

-3]
-3]
-3]
-6]

-6.63[-
5.30[-
8.48[

-8.29[-
-9.50[
5.21[
6.43[
6.09[

-5.75[-
1.53[
1.70[

-4.28[-
-3.19[
2.04[
2.96[

-5.78[

3]
-3]
-3]
4]

-3]
-3]
-3]
4]

-3]
3]
3]

-4]
-3]
-3]
-3]
4)

-3]
[-3)
-3]
[-4)
-3)
[-31

[-31
-6]

-6.60[
5.30
8.43[

-8.33
-9.51[
5.21
6.39
5.87[

-5.73[
1.54[-
1.76[-

-3.85[
-3.17[
2.04[
2.97[

-5.69[

3]
-3]
-3]
4]

-3]
-31
-3]
4]

-6.73[
5.35[
8.30[

-8.83[-
-9.52[
5.23[
6.34[

-6.20[

-3]-5.71[-
-3] 1.62[
-3] 1.59[
4]-4.66[-

-3)-3.17[
-3] 2.08[
-3] 2.87[
-5]-6.22[

4 0 1$-18
1$-2$
ls-2p
1$-2p+
1$-18
1$-2s
1$-2p
18-2p+

&1s

&2s

1.85[ 0]
1.22(13)[-1]"
1.94( 9)[ 0]
6.84[ 0]

-4.28[-
1.09[
7.37[

-2.49[-
-2.58[
1.16[
2.16[

-6.01[

3]
-3]
-4]
4]

-3]
-3]
-3]
-4]

0]
-1]
0]
0]

1.40[
1.39[
1.98[
6.11[

-4.13[-3]
3.58[-3]
9.28[-3]

-1.?2[-3]
-5.36[-3]
3.95[-3]
7.86[-3]

-9.40[-4]

-3]
-3]
-3]
-3]
-3]
-3)
[-3]
-4]

-4.18[
3.56[
9.27[

-1.68[
-5.38[
3.93[
7.87

-9.42[

-3]
-3]
-4]
-4]
-3]
-3]
-3]
-4]

0]
-1]
0]
0]

1.41[
1.39[
1.98[
6.11[

-4.28[
1.15[
6.97[

-2.44[
-2.58[
1.18[
2.14[

-5.95[

-4.28[-
3.69[
9.00[

-1.63[-
-5.41[
3.98[
7.73[

-9.54[

3]
-3]
-3)
3]

-3]
-3]
-3]
4]

-2.56[
1.22[
2.08 [

-5.95[

-3]
-3]
-3]
-4]

1.41 [
1.40[
1.96[
6.15[

0]
-1]
0]
0]

-4.21 [-3]
1.22[-3]
7.24[-4]

-1.68[-4]

The semiempirical estimates of the integrated elastic and total cross section are due to de Heer,

McDowell, and Wagenaan [25].
The estimates of the 2$ and 2p integrated cross sections are due to van Wyngaarden and Walters

[24].
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So if higher precision was required at these angles then
perhaps even higher l states would be required. All our
calculations are unable to reproduce the deep minima at
backward angles in A for the 35- and 54.4-eV experiments
and there is a similar divergence in the R parameter with
the 54.4-eV experiments. While we are unable to claim
convergence to a 1% level, it does appear that our corre-
lations will not be altered substantially by more extended
calculations, certainly not sufBciently to explain the dis-
crepancy with experiment.

Spin asymmetries proved to be the most sensitive pa-
rameters to target basis sets. For basis sets restricted
to s, p, and d states, convergence with basis is achieved
to within a few percent over most of the angular range.
The elastic channel asymmetry has a single minimum
and rises at backward angles. Discrepancies of up to 10%
were obtained in the 100-eV result for angles greater than
120'. The 2s spin asymmetries have a node at forward
angles which is followed by a steady rise at backward an-
gles. Convergence rates are similar to the 1s channel.
The 2p channel shows most structure. The calculations
over s, p, and d basis states indicate a well-defined for-
ward peak and subsequent nodal structure that is similar
for the 52CC and 70CC models. The main differences are
again at extreme backward angles where the cross sec-
tion is very small. When f states are added to the 52CC
model, their efFect is significant in altering the magni-
tude of the forward peak of the 2p channel but not its
position, and in addition varies the shape and structure
of the remaining peaks. The convergence was reasonably
demonstrated for the 35-eV results but becomes progres-
sively worse at 54.4 and 100 eV. We conclude that states
of higher partial waves are needed at 54.4 and 100 eV
in order to obtain better convergence for the 2p channel
spin asymmetry.

At this stage, where our results and experiment dis-
agree we have good agreement with other theories, the
nonperturbative IERM of Scholz et aL, vWW40CC of
van Wyngaarden and Walters, CCO of Bray and co-
workers and the perturbative (exact to second order)

DWB2 of Madison, Bray, and McCarthy. Where there is
significant discrepancy between the theories, particularly
the asymmetries, there is no experiment. It would be
most helpful if new measurements of the angular correla-
tion parameters as well as measurements of the hydrogen
asymmetries were available. Given the excellent quanti-
tative agreement in electron-sodium scattering measure-
ments of the I~ = 2~—2I parameter and the CCO the-
ory of Bray and McCarthy [21], which is an approxima-
tion to the convergent CC theory pesented here, we are
not too perturbed by the present discrepancies between
theory and experiment in electron-hydrogen scattering.

Our overall conclusion is that the Laguerre basis ex-
pansions applied here are adequate to obtain fully con-
vergent scattering amplitudes in the close-coupling equa-
tions. In the calculations reported, we have demon-
strated convergence of individual partial-wave T-matrix
amplitudes for channels of interest to better than 5% level
over all the energy range considered with few exceptions.
For parameters which are made from the summed par-
tial waves we achieve convergence in some cases to bet-
ter than 2%. We have demonstrated this for difFerential
cross sections and to a lesser extent the angular corre-
lations. Larger basis expansions are needed to obtain
convergent spin asymmetries at all angles and energies
to better than 10%. Achieving significantly better con-
vergence for the amplitudes, say to a 1% level, is likely
to require a large scaling up of our present calculations
based on our experience [11]with the Poet model which
required 30 l = 0 states. Extrapolating to our current
models, it is reasonable to suggest that a 200CC calcula-
tion could be required, which is well within the capacity
of modern supercomputers.
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