JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Vol. 102, No. 3, pp. 497-524, SEPTEMBER 1999

Convergent Cutting-Plane and Partial-Sampling
Algorithm for Multistage Stochastic Linear
Programs with Recourse'

Z. L. CHEN®? AND W. B, PoweLL?

Communicated by M. Avriel

Abstract. We propose an algorithm for multistage stochastic linear
programs with recourse where random quantities in different stages are
independent. The algorithm approximates successively expected recourse
functions by building up valid cutting planes to support these functions
from below. In each iteration, for the expected recourse function in each
stage, one cutting plane is generated using the dual extreme points of
the next-stage problem that have been found so far. We prove that the
algorithm is convergent with probability one.

Key Words. Multistage stochastic programming, cutting planes, sam-
pling, convergence with probability one.

1. Introduction

Numerous real-world problems in applications, such as transportation
(Ref. 1), production planning (Ref. 2), financial planning (Ref. 3), and many
other fields (Refs. 4 and 5), can be formulated as two-stage or multistage
stochastic linear programs with recourse. The characteristics of such a prob-
lem can be summarized as follows: (i) a stage usually represents a time
period; (ii) the very beginning of the first stage is viewed as here and now;
(iii) at the beginning of each stage, we know deterministically all the data
in this stage, but know only probabilistically all the data in future stages;

"This work was supported in part by Grant AFOSR-F49620-93-1-0098 from the Air Force
Office of Scientific Research.

Assistant Professor, Department of Systems Engineering, University of Pennsylvania, Phila-
delphia, Pennsylvania.

*Professor, Department of Civil Engineering and Operations Research, Princeton University,
Princeton, New Jersey.

497
0022-3239/99/0900-0497816.00/0 © 1999 Plenum Publishing Corporation

498 JOTA: VOL. 102, NO. 3, SEPTEMBER 1999

(iv) at the beginning of the first stage, decisions must be made before the
realization of random data in future stages; (v) once random data in a stage
becomes known, correction (i.e., recourse) actions are allowed to compens-
ate the decisions for this stage made earlier; (vi) the goodness of the decision
making is measured by the total cost, consisting of the deterministic cost in
the first stage and total expected cost in the future stages.

Methods for stochastic linear programs can be generally classified into
those which use a fixed sample of realizations (scenario-based methods)
and those which iteratively sample realizations as the algorithm progresses
(sampling-based methods).

Scenario-based methods normally approximate a stochastic problem
using a relatively small set of realizations which allow the problem to be
solved as a (typically large) linear program. Two-stage problems may be
approximated using hundreds or in special cases thousands of scenarios, but
multistage problems are normally restricted to much smaller samples. Once
a set of scenarios has been generated, most scenario-based methods treat
this sample as representing the entire problem which they then strive to solve
to optimality. Examples of algorithms designed for this class of problems
includes the diagonal quadratic approximation method of Mulvey and Rusz-
czynski (Ref. 6), augmented Lagrangian decomposition method of Rosa
and Ruszczynski (Ref. 7), L-shaped method of Van Slyke and Wets (Ref.
8), its generalization to multistage problems by Birge (Ref. 9), and scenario
aggregation method of Rockafellar and Wets (Ref. 10). All these algorithms
provide optimal solutions to what are normally approximations of the origi-
nal problem.

Sampling-based methods represent explicitly the complete sample space,
which may be of infinite size for all practical purposes. Examples include
the stochastic linearization method (Refs. 11 and 12), auxiliary function
method (Ref. 13), stochastic decomposition (Ref. 14), sample path optimiza-
tion (Ref. 15), and stochastic hybrid approximation method (Ref. 16). All
these methods use successive samples to develop algorithms that converge
in some probabilistic sense in the limit, In practical settings, statistical
methods have to be used to determine convergence criteria and the solution
properties after a finite number of iterations (Ref. 14).

A popular strategy to counteract the exponential growth of multistage
models has been to develop successive approximations of the recourse func-
tion. It is well known (see, for example, Refs. 8 and 17) that the expected
recourse function in a two-stage program can be replaced with a series of
Benders cuts, where the recourse function is represented using a fixed sample.
Birge (Ref. 9) extends this approach to multistage problems by proposing
a nested Benders decomposition algorithm. The basic version of this method
involves a forward pass through the time periods, using a specific set of cuts,

JOTA: VOL. 102, NO. 3, SEPTEMBER 1999 499

and then a backward pass, where new cuts are generated. Other authors
have studied variations of this strategy (Refs. 18-22). Infanger and Morton
(Ref. 23) show how the method can be extended to take advantage of
interstage dependencies.

Nested Benders decomposition, as it is generally described (see for
example Ref. 23), requires solving a linear program at each time period and
for each scenario, where a scenario represents a full history of events up to
that point in time. Let Q, represent the set of outcomes in time period ¢,
and let h,=(w,, @,, ..., ®,) represent the history of the process, where
he#;=Q x % -+ xQ, (some authors use the notation £, to represent
the history, whereas we use it only to denote events within a time period).
Clearly, the size of s# grows exponentially with the number of stages, making
nested Benders decomposition impractical for even medium-sized problems.

In this paper, we propose a new convergent algorithm for multistage
stochastic linear programs with recourse that satisfy the following
assumptions:

(Al) random quantities in different stages are independent;

(A2) the sample space of random quantities in each stage is discrete
and finite;

(A3) random quantities appear only on the right-hand side of the
linear constraints in each stage;

(A4) the feasible region of the problem in each stage is always non-
empty and bounded.

As mentioned earlier, Assumption (A2) is necessary for all scenario-
based methods. Assumptions (A3) and (A4) are made in many sampling-
based methods including the stochastic decomposition method of Higle and
Sen (Ref. 14). The nested Benders decomposition method of Birge (Ref. 9)
assumes (A2) and (A3). We note that the result that we are going to present
can be extended, after some refinement, to more general cases including the
case where not only the right-hand side vectors, but also the matrices B,
linking neighboring stages are stochastic, and also including the case where
the feasible region of the problem in each stage can be infeasible or
unbounded.

Features of our method include:

(a) Ateach iteration, we solve a linear program for a single realization
w,€£), (as opposed to each h,e ;) at each stage ¢. As a result,
the computational requirements of the procedure per iteration
grow linearly with the number of stages and the size of the sample
space per stage.

500 JOTA: VOL. 102, NO. 3, SEPTEMBER 1999

(b) We perform a simple comparison over the entire sample space Q,
at each stage . Thus, Q, may be large (say, in the tens or even
hundreds of thousands), but must be finite.

(¢) Our method successively approximates the expected recourse func-
tion by building up valid cutting planes to support these functions
from below.

(d) We prove that the algorithm converges in the limit, but do not
provide finite convergence.

Because we use only a partial sample [item (a) above], rather than the
full sample required by other methods, we call our method cutting-plane
and partial-sampling (CUPPS) algorithm. On the other hand, the full pass
over the sample space in item (b) implies that the space must be finite, in
contrast with true sampling techniques such as stochastic decomposition.
Our method is closest to the nested Benders decomposition method of Birge
(Ref. 9) and stochastic decomposition method of Higle and Sen (Ref. 14).

The research contribution of the paper is the presentation of a new
algorithm for solving multistage stochastic programs, which is convergent
in probability, and which is computationally tractable for problems with
large numbers of outcomes per stage and large numbers of stages. The
primary limitation of our method is shared by all cutting-plane algorithms,
which is slow convergence when we are approximating high-dimensionality
problems. Since the relative advantage of CUPPS over the classical nested
Benders decomposition in terms of execution time per iteration is obvious,
we do not present any numerical experiments. Our belief is that experimental
work must be conducted in the context of a specific application with an
algorithm that is able to take advantage of the structure of that problem.

This paper is organized as follows. In Section 2, we present the core
idea of the CUPPS algorithm when applied to a two-stage problem and
compare it to the L-shaped algorithm and stochastic decomposition algo-
rithm. In Section 3, we present the details of the CUPPS algorithm.
In Section 4 we give some preliminary results, and in Section 5 we establish
the convergence of this algorithm. Finally, we conclude the paper in Section
6.

2. Core Idea and Comparison

In this section, we present briefly the core idea of our CUPPS method
when applied to a two-stage problem and compare it to the two closest
existing methods: the stochastic decomposition (SD) method of Higle and
Sen (Ref. 14) and L-shaped (LS) method of Van Slyke and Wets (Ref. 8).

JOTA: VOL. 102, NO. 3, SEPTEMBER 1999 501
We begin by introducing some basic notation:

(Q., &, P,)=probability space of the random quantities in stage ¢, where
Q, is the sample space of the random quantities [hence by (A2), |€,] is
finite]; % is a o-algebra and P, a probability measure defined over Q,;
Q,={®wu,..., 0., }=sample space of the random quantities in stage ¢,
where ¢,=|Q,| and @, is a sample in Q,, Vi=1,...,q, with g, =1;
Ps=probability associated with each sample 0,eQ,, Vi=1,...,¢q,, such
that Y%, p,=1;

#,= o-field which represents the information available up to stage ¢;

x, = vector of decisions in stage 7;

¢, = vector of cost in stage ¢;

A,=constraint matrix in stage ¢;

B,=constraint matrix linking stage ¢ and stage 1+ 1;

Qi(xi—1, 0,)=0i(x,— 1, w,|#,_1) =recourse function in stage t — | given the
history J#_, ; note that Assumption (Al) guarantees the first equality;
Qt(x!—]) =Z;h=| PuQi(xi—1, 0y) =Eq,Q:(x,—1, 0,)=EqQ (X1, 0,| #-1)=
expected recourse function in stage t— 1 given the history 4 _, ; note that
Assumption (A1) guarantees the second equality.

A general T-stage stochastic linear program with recourse can be formu-
lated as follows:

min ¢jx; + Eq,[min cix, +- - - + Eq,[min c7x7]. .], (1a)
s.t. A]X|=b|, (lb)
Bix,+ Ay x:= w3, (1c)
Br_ixxr-1tArxr=or, (1d)
x20, t=1,...,T, (le)
0eQ, t=2,...,T. (1f)

For the problem of our interest that satisfies Assumption (A1), the formula-
tion (1) can be rewritten equivalently in the following recursive form:

(LP]) Ql =min c,Txl + Qz (x,), (2)

s.t. A1X| =b1 s (3)
X1 209 (4)

502 JOTA: VOL. 102, NO. 3, SEPTEMBER 1999

where the recourse function is defined by, for t=2,..., T,
(LP,) Q:i(xi-1, ®,)=min ol X+ Qr+l(xt)a (5
st. Ax=0,—B_1x,-, (6)
x,20,)
and QT+ 1 =0.

The core idea of the CUPPS method is to successively approximate the
expected recourse function in each stage by valid cutting planes that are
generated based on a known subset of dual extreme points of the next-stage
problem. To be specific, let us consider the two-stage problem given by (2-
7) with T=2, For solving this problem, each iteration k& of the CUPPS
algorithm involves two steps.

The first step solves an approximated problem LP,, which is as follows:

min clx,+z, (®
s.t. A]X] = b] . (9)
z+plxiza;, Vi=1,...,k, (10)
x1 20, (11)

where (10) represents the &k cuts generated so far. These cuts are generated
in the second step and approximate the expected recourse function Q,(x,)
by supporting it from below. Note that initially the algorithm approximates
Q»(x1) by the first cut that is trivial, z>—o0. Let x} denote the solution to
problem (8-11).

In the second step, first the algorithm randomly draws a sample,
denoted as w% from Q,, then solves problem LP, with x,=xf and
w2=w5. Assumption (A4) guarantees that both the optimal primal and
dual solutions to this problem can always be found. Let z; be the dual
solution of this problem. Notice that, in problem LP,, x, and @, appear
only on the right-hand side. Thus, for any given x{ and xj with ##v, and
for given wy, @€, with i#j, any dual extreme point of problem LP,
with x;=x} and w,= w,; is also a dual extreme point of the problem with
x1=x7 and w,=w,. Let

= {mlj=1,...,k}

be the set of all dual extreme points of problem LP, generated up to iteration
k. Based on the dual extreme points in 2¥, the algorithm then generates a
new cut,

z4+ Bl = ak+t, (12)

JOTA: VOL. 102, NO. 3, SEPTEMBER 1999 503

with coefficients (scalar a;., and vector B;.;) given by

[¢)

Q1= Bivrxi= Y, py(#;) (@y — Bixy), (13)
j=1

#;=argmax{n] (wy — Bix})| 1€ D"} . (14

Note that, for large problems, the summation over all possible outcomes in
€2, in Eq. (13) and the maximum operator applied in Eq. (14) represent the
computational bottleneck of the procedure.

As we show in Section 4, the cut generated this way is valid for the
expected recourse function Q,(x,), in that it supports Q,(x;) from below,
but may not be tight, as illustrated in Fig. 1, top. The effort for generating

0,(x)

»x,

Cuts generated by the CUPPS method

—Q_i(xl)

;x]

Cuts generated by the SD method

N R

» X,

Cuts generated by the LS method
Fig. 1. Comparison of cuts generated by the CUPPS, SD, and LS methods.

504 JOTA: VOL. 102, NO. 3, SEPTEMBER 1999

this cut involves solving one linear program (that is, problem LP, with
x1=x%, w,=w%) and O(kq,) basic operations for computing .+ and Br+1
in (13) and (14). This cut is then added to problem (8-11). The whole
procedure is then repeated.

By comparison, the SD algorithm shares similar steps, except that it
not only generates new cuts, but also updates previously generated cuts. By
contrast, the LS algorithm, not only solves just one problem LP, with
x1=x% and w,=w}, but instead it solves every problem LP, with x;=x}
and w,=wy, ¥j=1,...,¢,. Then, a new cut is generated based on the
optimal dual solutions of all these ¢, problems.

Specifically, in the SD algorithm, iteration & solves problem LP, with
x1=x% and w,= w5 and generates a new cut (12) with coefficients .+, and
Br+1 given by

k "
ak+l_ﬁz+1x15 Z sz(ﬁj)T(wjz—lel), (15)
Jj=1

#,= argmax{x7 (04~ Bix})| 197} (16

In general, the cut generated this way may not be a valid cut for the expected
recourse function Qa(x;), as illustrated in Fig. 1 (center) because the
coefficients of the cut are computed in (15) using only k samples, instead of
all the samples in 5. It is easy to see that the computational effort involved
here is solving one linear program and performing O(k) basic operations in
(15) and (16); indeed, in iteration k, one computes only £, since all other
#;, with 1 <j<k—1, were computed earlier. Thus, the SD algorithm offers
the lowest computational effort per iteration of all three algorithms.

To generate a new cut in iteration k, the LS algorithm solves every
problem LP; with x; =x} and w,=w,,, foreachj=1, ..., g». Let u} denote
the optimal dual solution (obtained in iteration k) of problem LP, with
x1=x} and @,=,, . Then, the coefficients of the new cut (12) generated
by the LS algorithm in iteration k are given by

q2

ak+l_ﬁl{+1x15 Z p2j(uljc)T(w2j—lel)- 17

Jj=1
It is easy to see that a,.; and B, given by (17) satisfy
ak+1‘ﬂ1f+1x’f=Q2(X’f)- (18)

Furthermore, it is not difficult to see that the cut given by (17) is valid;
hence, by (18), it is a tight cut for the expected recourse function Q,(x;)

JOTA: VOL. 102, NO. 3, SEPTEMBER 1999 505

and touches the function at the point x}, as shown in Fig. 1 (bottom). The
computational effort involved here consists of solving ¢, linear programs
and performing O(g,) basic operations in (17).

From the above comparison, it is quite clear that, to generate a cut,
the LS algorithm needs the most computational effort, while the SD algo-
rithm needs the least computational effort among these three algorithms.
On the other hand, the quality of the cuts generated by the LS algorithm is
the best in terms of their tightness. Thus, for two-stage problems, the CUPPS
algorithm can be viewed as a method lying between the SD algorithm and
the LS algorithm. The CUPPS algorithm attempts to build valid cuts, instead
of stochastic cuts as in the SD algorithm, by using available dual extreme
points that have been generated, instead of solving all the problems associ-
ated with the samples as in the LS algorithm,

For multistage problems, the core ideas of the nested Benders decompo-
sition algorithm of Birge (Ref. 9) and of the CUPPS algorithm are similar
to their respective counterparts for two-stage problems described above.
Hence, we do not compare them here. The details of the CUPPS algorithm
are described in Section 3. See Ref. 9 for the details of the nested Benders
decomposition algorithm.

3. CUPPS Algorithm

In each iteration, the CUPPS algorithm solves an approximated prob-
lem LP,, denoted as AP, for each =1, 2,...,T—1, and a problem LP7.
In problem AP,, the expected recourse function Q. (x;) is approximated
by some cuts that support it from below. After solving problem AP, or LPr,
the algorithm generates a cut that is valid for the expected recourse function
0. (x,-1) and adds this cut to problem AP,_, . In the course of the algorithm,
the approximated problems AP,, for ¢r=1,...,T—1, approximate the
original LP, more and more accurately.

In each iteration, the algorithm generates one cut for each expected
recourse function Q,(x,-1) for t=2, ..., T. At the very beginning, the algo-
rithm uses the following initial cut to support the function Q,(x,-;) from
below:

Zie1 2 —00. (19)

Certainly, this is a valid cut. Thus, there are a total of £+ 1 cuts in problem
AP, right after iteration k.

506 JOTA: VOL. 102, NO. 3, SEPTEMBER 1999

Suppose that, right after iteration k—1, the approximated problems
AP, and AP,, for t=2,...,T—1, are as follows:

(AP,) O'=min clx +z, (20)
X1,22
s.t. A1X1=b1, (21)
22+(ﬂé)rx12a2i7 Vi=1,...,k, (22)
x120; (23)
(AP,) Of(x—,®,)=min c/x,+z.1, (24)
XnZi+1
s.t. A{-Xt=wt_Bl—1xl—1’ (25)
Z:+|+(ﬂ:+1)Tx12az+1,i,
Vi=1,...,k, (26)
x,=0, (27)

where (26) represents k cuts that have been generated up to iteration k—1
for the expected recourse function Q,+((x,). We describe later how these
cuts are generated.

Then, in the next iteration (i.e., iteration k), the CUPPS algorithm first
solves problem AP,. Let the primal and dual solutions be denoted by
(x%, 25) and (%, p¥), where 7% and pf are the vectors representing the dual
solutions corresponding to (21) and (22). Next, for each t=2, ..., Tin this
order, first the algorithm draws a sample (denoted by w¥) from Q,, then
solves problem AP, for t<T (or problem LPy for t=T), with x,—, =x}_,
and ®,=w%, and gets the primal and dual solutions, denoted by
(x%, 2%, 1) and (7%, p¥) (or by x% and %), where ¥ and p¥ are the vectors
representing the dual solutions corresponding to (25) [or (6) in problem
LP7] and (26).

For t=2,..., T, denote 9% =set of all the dual extreme points gener-
ated so far right after iteration k for problem AP,, for t<T, or problem
LPr for t=T. Then, after problem AP, (or LP7) is solved in iteration k— 1,

this set of dual extreme points is updated by, for t=2,...,T—1,
2f=2{"" v {(nf, pi)}, (28)
and for t=T,
=25 ' {nk}. (29)

Note that elements in the set 2¥ may have different dimensions. Ele-
ments generated earlier have smaller dimensions than those generated later.

JOTA: VOL. 102, NO. 3, SEPTEMBER 1999 507

Throughout this paper, whenever we calculate the inner product of or com-
pare two vectors with different dimensions, we assume that the vector with
smaller dimension is extended by attaching zeros to it such that it has the
same dimension as the other vector. We show in Section 5 that any element
in 2% generated earlier than iteration k, if extended accordingly by attaching
zeros to it, is still a dual extreme point of problem AP, formed later than
iteration k.

Based on the dual extreme points in the set 2 that have been generated
so far, the algorithm then generates a new cut [i.e., the (k+ 1)th cut] for the
function Q,(x,-,). This cut is given by

zt+(ﬁ’tc+l)rxt—12at,k+la 30

with

qr
ﬁfH: ZPrzB:T—ﬂ:(x’f~1, WDy, 9’:), 21T, (31)

i=1

g1
k k
Cri+1= Z pti[wz:n'l(xltc—l, Dy @f)“"(azn)rpt(x:—h @Dy, 9’:‘)],

i=1

2<1<T—1, (32)
arser= 3 pr(@n)8r (51, 0n, 35), (33)
where, for any w,€82, and 2<¢t<T-1,

(m(xio1, 00 D7), pi(Xi-1, 1, D7)

=argmax{n;(@,— B, \x{-1) + plakei|(n, p)eDt}, (34)
and for any wreQr,
nr(x5-1, o1, 2%) =argmax{rN@r— Br-1 x7-1)|nre D%}, (35)
and for 2<t<T, af is the vector defined as

af=(au,,...,0u). (36)

This new cut (30) is added to the preceding problem AP,_;. Then, the
algorithm moves forward to solve the next problem AP,.;. Similarly, a
new cut is generated and added to the preceding problem AP,. Finally, the
algorithm solves problem LPr, generates a new cut, and adds this cut to
problem APr_,. This ends iteration k.

Now we are ready to give the details of the CUPPS algorithm.,

508 JOTA: VOL. 102, NO. 3, SEPTEMBER 1999

CUPPS Algorithm,

Step0. For ¢t=1,2,...,T—1, formulate the initial approximated
problem AP, with only one initial cut given by (19). Let the
set of dual extreme points @, =¢ for all 1=2,3,...,T. Set
the iteration counter k=1.

Step 1. Solve problem AP;. Get the optimal primal solution (xf, z3)
and optimal solution value Qf.

Step2. For z=2,...,T—1 in this order, do the following. Draw a
random sample ®* from Q,. For given X—1=x*_, and
©,= ¥, solve problem AP,. Get the optimal primal solution
(x*, z54.1), optimal solution value Qf (x¥_,, ®%), and optimal
dual solution (7%, p¥). Get the latest set of dual extreme
points 2% by (28). Generate the (k+ 1)th cut given by (30).
Add this cut to problem AP,_,.

Step 3. Draw a random sample o% from Qr. For xr_,=x%_, and
or= 0%, solve problem LP. Get the optimal primal solution
x%, optimal solution value Qr(x%_,, %), and optimal dual
solution 7%. Get the latest set of dual extreme points 2% by
(29). Generate the (k+ 1)th cut given by (30) with r=T. Add
this cut to problem AP,_;.

Step4. Set k=k+1; go to Step 1.

4. Preliminary Results

In this section, we prove that all the cuts generated in the CUPPS
algorithm for the expected recourse function Q,(x,—,), Vt=2,..., T, are
valid; that is, they support Q,(x,—;) from below. Also, we give two basic
results that are used in Section 5.

Define, for any k=1 and 1<t<T—1,

-~ qr ~
Q¥ (x,-1)= Y, puQi(xi—1, 04).
i=1

Lemma 4.1. In the CUPPS alggrithm, each cut added to problem
AP,_, is a valid cut for the function Qr(xr_,).

Proof. Clearly, in problem AP7.,, the very first cut given by (19) with
t=T-—1 is valid for O7(x7_). Now, consider the kth cut in AP;_, for any
k>2. Clearly, for any given xr-, and oy, for any i=1,...,q9-, 7r
(x%-1, or, 2%) is a dual feasible solution to problem LP; with a given

JOTA: VOL. 102, NO. 3, SEPTEMBER 1999 509

xr-; and @r=wor. This implies that, for any xr_; and i=1, ..., gqr,
Or(xr-1, op) 2(07— Pr-1X7-1)T”T(x];"—l s D11y 91;)

First multiplying by pr;, then summing over all i on the both sides, we have

_ ar
Or(x7-1)2 Z pri(@n—Br-1x7-))Tﬂr(xlé'—l s O 915')

i=1

q7
= Z pTi(wTi)T”T(xl;‘—h Oy, gkr)

i=1

g T pT k k
- Z Prixr—1Br—ynr(X7-1, 01, D7)

i=1
=0Trk+17 (ﬂ%‘“)TxT——l .

This shows that the kth cut in APr_, is valid for Qr(x7-). O

Lemma 4.2. In the CUPPS algorithm, for any ¢ with 1 <t<T—1, and
for any k with k> 1, every element in the set 2% is a dual extreme point of
problem AP, formed right after any iteration j with j>k—1.

Proof. First, it is easy to see that any element (7., p,) in the set 74
is a dual extreme point of problem AP, generated in some iteration i with
i<k. Let DP1 denote the dual of problem AP, formed right after iteration
i—1. Then, (=,, p,) is an extreme point of problem DP1. Let DP2 denote
the dual of problem AP, formed right after iteration j for any given j>k%.
Then, in order to prove the lemma, we only need to show that (x,, p,), if
extended by adding a proper number of zeros to its end, is also an extreme
point of problem DP2.

Since the algorithm adds one cut to problem AP, in each iteration, and
once a cut is added it will always be there, problems DP1 and DP2 are the
same, except that in DP2 there are j—i more columns. Thus, (7., p,) is
feasible to DP2 if we extend it by adding j—i zeros to its end. Denote this
extended vector by (#,, p;"), where

(Pt+)1=(Pt)1, 1=1"--,i’ (373)
(p =0, I=i+1,...,J. (37b)

In the following, we show that (7, p;") is an extreme point of DP2,
We prove it by contradiction. If it is not, then there exist two different
solutions of DP2, denoted by (x}, p!) and (#?, p?), such that

(70, pr)=(1/2)(71, i)+ (1/2)(x1, pi). (38)

510 JOTA: VOL. 102, NO. 3, SEPTEMBER 1999

Clearly,
(P1nz0, (Pn=0, I=1,...,j
Hence, by (37), we have that
(pIy=(pIn=0, I=i+1,...,;.
Now, define two vectors g; and p? with dimension i such that
P=(p)s (B=(pi), I=1,...,1
Then, the fact that (7}, p;) # (77, p?) implies that

(z}, p1)#(x2, pP), (39)
and (38) implies that
(70, p)=(1/2) (71, p1)+(1/2)(m7, 7). (40)

On the other hand, it is easy to show that both (7}, A;) and (n?, p?) are
feasible for DP1. Then, (39) and (40) are in contradiction with the fact that
(7, p;) is an extreme point of DP1. This shows that (n,, p;) must be an
extreme point of DP2. d

Lemma 4.3. In the CUPPS algorithm, for any r=1,...,T—1, each
cut added to problem AP; is a valid cut for the function @, (x;).

Proof. We prove this by induction on 7. For = T—1, this result has
been proved in Lemma 4.1. Now, assume that, for any given t<7—1, this
result is true for 7 =1r. We need to prove that this result is also true for r =
t— 1. For any given k > 1, it is easy to see that, right after iteration k, problem
AP, is equivalent to the following problem:

min{c7x,+ Ff1(x0)](25), @7}, (41)

where FF.,(x,) is a piecewise linear function formed by the k cuts in (26).
By the induction assumption, these cuts are valid for the function
Q:+1(x); then,

Fl(x)<Qrs1(x), foranyux,.

On the other hand, the feasible region of problem (41) is the same as that
of problem LP,. So, it must be true that the optimal objective function value
of problem (41) is no more than that of problem LP,; i.e., for any x,—; and
(0, s

Ok (X1, ®) S Q11 @,).

JOTA: VOL. 102, NO. 3, SEPTEMBER 1999 511

Taking expectation of both sides, we have
Ql:(xt—l)SQt(xt—l)- (42)

On the other hand, by Lemma 4.2, any element in 27 is a dual extreme
point of problem AP, in iteration k. Thus, for any w,eQ,, with 1<i<gq,,
the vector (7, (xi-1, @u, D7), pi(xi-1, @y, D)) is a dual extreme point of
problem AP, in iteration k. This means that, for any x,_, and i=1, ..., q,,
Qltc(xt-l y 04) 2(0y— B 1%y)Tﬂ't(xlt‘— 15 Oy @f)
+ (afﬂ)rpr(x’f—l, Wy, glr()

First multiplying by p,;, then summing over all i on the both sides, we have

~ qt
Q’lc(xl—l)z Z Pul(@y—B— 1%,)T”t(xf—l » Wiy 9ll‘)

i=1

+ (a7+ 1)TP: (x,f—l s Wy @If)]

4
=— Z p!i(”!(x]:-la @y «@’t‘))TBt—lxl—]

i=1

9
+y paloin (Xizi, @4, DE)+ (@t p(Xo 1, 04, 27)]

i=1
= “(ﬂfﬂ)Txr—l Qg
Together with (42), this gives
Q_l(xt—l)zal,k+l _(.B:H—])Tx{—l .

This shows that the (k+ 1)th cut in problem AP,_;, generated right after
problem AP, is solved in iteration k, is a valid cut for the function Q,(x,-,).
This shows that the result is true when 7=1¢— 1. Therefore, by induction,
we have shown the lemma. O

Lemma 4.4. The following properties all hold:

(@) Q=0"'>0k, foranyk>1;
(b) Q,(X;-],O),)?_Qlf+l(xf—|,Cl),)ZQf(X,-],(O,),
for any k>1, 0,€Q,, x,-, and 2<t<T;

(c) Qr(xr—l)= Qltcﬂ (x-1)2 Qf (X+1),

for any k>1, x,-,, and 2<t<T.

Proof. These results are straightforward from Lemmas 4.1 and 4.3.
Thus, we omit the proofs for them. O

512 JOTA: VOL. 102, NO. 3, SEPTEMBER 1999

Remark 4.1. If we run infinitely many iterations of the CUPPS algo-
rithm, then with probability one, each particular sample @, for any i=
1,...,q.and t=2, ..., T, will be drawn infinitely many times.

Proof. In one iteration of the CUPPS algorithm, exactly one sample
is drawn from ,, for each =2, ..., T. For any given ¢ and /, with 2<¢<T
and 1 <i<gq,, the probability that the sample @, is drawn out in one iteration
is py>0. If we run infinitely many iterations of the algorithm, then by the
well-known Borel-Cantelli lemma (see e.g. Ref. 24), the probability that o,;
is drawn out for infinitely many times is one. This shows the result. O

Remark 4.2. Given any LP of the form min{c’x| 4x =5, x>0}, define
A to be the set of all possible right-hand side vectors b such that there exists
an optimal solution to the LP with be 4. Define a function f(b) over the
set 4, to be the optimal objective value of the LP with be%. Then, the
function f is continuous in the set #; i.e., for any given €>0 and be %,
there is a § >0 such that

1 f(B)—f(h)| <€, for any he # with |b—h| <46.

5. Limiting Behavior of the Algorithm

In this section, we analyze the limiting behavior of the CUPPS algorithm
and prove that the algorithm is convergent with probability one (wpl). First,
Lemma 5.1 provides bounds on certain convergent sequences. Then, we
prove convergence using a classical inductive proof. Lemma 5.2 demon-
strates the convergence of the solution value of problem APr_, to that of
problem LPr_,. Finally, Lemma 5.3 shows that the result is true, by induc-
tion, for all remaining stages. The heart of our proof is contained in Lemma
5.2, while the inductive proof in Lemma 5.3 is similar in style to that of
Lemma 5.2.

Lemma 5.1. For any given infinite subset # of 4 = {1,2,...}, if the
sequence of vectors {x%_, }ic» converges to some vector x7_, then for any
given €>0:

(a) there exists an integer v; such that, for any dual extreme point 7,
of problem LPr,

| A TBr— 1 (Xr— 1 — x7-1)| <€/6,foranyl,m>v;and,me S ; (43)

(b) there exists an integer vy, for every 1 <i<gr, such that, for any
I, m>v, and [, me #,

|Qr(x7-1, 0n) = Qr(x7-1, 0p)| <€/12; (44)

JOTA: VOL. 102, NO. 3, SEPTEMBER 1999 513

furthermore, let v, =max{vy, v, . . . , Uzg, ; forany /, m> v, and

l,mef, and 1<i<qr, we have

|Qr(xX7-1, ©n) = @r(x7-1, ©n)| <€/6; (45)
(c) there exists an integer v; such that, for any m> v, and me #,

|Qr—1(x7-2, ©F-1) = Qr—1 (x7-2, ©F-1)| <€/2. (46)
Proof.

(a) Assume that we are given a dual extreme point 7, of problem
LP7. By Assumption (A4), we can assume ||z7| < Y for some finite positive
number Y. The convergence of the sequence {X%_;}ics implies that the
sequence {Br_1x%_1 }xes is also convergent. Thus, for any given € >0, there
exists some integer v, such that, for any /, m> v, and /, me #, we have

| Br—1X7—1 = Br—1x7-1 || < €/6Y,
which implies that, ¥/, m> v, and [, me #,
| 7Br—1 (X7 = x7-1)| < llmr| * | Br-1X7—1— Br1x7-1 || <€/6.

This shows (a).

(b) By Remark 4.2, for any given @, the function Qr(xr—,, o7) is
continuous in xr—;. For any i with 1<i<gqr, consider the function
Qr(xr—1, @7;) at point x7_,. By the continuity of this function, for any
€>0, there exists 5,>0 such that, if |x7_;—x¥- | <&, then

|Qr(xr-1, 01) — Qr(x¥—1, 07:)| <€/12.

On the other hand, since {x%— }.c is convergent, then for a given &,, there
exists an integer vy, such that, for any m> vy, and me#, we have

Ix7-1—x7-1 1| <6
All this implies (44), which further implies that, VI, m>v,; and], me #,
|Qr(x7-1, @) — Qr(x7-1, ©1)|
<Qr(xr-1, @n) = Qr(x7-1, 1)l
+|0r(x7-1, 07) = Qr(x7-1, 01
<e€/12+€/12=¢€/6.

Let v,=max{va, V2, ..., Uy, }. Then, we have the result (45). This shows
(b).

(c) Similarly, the function Qr—, (x7-2, ®%-1) is continuous in x7_.
We can use a similar argument to prove (46). O

514 JOTA: VOL. 102, NO. 3, SEPTEMBER 1999

Lemma 5.2. For any given infinite subset & of /"' ={1,2,...}, if the
conditions below are satisfied:

(i) % =%, for some given 0%-,eQr_; for any ke.x';
(ii) the sequence of vectors {x'%-;}kex converges to some given vector
0
XT-2.

Then, there exists an infinite subset £ of " such that:

(a) the sequence {x%_ | Jkes CONVErges to some vector Xr-1;

(b) the sequence {Q%-i(x%_2, ®%-1)}res converges wpl to
QT—1(X%—2, 071)s

(c) the sequence {z5}res converges wpl to Qr(x7-1).

Proof. For any given infinite subset " of ./, suppose that the condi-
tions (i) and (ii) of the lemma are satisfied.

(a) In iteration ke, for given xr-,=x%_, and 0%_,=w%_,, the
algorithm solves problem AP;_, and gets the solution (x%_,,z%). By
Assumption (A4), the sequence {x%_, };cx is bounded. Thus, there must
exist an infinite subset # of 2 such that the sequence of vectors
{x%_1 }xes converges to some vector x7_,. This proves (a).

{(b) By Lemma 5.1, for given €>0, there exist integers v, v for
1 <i<gqr, and v; such that (43)-(46) hold. Define

vy=max{vs, Uz, ..., U}, v=max{v;, v2}.

Partition the set # into gr subsets .y, .#,,..., 5, such that, for i=
L,2,...,q9r, 0%=wx, Ykes,. In other words, % is the set of iteration
indices where the sample wr; is drawn out for @r. Since £ is infinite, by
Remark 4.1, in the iterations ke.#, any particular sample ®r,€Qr can be
drawn infinitely many times wpl, which means that every set .4, for
1 <i<gr, is infinite wpl.

For each 1<i<gr, let r; be the first element in % that is greater than
v. Now, consider the algorithm in iterations ry, ra, . .., r4. In iteration r;,
the algorithm solves problem LPr with xr_;=x%-, and wr=wy. This
generates the optimal dual solution #% of LPr. So, for 1 <i<gqy,

Or(x%-1, wri)=(757‘)T(0)T1_BT—13€Y7L—1)‘ 47

Let r be the first element in that is greater than max{ry,ry, ..., 7 }.
Clearly, before iteration r, the algorithm has already generated the dual
extreme point #% satisfying (47), Vi=1, 2, ..., gr. After problem LP, with
xr-1=x7-, and some @r, is solved in iteration r, we get the set 27 that
contains the dual extreme points of problem LPr generated so far. Then,

JOTA: VOL. 102, NO. 3, SEPTEMBER 1999 515

the (r+ 1)th cut for the function Qr(xr-,) is generated and added to prob-
lem APr_,. This cut is given by

zr+ (BT) xr1 2 @1, (48)

where the vector B7' and the scalar ar,., are defined in (31) with t=T

and k=r and in (33) with k£ =r; that is,

qr

ﬁrrﬂ = Z PTrB7T'—17l'T(er—l’ w7, D7), (49)
=1
qar T , r
are+1= Y, pr(@n) wr(xr-1, @m, D7), (50)

i=1

where

nr(Xr-1, @1, D7)

=argmax {n7(@p— Br-1X7-1)|nre D7} . (51)
It is easy to see that

e DT, Vi=1,2,...,4r.
Thus, (51) implies that, for each i=1,2,..., 47,

(nr(X7-1, 01, D7)) (@1~ Br-1x7-1)

> (7)) (@n— Br-1xX7-1). (52)
Now, let

s=max{vs, r}.

Let N be the first element in # that is greater than s. Consider any iteration
n, with n> N and ne #. In iteration n, the algorithm solves problem AP,-,
with xr_,=xr-; and @r-1= ©%-,, and gets the solution value
Q%1 (-3, ®¥—1) and the solution (x7-,, z7). Note that, since n>r, in
iteration n the cut (48) is already in problem APr-,. Hence, the solution
(xr-1, Zr) must satisfy (48), that is,

ZrZar,e1— ([3'1“+l)T-’(;‘—]

qr
=Y pol(rr(xr-1, @1, D7) (@n=Br-1x3-1)]
=1

qr
=Y prl(rr(Xr-1, @7, D7) (@1— Br_1x7-1)]

i=1

qr
+ Y prl(mr(xT-1, Om, D7) Br-y(Xr-1 = x7r-1)]. (53)
=1

516 JOTA: VOL. 102, NO. 3, SEPTEMBER 1999

For notational convenience, we define

qr
A=Y prl(rr(xr-1, 01, D7) Br-1 (x7-1=X7-1)],

i=1

ar
A=} pn [(”?’)TBT—I (xXF-1—x7-1)],

i=1

qr
As= Z prilQr(xt-1, 01) — Qr(¥7-1, @7)].
=1
By (47) and (52), Inequality (53) implies
qar
252 Y pal(rF) (@n—Br_ 1 xr-)]+ A

i=1

qr
=Y prl(#H) (@5— Br-1x%#-1)]+ A+ Az

i=1

qr
=Y pnQr(xXFt-1, o) +A 1+ A;
=1

i=

qr
=Y pnQOr(Xr-1, o)+ A+ A+ A

i=1
= QT(X';'_]) +A1 +A2+A3.
Inequality (54) implies
Q1 (¥r-2, 0F-1) = ch_1 X5 + 75

21 X1+ Qr(Xr- 1)+ A+ A+ A,

(54)

(55)

It is easy to see that xr.,=x7-, is a feasible solution to problem LPr_,,

with X7—2=x%_, and @7-;=®%_,, which means that
Qr—1(¥r-2, @F-1) ScT- 1 Xp-1 + Qr(Xr—1).
Combining (55) and (56), we get

Q';'—l(xnr—z, OF-1)2Q0r—1 (Xr—2, @F—1) + A+ Az + As.

On the other hand, by Lemma 4.4,
Q';'— 1 (¥r=2, 071 S Or—1 (¥r—2, ©®F-1).
From (57) and (58), it is not difficult to show that

Q%1 (X2, 0F-1) = Qr-1 (¥r-2, ©F-1)|
<|Ai|+]Az| +]As].

(56)

(57)

(58)

(59)

JOTA: VOL. 102, NO. 3, SEPTEMBER 1999 517
This gives

IQ';—l(X';*—z, 0F-1) = Qr-1(x7-2, ©F-1)|
<I10%-1 (Fr-2, 05-1) = Qr1 (¥p-2, 0F-1)|
+1Qr-1(x7-2, wg‘—l)—QT—l(xoT—z, wg‘—l)l
<|A] +]Az] +]As]
+|Qr-1(¥r-2, 0F-1) = Or—1 (552, @F-1)I. (60)

It is easy to see that
n>r>r>max{v;, v2}, i=1,2,...,9r.
Hence, by (43) and (45), we have
|A;| <€/6, |A;| <€/6, |A;| <€/6. (61)
Similarly, since #n>v;, by (46) we have
|Qr-1 (X2, ©F-1) = @r-1 (X7-2, @F-1)| <€/2.
Thus, (60) and (61) imply

IQ"T—x (Xr-2, w%—!)—Qr-1 (xor—z, wg‘—l)
<€/2+€/6+€/6+€/6=¢.
This means that the sequence {Q%,(x%_, ®%—1)}res converges to
Qr-1(x%-2, ®%-1). Since in the proof we have used the result that each .%
is infinite wpl, this convergence is wpl. This shows part (b) of the lemma.
(c) The convergence of the sequence {z%}.c.s can be proved similarly
as follows. The relations (55) and (58) imply
cr-1Xr—1+27< Qr 1 (¥7-2, ©F-1).
Then, by (56), we have
Zr< Qr(x"r— 1)-
This, together with (54), implies

|127— Qr(¥r-1) <|A1| +|Az| +|As] . (62)

518 JOTA: VOL. 102, NO. 3, SEPTEMBER 1999

By (44), we have
|Qr(xnr—1)" QT(xOT_,)I

= "i pr(Or(X7-1, 07:) — QT(XOT~1 , O71))
i=1

< 3 prlQr(h1, @)~ Qr($-1, o)

i=1

<e€/12<e/2.
This, together with (61) and (62), implies

|27 = Or(xr-) <125— Qr (Xr—)| + 1 Qr(Xr-1) — Qr (X7 1)
<|Ai| +]Az2| +|As} +€/2

<eé€E.

Hence, the sequence {z% }ic, converges wpl to Or(x7-1). This shows part
(¢c) of the lemma. O

Now, we demonstrate convergence of all other stages.

Lemma 5.3. For any given 7, 1 <7<T-2, and any given infinite sub-
set A" of & ={1,2,...}, if the conditions below are satisfied:

(i) o%=w? for some given 0’eQ,, for any ke X';
(ii) the sequence of vectors {x’i_, }kex converges to some given vector
0
Xr—1.

Then, there exists an infinite subset ¥ of % such that:

(a) the sequence {x*). s converges to some vector x2;

(b) the sequence {QF(xt_), w?)}ke » converges wpl to
Q:(x3-1, 03);

(c) the sequence {z%+1 }res converges wpl to O+, (x3).

Proof. We prove the lemma by induction on 7. When 7=T-1, this
lemma is exactly Lemma 5.1 and hence holds. Suppose that this lemma
holds when 7=¢. We need to prove that it also holds when t=r—1. The
proof technique is similar to that of Lemma 5.2. Thus, we provide only a
sketch of proof.

For any given infinite subset o of 4", suppose that, when 7=r—1,
conditions (i) and (ii} of the lemma are satisfied.

JOTA: VOL. 102, NO. 3, SEPTEMBER 1999 519

(a) In iteration ke, the algorithm solves problem AP,_, with
Xi—2=xt_,and w,—; = w?-,, and gets the solution (x*_,, z¥). By Assumption
(A4), the sequence {x:‘_l }kex is bounded. Thus, there must exist an infinite
subset # of & such that the sequence of vectors {x%_, };c» converges to
some vector x;—.

Partition the set £ into g, subsets £, £, ..., %, such that, for i=
L,2,...,q,

o=w,, VkeZ,.

In other words, .%; is the set of iteration indices where the sample o, is
drawn out for @,. By Remark 4.1, it is easy to see that every set %, for
1<i<gq,, is infinite wpl.

For each i=1,2,...,q,, by the induction assumption that the lemma
holds for =t and by the facts that o*=w,, for all ke %, and that the
sequence {xi_}rce [hence, the sequence {x{_,}ic»,] converges to some
vector x7_,, there must exist a subset # of £, foreach i=1,2,..., g, such
that the sequence {QF (x¥_,, ®,)}xes converges wpl to Q,(x7-, @,). Thus,
it is easy to show that, for any given € >0, there exists an integer u; such
that, wpl,

107 (™1, 00)— 0, (X0~ 1, @) <€/12, Ym>w,and meS,. (63)
Define

gt
s=U 4.
i=1]

Clearly, #<.#. Hence, the sequence {x—;}ics converges to xi—;. This
shows that part (a) of the lemma holds when 7=¢—1.

(b) First, using (63) and logic similar to that in the proof of Lemma
5.1, we can get the following results for any given € >0:

(i) there exists an integer v; such that, for any dual extreme point
(%, p;) of problem AP,,

|ZTB,— (xi-,—x™1)|<€/6, VI, m>v,andl, meSs; (64)
(ii) there exists an integer vy, for every 1<i<g,, such that
[Q: (X1, @y)— Qt(x?—l , 0y)| <€/12,

VI, m>vyand [, me s, (65)
furthermore, let vo=max{u;, us, ..., Uy, V21, V22, ..., Usg }; W
have

104(x1=1, @) — Qi (X1, @) < €/6,
Vim>v,and ,me s, and V1<i<q,; (66)

520 JOTA: VOL. 102, NO. 3, SEPTEMBER 1999

(iii) there exists an integer v; such that

Q-1 (x7-2, @7-1) = Qi1 (X2, @) 1) < €/2,

VYm>v; and meS£. (67)

Let us define v, r; for 1<i<gq,, r, 5, and N exactly in the same way as
in the proof of Lemma 5.2. Consider the algorithm in iterations r, and r.
Similar to (47) and (52), the following relations hold for each i=
1,2,...,4::

Oy, 0a) = (T) (@u— Bior X))+ (p) a1, (68)
(”t(x:—l s Wyiy «@;))T(wn'_ B,_1x1-4)+ (Pz(X;—l s WDy, @;))Ta:+l
2(71'?)T(wti"Bt—1x:—l) +(p:')Ta;+l~ (69)

Now, consider any iteration » and n> N and ne #. In iteration »n, the
algorithm solves problem AP,_,, with given x,-»=x/-, and @,-,= Y
and gets the solution value Q7_,(x/-2, @'-,) and the solution (x_, z7).
Since n>r, in iteration # the (r+ 1)th cut, with coefficients 8;*' and a,,+,
defined by (31) and (32), is already in problem AP,_;. Hence, the solution
(x7-1, z/) must satisfy that cut; that is,

Bz a1 = (BN

4t
= Z Pul(me(xi-1, @u, @;))T(a’n‘_Bt—lx;‘—])
i=1
(@) p(xi-1, 04, DV)].

By (68) and (69), we can get a result similar to (54) as follows:
220 (Xi-1) + A+ A+ A, (70)

where

[
A= Z Pu(m:(xi—1, @y, 9;))TB:-| (xi-1—Xi-1),
i=1

g
A=Y pu(A?) Boo i (X = Xi-1),

i=1

qt ~
A=Y pulQV(Xi—1, 0u) = Qi(Xi-1, @4)].
i=1

JOTA: VOL. 102, NO. 3, SEPTEMBER 1999 521

Using the same argument as in the proof of Lemma 5.2, we can then show
the following result that is similar to (60):

|Q7—1(X?—2, w71)~ Qi1 (x{-2, 07—)]

<|Qio1 (K-2, ©0-1) = Qi1 (x-2, 7)) + A1 +([Az] +|As]. (T1)
By (64) and (66), we have

|Ai|<€/6, |A2l<€/6, |A3|<€/6. (72)
Similarly, by (67), we have

|Qi-1(xi-2, @)-1) = Q-1 (X-2, ©F-)| <€/2.
Thus, (71) implies

1071-1(¥i=2, @0-1) = Qi1 (-2, @0-1)| <€.

This means that the sequence {Q% ,(x*_,, @%-))}tes converges to
Q,-1(x%_,, ®2_,). Since in the proof we have used some results that are true
wpl, this convergence is wpl. This shows that part (b) of the lemma holds
when 7=¢—1.

(c) The convergence of the sequence {z¥ };, can be proved similarly
to part (c) of Lemma 5.2. We do not give any details here.

Therefore, by induction, we have proved the lemma. U

Theorem 5.1. The sequence of solution values {Q’f }kewn of problem
AP, converges wpl to the optimal value Q,.

Proof. In the approximated problem AP,, we can view the constraint
Ayx1=by as Ayx\= Boxo, with w,—bl xo=0, and any given B,; and
we can view the value Q1 as the function Q% (xo, @,). Thus, when =1 and
X =N, the conditions (i) and (ii) of Lemma 5.3 are certainly satisfied.
Applying Lemma 5.3, we have that there exists an infinite subset £ of A",
such that the sequence {Q, }kes converges wpl to O, (b1 ,0=0,.

On the other hand, by Lemma 4.4, the sequence {Q, }ken is nondecreas-
ing. We know that, if a monotone sequence has a convergent subsequence
that converges to some value, then the whole sequence must converge to
that value. Therefore, the sequence {Ql }xen converges wpl to Q. a

Theorem 5.2. Any accumulation point of the sequence {x} }sc.+ is an
optimal solution wpl of problem LP,.

Proof. To prove this, we need to show only that any convergent subse-
quence of the sequence {x} }i.+ converges wpl to an optimal solution of
problem LP,.

522 JOTA: VOL. 102, NO. 3, SEPTEMBER 1999

Consider a subsequence ¢ of 4" such that the sequence {x} },c. con-
verges to some vector xi. With the identification bo=w,— Byxo as in the
proof of Theorem 5.1, applying Lemma 5.3, we can show that there exists
a subsequence . of &', such that the sequence {25} kesr converges wpl to
0. (x?).

On the other hand, we know that

O =clxk + 2%, Yke N
Thus,
=0F—cTx%, Vkew. (73)

Now, in the set ", we take the limit on both sides of (73). Since the sequence
{x}}rex converges to x}, and since by Theorem 5.1 the sequence
{Qf }rex converges wpl to Q,, then the sequence {z5 }i.x, converges wpl
to Q1 —cix}. We know that, if a convergent sequence has a subsequence
that converges to some value, then the whole sequence converges to that
value, so the following must be true:

0:(x})=01~cix].
Hence,
Qir=cixi+ 0, (x}). (74)

Since x} is a feasible solution to problem LP;, for any ke, then by
Assumption (A4), the limit x} of the sequence {x} };c» must be a feasible
solution to problem LP,. Therefore, (74) implies that the solution x{ is
actually optimal to problem LP,. This shows the theorem. O

6. Conclusions

In this paper, we have proposed the CUPPS algorithm, a sampling-
based algorithm, for solving multistage stochastic linear programs. We have
proved that the algorithm is convergent with probability one.

We believe that multistage stochastic linear programs are much harder
than two-stage ones. It is unlikely that a scenario-based algorithm is capable
of solving a multistage problem with the sample space in each stage contain-
ing 1000 samples. For such a problem with T as small as 3, there are 10°
scenarios. Standard methods, such as the diagonal quadratic approximation
method of Mulvey and Ruszczynski (Ref. 6) and augmented Lagrangian
decomposition method of Rosa and Ruszczynski (Ref. 7), that reformulate
the stochastic problems as a deterministic equivalence, are certainly incap-
able of dealing with such a problem. We also doubt that the nested Benders

JOTA: VOL. 102, NO. 3, SEPTEMBER 1999 523

decomposition algorithm of Birge (Ref. 9) can handle such a problem,
because one iteration alone involves solving at least 3000 linear programs.
We believe that sampling-based methods that require only to solve a small
number of linear programs in each iteration are more likely to be successful
in solving multistage stochastic linear programs involving a large number
of samples in each stage. The CUPPS algorithm proposed in this paper is
the first such method that is convergent for multistage stochastic linear
programs.

References

1.

10.

11.

PoweLL, W. B., JAILLET, P., and ODONI, A., Stochastic and Dynamic Networks
and Routing, Handbook in Operations Research and Management Science, Vol-
ume on Networks, Edited by C. Monma, T. Magnanti, and M. Ball, North
Holland, Amsterdam, Holland, pp. 141-295, 1995.

. Escupero, L. F., KaMEsaMm, P. V., KING, A. J., and WETs, R., Production

Planning via Scenario Modeling, Annals of Operations Research, Vol. 43,
pp. 311-335, 1993.

. MuLVEY, J. M., and VLaDmMIROU, H., Stochastic Network Programming for

Financial Planning Problems, Management Science, Vol. 38, pp. 1642-1664, 1992,

. BIRGE, J. R., Stochastic Programming Computation and Applications, INFORMS

Journal on Computing, Vol. 9, pp. 111-133, 1997.

. BIRGE, J. R, and MULVEY, J. M., Stochastic Programming in Industrial Engin-

eering, Technical Report, Department of Industrial and Operations Engineering,
University of Michigan, 1996.

. MuLvEey, J. M., and Ruszczynskli, A., A Diagonal Quadratic Approximation

Method for Large-Scale Linear Programs, Operations Research Letters, Vol. 12,
pp. 205-215, 1991.

. Rosa, C., and Ruszczynski, A., On Augmented Lagrangian Decomposition

Methods for Multistage Stochastic Programs, Annals of Operations Research,
Vol. 64, pp. 289-309, 1996.

. VAN SLYKE, R., and WETs, R., L-Shaped Linear Programs with Applications

to Optimal Control and Stochastic Programming, SIAM Journal on Applied
Mathematics, Vol. 17, pp. 638-663, 1969.

. BIRGE, J. R., Decomposition and Partitioning Technigues for Multistage Stochas-

tic Linear Programs, Operations Research, Vol. 33, pp. 989-1007, 1985.
RoOCKAFELLAR, T. R., and WETs, R., Scenarios and Policy Aggregation in Opti-
mization under Uncertainty, Mathematics of Operations Research, Vol. 16,
pp. 119-147, 1991.

GupraL, A. M., and BazHENOV, L. G., 4 Stochastic Method of Linearization,
Cybernetics, Vol. 8, pp. 482-484, 1972

. ERMOLIEV, Y., Stochastic Quasigradient Methods and Their Application to Sys-

tem Optimization, Stochastics, Vol. 9, pp. 1-36, 1983.

524

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

JOTA: VOL. 102, NO. 3, SEPTEMBER 1999

Curiony, J. C.,, and CoHEN, G., Decomposition/ Coordination Algorithms in
Stochastic Optimization, SIAM Journal on Control and Optimization, Vol. 28,
pp- 1372-1403, 1990.

HiGLE, J. L., and SEN, S., Stochastic Decomposition: An Algorithm for Two-
Stage Linear Programs with Recourse, Mathematics of Operations Research,
Vol. 16, pp. 650-669, 1991,

ROBINSON, S. M., Analysis of Sample Path Optimization, Mathematics of Opera-
tions Research, Vol. 21, pp. 1-528, 1996.

CHEUNG, R. K. M., and PoweLL, W. B., 4 Stochastic Hybrid Approximation
Procedure, with an Application to Dynamic Networks, Technical Report SOR-
94-02, Department of Civil Engineering and Operations Research, Princeton
University, 1994,

WETS, R., Programming under Uncertainty: The Solution Set, SIAM Journal on
Applied Mathematics, Vol. 14, pp. 1143-1151, 1966.

WITTROCK, R. J., Advances in a Nested Decomposition Algorithm for Solving
Staircase Linear Programs, Technical Report SOL-83-2, Stanford University,
1983,

GassmaN, H. 1., MSLIP: A Computer Code for the Multistage Stochastic Linear
Programming Problem, Mathematical Programming, Vol. 47, pp. 407-423, 1990.
PerREIRA, M. V. F,, and PinTO, L. M. V. G., Multistage Stochastic Optimization
Applied to Energy Planning, Mathematical Programming, Vol. 52, pp. 359-375,
1991.

INFANGER, G., Planning under Uncertainty: Solving Large-Scale Stochastic Lin-
ear Programs, Boyd and Fraser, Scientific Press Series, New York, New York,
1994,

MoRrTON, D. P., An Enhanced Decomposition Algorithm for Multistage Stochastic
Hydroelectric Scheduling, Annals of Operations Research, Vol. 64, pp. 211-235,
1996.

INFANGER, G., and MorTon, D. P., Cut Sharing for Multistage Stochastic
Linear Programs with Interstate Dependency, Mathematical Programming, Vol.
75, pp. 241-256, 1996.

Cuung, K. L., 4 Course in Probability Theory, Academic Press, New York,
New York, 1974.

