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RESEARCH ARTICLE

Convergent Evolution of Hemoglobin

Function in High-Altitude Andean Waterfowl

Involves Limited Parallelism at the Molecular

Sequence Level

Chandrasekhar Natarajan1, Joana Projecto-Garcia1, Hideaki Moriyama1, Roy E. Weber2,

Violeta Muñoz-Fuentes3,4, Andy J. Green3, Cecilia Kopuchian5, Pablo L. Tubaro6,

Luis Alza7, Mariana Bulgarella7, MatthewM. Smith7, Robert E. Wilson7, Angela Fago2,

Kevin G. McCracken7,8, Jay F. Storz1*

1 School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America,

2 Department of Bioscience, Zoophysiology, Aarhus University, Aarhus, Denmark, 3 Estación Biológica de
Doñana-CSIC, Sevilla, Spain, 4 Conservation Genetics Group, Senckenberg Research Institute and Natural
History Museum Frankfurt, Gelnhausen, Germany, 5 Centro de Ecología Aplicada del Litoral (CECOAL),

Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET), Corrientes, Argentina, 6 División
Ornitología, Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’ (MACN-CONICET), Buenos

Aires, Argentina, 7 Institute of Arctic Biology and University of Alaska Museum, University of Alaska
Fairbanks, Fairbanks, Alaska, United States of America, 8 Department of Biology and Department of Marine
Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Coral

Gables, Florida, United States of America

* jstorz2@unl.edu

Abstract

A fundamental question in evolutionary genetics concerns the extent to which adaptive phe-

notypic convergence is attributable to convergent or parallel changes at the molecular

sequence level. Here we report a comparative analysis of hemoglobin (Hb) function in eight

phylogenetically replicated pairs of high- and low-altitude waterfowl taxa to test for conver-

gence in the oxygenation properties of Hb, and to assess the extent to which convergence

in biochemical phenotype is attributable to repeated amino acid replacements. Functional

experiments on native Hb variants and protein engineering experiments based on site-

directed mutagenesis revealed the phenotypic effects of specific amino acid replacements

that were responsible for convergent increases in Hb-O2 affinity in multiple high-altitude

taxa. In six of the eight taxon pairs, high-altitude taxa evolved derived increases in Hb-O2

affinity that were caused by a combination of unique replacements, parallel replacements

(involving identical-by-state variants with independent mutational origins in different line-

ages), and collateral replacements (involving shared, identical-by-descent variants derived

via introgressive hybridization). In genome scans of nucleotide differentiation involving

high- and low-altitude populations of three separate species, function-altering amino acid

polymorphisms in the globin genes emerged as highly significant outliers, providing inde-

pendent evidence for adaptive divergence in Hb function. The experimental results demon-

strate that convergent changes in protein function can occur through multiple historical

paths, and can involve multiple possible mutations. Most cases of convergence in Hb
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function did not involve parallel substitutions and most parallel substitutions did not affect

Hb-O2 affinity, indicating that the repeatability of phenotypic evolution does not require par-

allelism at the molecular level.

Author Summary

The convergent evolution of similar traits in different species could be due to repeated

changes at the genetic level or different changes that produce the same phenotypic effect.

To investigate the extent to which convergence in phenotype is caused by repeated muta-

tions, we investigated the molecular basis of convergent changes in the oxygenation prop-

erties of hemoglobin (Hb) in eight pairs of high- and low-altitude waterfowl taxa from the

Andes. The results revealed that convergent increases in Hb-O2 affinity in highland taxa

involved a combination of unique and repeated amino acid replacements. However, con-

vergent changes in Hb function generally did not involve parallel substitutions, indicating

that repeatability in the evolution of protein function does not require repeatability at the

sequence level.

Introduction

When multiple species evolve similar changes in phenotype in response to a shared environ-

mental challenge, it suggests that the convergently evolved character state is adaptive under the

changed conditions and that it evolved under the influence of directional selection. A key ques-

tion in evolutionary genetics concerns the extent to which such cases of phenotypic conver-

gence are caused by convergent or parallel substitutions in the underlying genes. This question

has important implications for understanding the inherent repeatability of evolution at the

molecular level [1–9].

In principle, the convergent evolution of a given phenotype may be attributable to (i) unique

substitutions, (ii) parallel substitutions (where identical-by-state alleles with independent

mutational origins fix independently in different lineages), or (iii) collateral substitutions

(where shared, identical-by-descent alleles fix independently in different lineages)[8]. In the

last case, allele-sharing between species may be due to the retention of ancestral polymorphism

or a history of introgressive hybridization—either way, the function-altering alleles that con-

tribute to phenotypic convergence do not have independent mutational origins.

One especially powerful means of assessing the pervasiveness of repeated evolution at the

sequence level is to exploit natural experiments where phylogenetically replicated changes in

protein function have evolved in multiple taxa as an adaptive response to a shared environ-

mental challenge. For example, there are good reasons to expect that vertebrate species living at

very high altitudes will have convergently evolved hemoglobins (Hbs) with increased O2-bind-

ing affinities [10,11]. Under severe hypoxia, an increased blood-O2 affinity can help ensure tis-

sue O2 supply by safeguarding arterial O2 saturation while simultaneously maintaining the

pressure gradient that drives O2 diffusion from the peripheral capillaries to the cells of respiring

tissues [12–18]. Evolutionary adjustments in blood-O2 affinity often stem directly from struc-

tural changes in the tetrameric (α2β2) Hb protein. Genetically based changes in the oxygen-

ation properties of Hb can be brought about by amino acid mutations that increase intrinsic

Hb-O2 affinity and/or mutations that suppress the sensitivity of Hb to the inhibitory effects of

allosteric co-factors in the red blood cell [19–22] (S1 Fig).

Molecular Basis of Convergence in Hemoglobin Function
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Derived increases in Hb-O2 affinity have been documented in some high-altitude birds and

mammals [23–30], but other comparative studies have not revealed consistent trends [31–34].

Additional comparisons between conspecific populations and closely related species are needed

to assess the validity of empirical generalizations about the relationship between Hb-O2 affinity

and native elevation in vertebrates.

Previous surveys of sequence variation in the globin genes of Andean waterfowl docu-

mented repeated amino acid substitutions in the major Hb isoforms of multiple high-altitude

taxa [35,36], but the functional effects of the substitutions were not assessed so it was not

known whether the repeated changes contributed to convergent changes in the oxygenation

properties of Hb. Here we report a comparative analysis of Hb function in eight phylogeneti-

cally replicated pairs of high- and low-altitude waterfowl taxa to test for convergent changes in

biochemical phenotype, and to assess the extent to which convergent changes in phenotype are

attributable to repeated amino acid substitutions. We measured the functional properties of

native Hb variants in each population and species, and we used protein engineering experi-

ments based on site-directed mutagenesis to measure the functional effects of repeated substi-

tutions that were implicated in convergent increases in Hb-O2 affinity in high-altitude taxa. In

six of the eight taxon pairs, the high-altitude taxa evolved derived increases in Hb-O2 affinity

that were caused by a combination of unique, parallel, and collateral amino acid replacements.

In comparisons involving high- and low-altitude populations of three different species, func-

tion-altering amino acid polymorphisms emerged as highly significant outliers in genome

scans of nucleotide differentiation, with derived, affinity-enhancing mutations present at high

frequency in the high-altitude populations. In combination with results of the functional exper-

iments, the population genomic analyses provide an independent line of evidence that the

observed changes in Hb function are attributable to positive directional selection.

Results/Discussion

We examined differences in the structural and functional properties of the two adult-expressed

Hb isoforms (HbA and HbD) from eight pairs of high-and low-altitude sister taxa. Two of the

taxon pairs include sister species with contrasting elevational ranges: Andean goose (Chloe-

phaga melanoptera)/Orinoco goose (Neochen jubata) and Puna teal (Anas puna)/silver teal (A.

versicolor). The remaining six taxon pairs include high- and low-altitude populations of the

same species: ruddy ducks (Oxyura jamaicensis), torrent ducks (Merganetta armata), crested

ducks (Lophonetta specularioides), cinnamon teal (Anas cyanoptera), yellow-billed pintails

(Anas georgica), and speckled teal (Anas flavirostris). In addition to the eight high- and low-

altitude taxon pairs from the Andes, we also examined Hb function in a pair of high- and low-

altitude sister species from Africa: the Abyssinian blue-winged goose (Cyanochen cyanoptera),

a high-altitude species endemic to the Ethiopian Plateau, and Hartlaub’s duck (Pteronetta har-

tlaubi), a strictly lowland species [37]. We included these species in the analysis because their

Hbs are distinguished by two amino acid replacements that are shared with multiple Andean

taxa [35], so experimental tests of Hb function provide an additional opportunity to measure

the functional effects of repeated substitutions.

Hb Isoform Composition

To characterize the red cell Hb isoform composition of each species, we analyzed blood sam-

ples from individual specimens using a combination of isoelectric focusing (IEF) and tandem

mass spectrometry (MS/MS). Consistent with data from other anseriform birds [38,39], the

waterfowl species that we examined expressed two distinct isoforms, HbA (pI = 8.0–8.2) and

HbD (pI = 7.0–7.2) with the major HbA isoform comprising ~70–80% of total Hb (S1 Table).

Molecular Basis of Convergence in Hemoglobin Function
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The major HbA isoform incorporates α-chain products of the αA-globin gene and the minor

HbD isoform incorporates products of the tandemly linked αD-globin gene; both isoforms

incorporate β-chain products of the same βA-globin gene [38,39]. Since avian HbD has a con-

sistently higher O2-affinity than HbA in all avian taxa examined to date [28,30,32,39], upregu-

lating HbD expression could be expected to provide an efficient means of increasing blood-O2

affinity in response to environmental hypoxia. However, it appears that high-altitude Andean

waterfowl do not avail themselves of this option, as we observed no difference in relative iso-

form abundance between pairs of high- and low-altitude sister taxa (Wilcoxon signed-rank

test,W = 12, N = 7 pairwise comparisons, P>0.05; S1 Table). MS/MS analysis confirmed that

subunits of the two adult Hb isoforms represent products of the adult-expressed αA-, αD-, and

βA-globin genes; products of the embryonic α- and β-type globin genes were not detected.

Hbs of High- and Low-Altitude Taxa are Distinguished by a Combination
of Unique and Repeated Amino Acid Replacements

By combining αD-globin sequences with previously published αA- and βA-globin sequences for

the same individual specimens, we identified all amino acid differences that distinguish the

HbA and HbD isoforms of each pair of high- and low-altitude taxa (Fig 1). Full alignments of

αA-, αD-, and βA-globin amino acid sequences are shown in S2 Fig, and the direction of changes

in character state at all substituted sites are shown in S3–S5 Figs. Comparisons of the South

American species revealed repeated amino acid replacements at five sites that distinguish the

HbA isoforms of high- and low-altitude sister taxa, including repeated replacements at one site

in the αA-globin gene (α77Ala!Thr in Andean goose, torrent duck, Puna teal, and speckled

teal) and four sites in the βA-globin gene (β13Gly!Ser in ruddy ducks and speckled teal,

β94Asp!Glu in crested duck and Puna teal, and both β116Ala!Ser and β133Leu!Met in

yellow-billed pintail and speckled teal)(Fig 1).

The derived pair of βA-globin amino acid variants ‘116Ser-133Met’ that are shared between

sympatric high-altitude populations of yellow-billed pintails and speckled teal are clearly iden-

tical-by-descent (S6 Fig). Independent evidence for hybridization between the two species

[40,41] suggests that the ‘116Ser-133Met’ βA-globin allele in high-altitude yellow-billed pintails

was derived via introgression from high-altitude speckled teals. The same is true for a shared

β13(Gly/Ser) polymorphism, although the derived Ser variant is present at low-frequency in

yellow-billed pintails. The repeated amino acid changes at βA-globin sites 13, 116 and 133

therefore represent collateral replacements, rather than true parallel replacements, as they do

not have independent mutational origins in each species.

Three of the eight pairs of high- and low-altitude taxa had structurally distinct HbD iso-

forms due to 1–2 amino acid substitutions in the αD-globin gene (Fig 1). Repeated substitutions

at αD96 occurred in Orinoco goose (Val!Ala) and silver teal (Ala!Val), but the direction of

the change in character-state was different in each case (S5 Fig). In both interspecific compari-

sons (Andean goose vs. Orinoco goose, and Puna teal vs. silver teal), αD96Ala is associated with

a higher HbD O2-affinity. However, the individual effects of amino acid replacements at αD96

could not be isolated in either comparison because of potentially confounding replacements in

the β-chain (β86Ala!Ser in Andean goose, and β94Asp!Glu in Puna teal)(Fig 1).

Convergent Increases in Hb-O2 Affinity in High-Altitude Taxa

Wemeasured the O2-binding properties of purified HbA and HbD variants from each taxon

and we estimated P50 (the PO2 at which Hb is half-saturated with O2) as an index of Hb-O2

affinity. We focus primarily on measures of Hb-O2 affinity in the presence of Cl- ions and IHP

(P50(KCl+IHP)), as this is the experimental treatment that is most relevant to in vivo conditions

Molecular Basis of Convergence in Hemoglobin Function
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in avian red blood cells. The experiments revealed that O2-affinities of HbD were consistently

higher (P50 values were lower; S2 Table) than those of HbA, consistent with data from other

birds [28,30,32,39].

Comparisons between high- and low-altitude sister taxa revealed appreciable differences in

the O2-affinity of the major HbA isoform in six of eight cases, and in each of these six cases the

HbA of the high-altitude taxon exhibited the higher O2-affinity (i.e., lower P50)(Fig 2A; S2

Table). The only two taxon pairs that did not exhibit appreciable differences in Hb-O2 affinity

were those involving conspecific populations of ruddy ducks and torrent ducks (Fig 2A; S2

Table). In contrast to the altitudinal trend for HbA, O2-affinities of the minor HbD isoform were

not consistently higher in high-altitude taxa (Fig 2B). However, there were three taxon pairs in

which O2-affinities of HbA and HbD were both markedly higher in the high-altitude taxa than

in the corresponding low-altitude taxa (crested duck, Puna teal, and speckled teal), a pattern that

implicates causative mutations in the β-chain subunit, which is shared by both isoforms.

Identification of Causal Mutations

Comparisons involving purified Hb variants from birds with known genotypes provide a

means of identifying the specific amino acid mutations that are responsible for evolved changes

in Hb-O2 affinity. Below we describe the functional effects of unique and repeated replace-

ments, and we report model-based inferences about the structural mechanisms responsible for

the observed changes in Hb-O2 affinity.

Fig 1. Amino acid differences that distinguish the HbA and HbD isoforms of each pair of high- and low-altitude sister taxa.Derived (non-ancestral)
amino acids are shown in red lettering. Subunits of the major HbA isoform are encoded by the αA- and βA-globin genes, whereas those of the minor HbD
isoform are encoded by the αD- and βA-globin genes. For each pair of high- and low-altitude sister taxa, ‘+’ indicates that HbA O2-affinity in the presence of
allosteric effectors is significantly higher in the high-altitude taxon, and ‘++’ indicates that the O2-affinities of HbA and HbD are both significantly higher in the
high-altitude taxon. Due to allelic polymorphism in the βA-globin gene, alternative HbA and HbD variants were present in the low-altitude sample of ruddy
ducks (‘low1’ and ‘low2’) and in the high-altitude sample of speckled teal (‘high1’ and ‘high2’). The basis for inferring the direction of character-state change
for each amino acid site is explained in S3 Fig (αA), S4 Fig (βA), and S5 Fig (αD).

doi:10.1371/journal.pgen.1005681.g001

Molecular Basis of Convergence in Hemoglobin Function
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Fig 2. Convergent evolution of increased Hb-O2 affinities in high-altitude Andean waterfowl. (A) Plot of P50(KCl+IHP) (mean ± SEM)(an inverse measure
of Hb-O2 affinity in the presence of allosteric effectors) for the major HbA isoform in eight pairs of high- and low-altitude sister taxa. Data points that fall below
the diagonal denote cases in which the high-altitude member of a given taxon pair possesses a higher Hb-O2 affinity (lower P50). (B) Plot of P50(KCl+IHP) for the
minor HbD isoform in the same eight taxon pairs.

doi:10.1371/journal.pgen.1005681.g002

Molecular Basis of Convergence in Hemoglobin Function
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Unique substitutions. A single amino acid replacement (αA9Asn!Ser) distinguishes the

HbA variants of high- and low-altitude cinnamon teal, and is associated with a 22% reduction

in P50(KCl+IHP) (an increase in O2 affinity) in the high-altitude αA9Ser Hb variant. This differ-

ence is exclusively attributable to a change in intrinsic O2-affinity, as the alternative HbA vari-

ants exhibit no difference in anion sensitivity (S7 Fig). Homology modeling revealed the

apparent structural basis of the derived increase in Hb-O2 affinity: the replacement is predicted

to eliminate the hydrogen bond between the δ2-nitrogen of αA9Asn and the γ-oxygen of

αA124Ser in deoxy (T-state) Hb—the same bond is not present in the R-state conformation

(Fig 3). This change is predicted to destabilize the low-affinity T-state quaternary structure,

thereby shifting the allosteric equilibrium in favor of the high-affinity R-state.

HbA isoforms of the high-altitude Andean goose and the low-altitude Orinoco goose differ

at three sites in the αA-chain and one in the β-chain (Fig 1). The independent or joint effects of

these four amino acid replacements account for a 22% reduction in P50(KCl+IHP) of Andean

goose HbA relative to that of Orinoco goose. Similar to the case with the cinnamon teal HbA

variants, this difference is attributable to a change in intrinsic O2-affinity (S8 Fig). One of the

α
A-globin substitutions in Andean goose is shared with several other high-altitude taxa

(αA77Ala!Thr), but for reasons described below, this substitution seems unlikely to contrib-

ute to the observed species difference in Hb-O2 affinity. Instead, homology-modeling suggests

that the unique β86Ala!Ser replacement is primarily responsible for the increased O2-affinity

of Andean goose Hb due to the formation of a helix-capping hydrogen bond between the car-

bonyl oxygen of β86Ser and the γ-oxygen of β89Ser (Fig 4)–a contact that stabilizes the F-helix.

Mutations at β86 in human Hb also increase intrinsic O2-affinity by perturbing the tertiary

structure of the F-helix and FG corner, resulting in a displacement of residues that contact the

β-heme porphyrin ring [42,43].

Repeated substitutions that have no apparent effects on oxygenation properties of Hb.

An examination of the two taxon pairs that exhibited no difference in HbA O2-affinity suggests

that it may be possible to rule out causative effects for two of the five repeated substitutions.

HbA variants of high- and low-altitude torrent ducks differ at a single site, αA77, which makes

for an especially clean comparison. High-altitude torrent ducks share the same αA77Ala!Thr

replacement with three other high-altitude Andean taxa (Andean goose, Puna teal, and speck-

led teal). This amino acid replacement has no effect on Hb-O2 affinity in torrent ducks (S2

Table), suggesting that the same replacement is unlikely to contribute to net changes in Hb-O2

affinity in the other species. Consistent with these results, a recent experimental study of Hb

polymorphism in rufous-collared sparrows (Zonotrichia capensis) [32] documented that an

Ala!Ser mutation at αA77 had no discernible effect on oxygenation properties of Hb (this

mutation, like the αA77Ala!Thr mutation at the same site in waterfowl Hb, involves the

replacement of nonpolar Ala for a residue with an uncharged, polar sidechain). Structural con-

siderations suggest no reason to expect the αA77Ala!Thr mutation to affect O2-binding [32],

but we cannot rule out the possibility that the mutation has different effects on the genetic

backgrounds of different species.

Similar to the case of the torrent ducks, HbA and HbD variants of high- and low-altitude

ruddy ducks differ at three β-chain sites (Fig 1), and a replacement at one of these sites

(β13Gly!Ser) in low-altitude ruddy ducks is shared with high-altitude speckled teal. Since this

amino acid replacement has no discernible net effect on the O2 affinities of HbA or HbD in

ruddy ducks, it seems unlikely that the same replacement contributes to changes in Hb-O2

affinity in other species (although, again, we cannot rule out the possibility that the same muta-

tion produces different effects on the genetic backgrounds of different species).

Interestingly, the parallel replacements at αA77 and β13 are both caused by nonsynonymous

transition mutations at CpG dinucleotides. Since rates of transition mutation at CpG sites are

Molecular Basis of Convergence in Hemoglobin Function
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roughly an order of magnitude higher than those at other nucleotide sites in mammalian and

avian genomes [44–47], the recurrent changes at αA77 and β13 suggest that patterns of parallel

substitution may be strongly influenced by mutation bias. Recurrent changes at both sites are

also observed in a broader taxonomic sample of waterfowl taxa (S3 and S4 Figs).

Parallel replacements that contribute to convergence in Hb function. Parallel

β94Asp!Glu replacements that occurred in high-altitude crested ducks and Puna teal are

associated with pronounced increases in the O2-affinities of both HbA and HbD relative to var-

iants of the same isoforms that predominate in low-altitude sister taxa (S9 and S10 Figs; S2

Table), although there is potentially confounding amino acid variation in the αA-globin gene

(Fig 1). In the HbA isoforms of both species, β94Asp!Glu is associated with a slightly higher

intrinsic O2-affinity (S9A and S9B Fig, S10A and S10B Fig), and in both HbA and HbD it is

generally associated with a suppressed anion sensitivity (S9C and S9D Fig, S10C and S10D

Fig). With regard to overall effects on Hb-O2 affinity, the β94Asp!Glu mutation appears to

have similar affinity-enhancing effects on different genetic backgrounds, as revealed by com-

parisons between the same isoforms in different species (orthologous comparisons), and com-

parisons between different isoforms in the same and in different species (paralogous

comparisons). The high- and low-altitude HbA variants of crested ducks exhibited a 1.5-fold

difference in P50(KCl+IHP) (25.14 vs. 37.98 torr, respectively), as did the HbA isoforms of Puna

teal and silver teal (27.32 vs. 39.66 torr, respectively). The fact that the differences in P50 were

Fig 3. Homology model of cinnamon teal HbA showing the location of a single α-chain amino acid replacement (αA9Asn!Ser) that distinguishes
high- and low-altitude variants.Replacement of the ancestral Asn with Ser at αA9 eliminates an intrasubunit hydrogen bond (shown in magenta) between
the δ2-nitrogen of αA9Asn and the γ-oxygen of αA124Ser in deoxyHb. The loss of this noncovalent bond is predicted to destabilize the low-affinity T-state
quaternary structure, thereby shifting the allosteric equilibrium in favor of the high-affinity R-state.

doi:10.1371/journal.pgen.1005681.g003
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identical in magnitude in both pairwise comparisons suggests that the shared β94Asp!Glu

replacement in high-altitude crested ducks and Puna teal accounts for all or most of the

observed difference in HbA O2-affinity, and that the additional α
A5Ala!Thr replacement in

high-altitude crested ducks is less consequential. Moreover, the comparison between HbD vari-

ants of crested ducks cleanly isolates the effect of the β94Asp!Glu mutation, as there is no

confounding variation in the αD-globin gene (Fig 1). This single amino acid replacement pro-

duced a 1.9-fold reduction in P50(KCl+IHP) (20.35 vs. 10.51 torr; S2 Table). The β94Asp!Glu

mutation is therefore associated with significant increases in Hb-O2 affinity on all backgrounds

in which it occurs.

In human Hb, mutational replacements of β94Asp increase O2-affinity and greatly diminish

the pH-dependence of O2-binding (Bohr effect) by disrupting the salt bridge between the car-

boxyl group of β94Asp and the imidazole group of the C-terminal β146His of the same β sub-

unit [48–50]. Elimination of this intra-chain salt bridge destabilizes the low-affinity T-state

conformation of the Hb tetramer, thereby increasing Hb-O2 affinity by shifting the allosteric

equilibrium in favor of the high-affinity R-state. Disruption of the electrostatic interaction

between β94 and β146 greatly diminishes the Bohr effect by attenuating the charge stabilization

Fig 4. HbA isoforms of the high-altitude Andean goose and the low-altitude Orinoco goose are distinguished by four amino acid substitutions, one
of which (β86Ala!Ser) appears to be mainly responsible for the observed species difference in intrinsic O2-affinity.Replacing the ancestral Ala with
Ser at β86 (the 2nd residue of the F-helix) results in the addition of a helix-capping hydrogen bond (shown in magenta) between the carbonyl oxygen of
β86Ser and the γ-oxygen of β89Ser. The resultant stabilization of the F-helix is predicted to increase O2-affinity via subtle displacements of covalent and
noncovalent β-heme contacts.

doi:10.1371/journal.pgen.1005681.g004
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of β146His [51]. In human Hb, the β94Asp!Glu mutation diminishes the Bohr effect by

~50%, and crystallographic analysis confirmed that the salt bridge is not formed between

β94Glu and β146His [50].

Consistent with data for human β94 Hb mutants, the β94Asp!Glu mutation in crested

ducks and Puna teal produces a significant increase in O2-affinity. However, in contrast to the

case with the human Hb mutants, additional experiments on HbA variants of crested ducks

and Puna teal revealed that the β94Asp!Glu mutation increased O2-affinity without

compromising the Bohr effect: in both species, Bohr factors (Δlog-P50/ΔpH) were similar for

HbA variants with and without the β94Asp!Glu mutation (Table 1). These results are consis-

tent with crystallographic data for avian Hb [52], which reveal the absence of the salt bridge

between the carbonyl group of β94Asp and the imidazole of β146His. This explains why nei-

ther β94Asp nor β146His make significant contributions to the Bohr effect in avian Hbs, in

accordance with the view that the Bohr effect is attributable to different sets of solvent-exposed

His residues in the Hbs of different vertebrate taxa [53,54]. The positive Bohr factors for the

stripped HbA variants are typical of Hbs with high phosphate sensitivities. Under stripped con-

ditions (in the absence of phosphates) at low pH, electrostatic repulsion between positively

charged residues in the central cavity destabilizes the T-state and increases O2-affinity. These

charges are neutralized in the IHP-Hb complex and the Bohr effect is normal.

In light of data for native and recombinant human Hbs with mutational replacements of

β94Asp [48–50], the fact that the β94Asp!Glu mutation in duck Hb produced an increased

O2-affinity without an associated diminution of the Bohr effect illustrates how specific muta-

tions with well-characterized effects in the Hb of one species can have quite different biochemi-

cal effects in the Hbs of other species [31,55,56].

Collateral replacements that contribute to convergence in Hb function. High-altitude

yellow-billed pintails and speckled teal share the same two β-globin replacements, β116Ala!-

Ser and β133Leu!Met, due to a history of introgressive hybridization (S6 Fig). The

β116Ala!Ser replacement is also shared by the high-altitude blue-winged goose. The HbA

variants of these three high-altitude taxa generally exhibit higher O2-affinities than those of

their respective low-altitude sister taxa, both in the presence and absence of anionic effectors

(S2 Table). Comparisons between HbD variants of yellow-billed pintails are also informative

because the high- and low-altitude populations have identical αD-globin sequences, so the

main HbD variants only differ at β116 and β133 (Fig 1). The HbA isoforms of blue-winged

goose and Hartlaub’s duck are distinguished from one another by two amino acid substitu-

tions: αA77Ala!Thr and β116Ala!Ser (character states at both sites are derived in the high-

altitude blue-winged goose)(S3 and S4 Figs) [35]. The HbA and HbD variants of yellow-billed

pintails and the HbA variant of blue-winged goose are characterized by increased intrinsic O2-

affinities relative to the corresponding variants in their respective low-altitude sister taxa (S11

Fig; S2 Table). These differences in intrinsic O2-affinity persist in the presence of Cl- ions and

IHP, but not in the presence of IHP alone (in the comparison between the HbA isoforms of

blue-winged goose and Hartlaub’s duck) or in the simultaneous presence of both anions (in the

comparison between high- and low-altitude HbD variants of yellow-billed pintail; S11 Fig; S2

Table). These comparisons indicate that the β116Ala!Ser and β133Leu!Met substitutions

produce an increased intrinsic O2-affinity, and the blue-winged goose/Hartlaub duck compari-

son further suggests that this net effect is primarily or exclusively attributable to β116Ala!Ser.

To measure the independent and joint effects of the β116Ala!Ser and β133Leu!Met

replacements on a standardized genetic background, we used site-directed mutagenesis to engi-

neer recombinant yellow-billed pintail HbA mutants representing each of four possible two-

site genotypic combinations: the wildtype low-altitude genotype (116Ala-133Leu, which repre-

sents the ancestral low-altitude state; S4 Fig), the derived, double-mutant high-altitude
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genotype (116Ser-133Met), and each of the two possible single-mutant intermediates (116Ser-

133Leu and 116Ala-133Met). Experimental measurements of the rHb mutants recapitulated

the observed difference in intrinsic O2-affinity between the HbA variants of high- and low-alti-

tude yellow-billed pintails (P50(stripped) [mean ± SEM] = 3.66 ± 0.08 torr for 116Ala-133Leu

and 3.26 ± 0.10 torr for 116Ser-133Met), and revealed that the observed difference is mainly

attributable to β116Ala!Ser (Fig 5). Relative to the ancestral background (116Ala-133Leu),

Table 1. O2-affinities, anion sensitivities, and pH sensitivities of duck HbA isoforms with alternative residues at β94 (derived Glu in high-altitude
taxa, and ancestral Asp in low-altitude taxa). O2-affinity was measured as P50 (torr, mean ± SEM), anion sensitivity was measured as the difference in log-
transformed P50 values in the presence and absence of anionic effectors (Δlog P50([KCl+IHP]—stripped)), and pH sensitivity was measured by the Bohr factor (Φ
= Δlog P50/ΔpH). All measurements were conducted at 37°C, pH 6.9–7.4 (as indicated) in 0.1 M HEPES buffer in the absence and simultaneous presence of
Cl- ions (0.1 M KCl) and IHP (at two-fold molar excess over tetrameric Hb); [Heme] = 0.300 mM.

Taxon Property pH 7.4 pH 6.9 Φ (6.9–7.4)

Crested duck HbA (high) P50(stripped) 2.66 ± 0.02 2.66 ± 0.05 0.00

P50(KCl+IHP) 25.14 ± 0.25 51.84 ± 0.73 -0.63

Δlog P50([KCl+IHP]—stripped) 0.98 1.29

Crested duck HbA (low) P50(stripped) 3.45 ± 0.02 2.91 ± 0.00 +0.15

P50(KCl+IHP) 37.98 ± 0.46 74.87 ± 2.11 -0.59

Δlog P50([KCl+IHP]—stripped) 1.04 1.41

Puna teal HbA (high) P50(stripped) 3.38 ± 0.01 2.55 ± 0.04 +0.25

P50(KCl+IHP) 27.32 ± 0.33 48.70 ± 1.17 -0.50

Δlog P50([KCl+IHP]—stripped) 0.91 1.28

Puna teal HbA (low) P50(stripped) 3.93 ± 0.02 3.51 ± 0.04 +0.10

P50(KCl+IHP) 39.66 ± 1.01 80.04 ± 0.37 -0.61

Δlog P50([KCl+IHP]—stripped) 1.00 1.36

doi:10.1371/journal.pgen.1005681.t001

Fig 5. Intrinsic O2-affinities (P50(stripped), torr; mean ± SEM) of purified yellow-billed pintail rHbmutants
measured in the absence of allosteric effectors.O2-equilibrium curves for each rHb mutant were
measured in 0.1 M HEPES buffer at pH 7.40, 37°C; [heme], 0.3 mM. Numbers refer to residue positions in the
β-chain subunit. ‘116Ala-133Leu’ and ‘116Ser-133Met’ are the two-site genotypes that predominate in low-
and high-altitude populations, respectively. At each site, the derived (non-ancestral) amino acids are
underlined in bold.

doi:10.1371/journal.pgen.1005681.g005
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β116Ala!Ser produced a 30% reduction in P50(stripped), which translated into a 27% reduction

in the presence of Cl-, a 10% reduction in the presence of IHP, and a 16% reduction in the

simultaneous presence of both anionic effectors. The individual effect of β116Ala!Ser on the

ancestral background is therefore consistent with inferences gleaned from comparisons involv-

ing the native HbA and HbD variants of yellow-billed pintails and the HbA isoforms of blue-

winged goose and Hartlaub’s duck (S11 Fig).

The β116Ala!Ser substitution involves the replacement of nonpolar alanine for an

uncharged, polar serine at an α1β1 intradimer contact. This replacement appears to increase

O2-affinity by stabilizing the R-state via intra-subunit hydrogen bonds between the γ-oxygen

of β116Ser and each of three β-chain residues: β26Glu (ε2-oxygen), β113Val (carbonyl oxy-

gen), and β117His (ε2-nitrogen)(Fig 6). Consistent with this interpretation, mutations in

human Hb that disrupt this same network of hydrogen bonds also exhibit increased O2-affini-

ties [57]. This appears to represent a rare case in which Hb-O2 affinity is increased via stabiliza-

tion of the R-state rather than destabilization of the T-state.

Population Genomic Tests of Spatially Varying Selection

The fact that high-altitude taxa exhibited higher Hb-O2 affinities than their lowland sister taxa

in six of eight pairwise comparisons is an intriguing trend and is suggestive of adaptive conver-

gence, but the overall pattern does not permit conclusive inferences about the adaptive signifi-

cance of observed changes in Hb function in any particular high-altitude population or species.

In principle, genome-wide analyses of nucleotide differentiation between individual pairs of

high- and low-altitude populations can provide an independent means of assessing whether

altitudinal differences in globin allele frequencies may be attributable to a history of spatially

varying selection. Accordingly, we used restriction-site associated DNA sequencing (RAD-Seq)

to survey genome-wide patterns of nucleotide differentiation between high- and low-altitude

populations of three separate species: cinnamon teal, yellow-billed pintail, and speckled teal. In

each of these three pairwise population comparisons, function-altering amino acid polymor-

phisms in the αA- and/or βA-globin genes emerged as highly significant outliers in the genome-

wide distribution of site-specific FST values (Fig 7). Indirect inferences about the adaptive sig-

nificance of these polymorphisms are corroborated by results of the functional experiments,

which demonstrated that the derived variants at these sites contributed to increases in Hb-O2

affinity in high-altitude populations of all three species (αA9 in cinnamon teal and the two-site

‘116–133’ βA-globin haplotypes shared by yellow-billed pintail and speckled teal). Since the βA-

globin allele of high-altitude yellow-billed pintail was derived via introgressive hybridization

with high-altitude speckled teal, the combined results of our functional experiments and popu-

lation genomic analyses provide strong evidence for positive selection on introgressed allelic

variants. This finding contributes to a growing body of evidence that introgressive hybridiza-

tion can provide an important source of adaptive genetic variation in animal populations [58–

60].

Conclusions

Convergent increases in Hb-O2 affinity in high-altitude waterfowl taxa were caused by a com-

bination of unique amino acid replacements (as in the case of cinnamon teal, where the causa-

tive mutation was not shared with other highland taxa), parallel replacements (as in the case of

high-altitude crested ducks and Puna teal that shared independently derived β94Asp!Glu

mutations), and collateral replacements (as in the case of yellow-billed pintail and speckled teal

that shared identical-by-descent β-globin alleles due to a history of introgressive hybridiza-

tion). Andean goose appears to represent another case where the evolution of a derived
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increase in Hb-O2 affinity is attributable to one or more unique substitutions, although addi-

tional experiments will be required to pinpoint the causative change(s). These results demon-

strate that convergent changes in protein function can occur through multiple historical paths

involving multiple possible mutations. Among the Andean waterfowl taxa that we examined,

we identified only a single case where a convergent increase in Hb-O2 affinity was attributable

to a true parallel amino acid substitution (β94Asp!Glu in high-altitude crested ducks and

Puna teal).

The limited number of function-altering parallel substitutions in the Hbs of Andean water-

fowl stands in contrast to patterns of functional evolution in vertebrate opsin proteins, where

convergent changes in the wavelengths of maximum absorbance (spectral tuning) are very

often attributable to parallel amino acid substitutions [61,62]. In vertebrate opsins, the more

pervasive patterns of parallelism may reflect the fact that genetically based changes in spectral

tuning can only be achieved via specific mutational replacements at a limited number of key

residues in the active site [63]. Our findings are more consistent with results of experimental

evolution studies in microbes and yeast where replicated changes in fitness involved little to no

parallelism at the underlying sequence level [64,65].

Our comparative survey also identified numerous parallel substitutions that had no effect

on the inherent oxygenation properties of Hb, although we cannot rule out the possibility that

the derived variants contributed to changes in other structural or functional properties. Our

results for waterfowl Hbs provide two important lessons about repeated evolution at the molec-

ular level: (i) most cases of convergence in protein function did not involve true parallel

Fig 6. Homology model of yellow-billed pintail HbA showing the location of an affinity-enhancing β116Ala!Ser replacement that distinguishes
high- and low-altitude variants.Replacement of the nonpolar Ala for an uncharged, polar Ser at the α1β1 intradimer contact surface is predicted to increase
Hb-O2 affinity by stabilizing the R-state via intra-subunit hydrogen bonds between the γ-oxygen of β116Ser and each of three β-chain residues: β26Glu
(ε2-oxygen), β113Val (carbonyl oxygen), and β117His (ε2-nitrogen). Homology modelling indicates that the same network of interhelical bonds is not present
in the T-state.

doi:10.1371/journal.pgen.1005681.g006
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substitutions (indicating that similar phenotypic outcomes can be produced by multiple possi-

ble mutations), and (ii) most parallel substitutions produced no change in Hb-O2 affinity (con-

vergent or otherwise). These findings demonstrate that parallel substitutions cannot be

interpreted as prima facie evidence for adaptive evolution [66,67], and that the functional

Fig 7. Function-altering amino acid polymorphisms in the αA- and βA-globin genes emerge as extreme outliers in genome scans of allele-
frequency differentiation (FST) between high- and low-altitude populations of speckled teal, cinnamon teal, and yellow-billed pintails.Histograms
depict genome-wide distributions of SNP-specific FST values based on RAD-Seq surveys of genomic polymorphism in high- and low-altitude populations of
(A) cinnamon teal (n = 18,145 SNPs), (B) yellow-billed pintails (n = 49,670 SNPs), and (C) speckled teal (n = 47,731 SNPs).

doi:10.1371/journal.pgen.1005681.g007
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significance (and, hence, adaptive significance) of specific substitutions needs to be experimen-

tally tested in order to support conclusions about the molecular basis of phenotypic evolution.

Materials and Methods

Specimen Collection

Blood and tissue samples were obtained from Andean waterfowl at high- and low-altitude

localities as described previously [35]. Samples from Orinoco geese, Abyssinian blue-winged

geese, and Hartlaub’s ducks were obtained from Sylvan Heights Waterfowl Park (Scotland

Neck, North Carolina). Animals were handled in accordance with protocols approved by the

Institutional Animal Care and Use Committee of the University of Alaska (certification num-

bers 02-01-152985 and 05-05-152985).

Characterization of Hb Isoform Composition

We characterized Hb isoform composition in the mature erythrocytes of 106 wild-caught birds

(median sample size = 14 individuals per species) (S1 Table). Native Hb components were sep-

arated by means of IEF using precast Phast gels (pH 3–9) (GE Healthcare; 17-0543-01). IEF gel

bands were excised and digested with trypsin, and MS/MS was used to identify the resultant

peptides, as described previously [26,28,32,68]. Database searches of the resultant MS/MS spec-

tra were performed using Mascot (Matrix Science, v1.9.0, London, UK); peptide mass finger-

prints were queried against a custom database of avian globin sequences, including the full

complement of embryonic and adult α- and β-type globin genes that have been annotated in

avian genome assemblies [38,69–73]. We identified all significant protein hits that matched

more than one peptide with P<0.05. After separating the HbA and HbD isoforms by native gel

IEF, the relative abundance of the two isoforms was quantified densitometrically using Image J

[74].

Molecular Cloning and Sequencing

The αA- and βA-globin genes were amplified and sequenced according to protocols described

previously [35,36]. For all specimens used as subjects in the experimental analyses of Hb func-

tion, we extracted RNA from whole blood using the RNeasy kit (Qiagen,Valencia, CA), and we

amplified full-length cDNAs of the αD-globin gene using a OneStep RT-PCR kit (Qiagen,

Valencia, CA). We designed paralog-specific primers using 5’ and 3’ UTR sequences, as

described by Opazo et al. [38]. We cloned reverse transcription (RT)-PCR products into

pCR4-TOPO vector using the TOPO TA Cloning Kit (Invitrogen, Carlsbad, CA), and we

sequenced at least five clones per sample in order to recover both alleles. This enabled us to

determine full diploid genotypes for αD-globin in each specimen. The sequences were analyzed

using Geneious Pro ver. 5.4.3. All new sequences were deposited in GenBank under accessions

numbers KT988975-KT988992 and KU160516-KU160529.

Inferences of Character Polarity

For each amino acid difference between pairs of high- and low-altitude sister taxa, we identified

ancestral and derived states by comparison with orthologous sites in a large number of other

waterfowl species (n = 117 sequences for αA-globin, 96 for βA-globin, and 57 for αD-globin).

Alignments of variable sites in the αA-, βA-, and αD-globin genes are shown in S3, S4 and S5

Figs, respectively. For each divergent site in each pair of sister taxa, unordered parsimony

(using the trace character function in Mesquite [75]) yielded unambiguous inferences of char-

acter polarity.
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Inferring Causes of Molecular Homoplasy

One notable case of homoplasy in the βA-globin gene involved sites 116 and 133 in high-alti-

tude yellow-billed pintails and speckled teal (S4 Fig), two species that are known to hybridize

in nature [40,41]. To assess whether identical two-site ‘β116Ser-β133Met’ haplotypes from the

two species were identical-by-descent, we reconstructed haplotype networks of βA-globin cod-

ing sequence using the median-joining algorithm [76], as implemented in the program Net-

work 4.6 (Fluxus Technology, Suffolk, UK). We conducted the analysis on a sample of 257 βA-

globin sequences (116 from yellow-billed pintails and 141 from speckled teal) obtained from

sympatric high- and low-altitude populations of both species.

RAD-Seq Analysis of Genome-Wide Nucleotide Differentiation

Sixty individuals representing three species of Andean ducks (speckled teal, cinnamon teal, and

yellow-billed pintail) were selected for genome-wide surveys of nucleotide variation using sin-

gle-digest RAD-Seq [77]. For each species, ten male specimens were selected from high-altitude

(�3,211 m above sea level), and ten were selected from low-altitude (� 914 m). Total genomic

DNA was extracted from muscle tissue using a DNeasy Tissue Kit (Qiagen, Valencia, Califor-

nia, USA) and normalized using a Qubit Fluorometer (Invitrogen, Grand Island, New York,

USA). DNA samples were submitted to Floragenex (Eugene, Oregon, USA) for single-digest

RAD-Seq using SbfI, which recognizes an 8-nucleotide (CCTGCAGG) restriction site. Digested

DNAs were ligated to barcodes and sequencing adaptors and then sequenced on the Illumina

HiSeq 2000 with single-end 100 bp chemistry. Following Illumina sequencing, sequences were

demultiplexed and trimmed to yield RAD sequences of 90 bp. Data analysis and bioinformatics

pipelines were provided by Floragenex [77–79].

The Floragenex RAD unitag assembler and BSP pipelines v.2.0 were used to create a RAD--

Seq ‘unitag’ assembly and Bowtie alignments of SAMtools pileup sequences to the reference

assembly. Genotypes at each nucleotide site were determined using the VCF popgen v.4.0 pipe-

line to generate a customized VCF 4.1 (variant call format) database with parameters set as fol-

lows: minimum AF for genotyping = 0.075, minimum Phred score = 15, minimum depth of

sequencing coverage = 10x, and allowing missing genotypes from up to 10% of individuals at

each site.

To filter out base calls that were not useful due to low quality scores or insufficient coverage,

genotypes at each nucleotide site were inferred using the Bayesian maximum likelihood algo-

rithm described by Hohenlohe et al. [79]. This algorithm calculates the likelihood of each pos-

sible genotype at each site using a multinomial sampling distribution, which gives the

probability of observing a set of read counts (n1, n2, n3, n4) for a particular genotype, where ni
is the read count for each of the four possible nucleotides at each site, excluding ambiguous

reads with low quality scores. The genotyping algorithm incorporates the site-specific sequenc-

ing error rate, and assigns the most likely diploid genotype to each site using a likelihood ratio

test and significance level of α = 0.05.

A total of 372 million sequence reads were obtained with an average depth of 7.6 (±2.4 SD)

million reads per sample for yellow-billed pintail and speckled teal and 3.3 (±1.4 SD) million

reads per sample for cinnamon teal, corresponding to an average of 140,671 (±27,856) RAD

loci. After filtering and genotyping, the RAD-Seq survey yielded 49,670 SNPs associated with

18,998 distinct loci in yellow-billed pintail, 47,731 SNPs associated with 19,433 distinct loci in

speckled teal, and 18,145 SNPs associated with 9,300 distinct loci in cinnamon teal, respec-

tively. The mean depth of coverage was 36.8 (±10.0 SD) reads per site with an average per site

quality score of 166.2 (±31.3 SD) for yellow-billed pintail and speckled teal, and 39.8 (±24.4

SD) reads per site with an average per site quality score of 177.6 (±26.4 SD) for cinnamon teal.
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Illumina reads were submitted to the European Nucleotide Archive and can be accessed under

the short read archive (SRA) accession number PRJEB11624.

Sequencing coverage and quality scores were summarized using the software VCFtools

v.0.1.11 [80]. Custom perl scripts were first used to filter triploid or tetraploid sites and convert

the Floragenex-generated VCF file to a biallelic, VCF v4.0 compatible format. We then calcu-

lated Weir and Cockerham’s [81] estimator of FST for each SNP in comparisons between high-

and low-altitude population samples.

Protein Purification and In Vitro Analysis of Hb Function

We purified HbA and HbD variants from hemolysates of 1–4 specimens per species, all of

which had known αA-, αD-, and βA-globin genotypes. In the case of ruddy ducks and yellow-

billed pintails, previous population surveys of sequence polymorphism in the αA- and βA-glo-

bin genes had revealed multiple amino acid haplotypes segregating within high- and/or low-

altitude populations [35,36]. In each case we purified HbA and HbD variants from individuals

that were homozygous for each of the alternative allelic variants. Hemolysates of each individ-

ual specimen were dialyzed overnight against 20 mM Tris buffer (pH 8.4). The two tetrameric

HbA and HbD isoforms were then separated using a HiTrap Q-HP column (GE Healthcare; 1

ml 17-1153-01) and equilibrated with 20 mM Tris buffer (pH 8.4). HbD was eluted against a

linear gradient of 0–200 mMNaCl. The samples were desalted by means of dialysis against 10

mMHEPES buffer (pH 7.4) at 4°C, and were then concentrated by using a 30 kDa centrifuge

filter (Amicon, EMDMillipore).

We measured O2-equilibria of purified Hb solutions under standard conditions (37°C, pH

7.4, 0.3 mM heme) using a modified diffusion chamber where absorption at 436 nm was moni-

tored during stepwise changes in equilibration gas mixtures generated by precisionWösthoff

gas-mixing pumps [28,32,39,56,82,83]. In order to characterize intrinsic Hb-O2 affinities and

mechanisms of allosteric regulatory control, we measured O2-equilibria in the presence of Cl-

ions (0.1M KCl), in the presence of IHP (IHP/Hb tetramer ratio = 2.0), in the simultaneous

presence of both effectors, and in the absence of both effectors (stripped). Free Cl- concentra-

tions were measured with a model 926S Mark II chloride analyzer (Sherwood Scientific Ltd,

Cambridge, UK). We estimated values of P50 and n50 (Hill’s cooperativity coefficient at half-sat-

uration) by fitting the Hill equation Y = PO2
n/(P50

n + PO2
n) to the experimental O2 saturation

data by means of nonlinear regression (Y = fractional O2 saturation; n, cooperativity coefficient).

The model-fitting was based on 5–8 equilibration steps between 30% and 70% oxygenation.

Vector Construction and Site-Directed Mutagenesis

The αA- and βA-globin sequences of yellow-billed pintail were synthesized by Eurofins MWG

Operon (Huntsville, AL, USA) after optimizing the nucleotide sequences in accordance with E.

coli codon preferences. The synthesized αA-βA globin gene cassette was cloned into a custom

pGM vector system along with themethionine aminopeptidase (MAP) gene, as described by

Natarajan et al. [27,84]. We engineered each of the β-chain codon substitutions using the Quik-

Change II XL Site-Directed Mutagenesis kit from Stratagene (LaJolla, CA, USA). Each engi-

neered codon change was verified by DNA sequencing.

Expression and Purification of Recombinant Hbs

Recombinant Hb expression was carried out in the JM109 (DE3) E. coli strain as described in

Natarajan et al. [27,84]. To ensure the post-translational cleaving of N-terminal methionines

from the nascent globin chains, we co-transformed a plasmid (pCO-MAP) containing an addi-

tional copy of theMAP gene. Both pGM and pCO-MAP plasmids were cotransformed and
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subject to dual selection in an LB agar plate containing ampicillin and kanamycin. The expres-

sion of each rHb mutant was carried out in 1.5 L of TB medium. Bacterial cells were grown in

37°C in an orbital shaker at 200 rpm until absorbance values reached 0.6–0.8 at 600 nm. The

bacterial cultures were induced by 0.2 mM IPTG and were then supplemented with hemin

(50 μg/ml) and glucose (20 g/L). The bacterial culture conditions and the protocol for prepar-

ing cell lysates were described previously [27–29,32,84].

The bacterial cells were resuspended in lysis buffer (50 mM Tris, 1 mM EDTA, 0.5 mM

DTT, pH 7.6) with lysozyme (1 mg/g wet cells) and were incubated in the ice bath for 30 min.

Following sonication of the cells, 0.5–1.0% polyethylenimine solution was added, and the

crude lysate was then centrifuged at 15000 g for 45 min at 4°C. The rHbs were purified by two-

step ion-exchange chromatography. Using high-performance liquid chromatography, the sam-

ples were passed through a prepacked anion-exchange column (Q-Sepharose) followed by pas-

sage through a cation-exchange column (SP-Sepharose). The clarified supernatant was

subjected to overnight dialysis in CAPS buffer (20 mM CAPS with 0.5mM EDTA, pH 9.7) at

4°C. The samples were passed through the Q-column and the rHb solutions were eluted against

a linear gradient of 0–1.0 M NaCl. The eluted samples were desalted by overnight dialysis with

20 mMHEPES pH 7.4 (4°C). Dialyzed samples were then passed through the SP-Sepharose

column (HiTrap SPHP, 1 mL, 17-1151-01; GE Healthcare) equilibrated with 20 mMHEPES

(pH 7.4). The rHb samples were eluted with a linear gradient of 20 mMHEPES (pH 9.2). Sam-

ples were concentrated and desalted by overnight dialysis against 10 mMHEPES buffer (pH

7.4) and were stored at -80°C prior to the measurement of O2-equilibrium curves.

The purified rHb samples were analyzed by means of sodium dodecyl sulphate (SDS)-poly-

acrylamide gel electrophoresis. After preparing rHb samples as oxyHb, deoxyHb, and carbon-

monoxy derivatives, we measured absorbance at 450–600 nm to confirm that the absorbance

maxima match those of the native HbA samples. Results of isoelectric focusing analyses indi-

cated that each of the purified rHb mutants was present as a tetrameric assembly, and this was

further confirmed by cooperativity coefficients (n50)>1.00 in the O2-equilibrium experiments.

In vitromeasurements of O2-binding properties were conducted in the same manner for rHbs

and native Hb samples.

Structural Modeling

Homology-based structural modeling was performed with Modeller 9.15 [85] using human

Hbs in different ligation states (PDB, 2hhb and 1hho) as templates. Models were evaluated on

the SWISS-MODEL server [86]. All models had QMEAN values between 0.71 and 0.78. Struc-

tural mining was performed using PISA [87], PyMol (Schrödinger, New York, NY), and

SPACE [88].

Supporting Information

S1 Fig. Diagram illustrating the allosteric regulation of Hb-O2 affinity. (A) The oxygenation

reaction of tetrameric Hb (α2β2) involves an allosteric transition in quaternary structure from

the low-affinity T-state to the high-affinity R-state. The oxygenation-induced T!R transition

entails a breakage of salt bridges and hydrogen bonds within and between subunits (open

squares), dissociation of allosterically bound organic phosphates (OPHs), Cl- ions, and pro-

tons, and the release of heat (heme oxygenation is an exothermic reaction). Deoxygenation-

linked proton binding occurs at multiple residues in the α- and β-chains, Cl- binding mainly

occurs at the N-terminal α-amino groups of the α- and β-chains in addition to other residues

in both chains, and phosphate binding occurs between the β-chains in the central cavity of the

Hb tetramer. (B) O2-equilibrium curves for purified Hb in the absence of allosteric effectors
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(stripped) and in the presence of chloride ions (+Cl-) and organic phosphates (+OPH). The

preferential binding of allosteric effectors to deoxyHb stabilizes the T-state, thereby shifting the

allosteric equilibrium in favor of the low-affinity quaternary structure. The O2-equilibrium

curves are therefore right-shifted (Hb-O2 affinity is reduced) in the presence of allosteric effec-

tors. Hb-O2 affinity is indexed by the P50 value—the PO2 at which Hb is half-saturated. The

sigmoidal shape of the O2-equilibrium curves reflects cooperative O2-binding, involving a

PO2-dependent shift from low- to high-affinity conformations.

(PDF)

S2 Fig. Alignment of αA-, αD-, and β
A-globin amino acid sequences in the set of focal water-

fowl taxa.

(PDF)

S3 Fig. Alignment of amino acid sites in the αA-globin gene that differ in one or more com-

parisons between high- and low-altitude sister taxa (highlighted in yellow). Character states

at orthologous sites in a phylogenetically diverse set of waterfowl taxa (n = 117 orthologous

sequences) permitted unambiguous inferences regarding the polarity of observed amino acid

substitutions.

(PDF)

S4 Fig. Alignment of amino acid sites in the βA-globin gene that differ in one or more com-

parisons between high- and low-altitude sister taxa (highlighted in yellow). Character states

at orthologous sites in a phylogenetically diverse set of waterfowl taxa (n = 96 orthologous

sequences) permitted unambiguous inferences regarding the polarity of observed amino acid

substitutions.

(PDF)

S5 Fig. Alignment of amino acid sites in the αD-globin gene that differ in one or more com-

parisons between high- and low-altitude sister taxa (highlighted in yellow). Character states

at orthologous sites in a phylogenetically diverse set of waterfowl taxa (n = 57 orthologous

sequences) permitted unambiguous inferences regarding the polarity of observed amino acid

substitutions.

(PDF)

S6 Fig. Network of βA-globin haplotypes sampled from sympatric highland and lowland

populations of yellow-billed pintail and speckled teal. The median-joining network recon-

struction was based on a total of 257 DNA sequence haplotypes (n = 116 and 141 βA-globin

sequences for yellow-billed pintail and speckled teal, respectively). The sharing of ‘β116Ser-

β133Met’ alleles between highland populations of both species reflects a history of introgressive

hybridization.

(PDF)

S7 Fig. Oxygenation properties of HbA and HbD isoforms from high- and low-altitude

populations of cinnamon teal, Anas cyanoptera. (A) P50 values (means ± SEM) for purified

HbA variants of highland and lowland teal measured at pH 7.4 and 37°C in the absence (stripped)

and presence of allosteric effectors ([Cl-], 0.1 M; [HEPES], 0.1 M; IHP/Hb tetramer ratio, 2.0;

[Heme], 0.300 mM). (B) Log-transformed differences in P50 values of highland and lowland HbA

variants in the presence and absence of allosteric effectors. The Δlog-P50 values measure the

extent to which Hb-O2 affinity is reduced in the presence of a given allosteric effector (Cl-, IHP,

or both anions together). (C) P50 values for HbD variants of highland and lowland teal (experi-

mental conditions as above). (D) Δlog-P50 values for HbD variants of highland and lowland teal.

(PDF)
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S8 Fig. Oxygenation properties of HbA and HbD isoforms from Andean goose (Chloe-

phaga melanoptera), a high-altitude native, and Orinoco goose (Neochen jubata), a low-

altitude native. (A) P50 values (means ± SEM) for purified HbA isoforms of the two species

measured at pH 7.4 and 37°C in the absence (stripped) and presence of allosteric effectors

([Cl-], 0.1 M; [HEPES], 0.1 M; IHP/Hb tetramer ratio, 2.0; [Heme], 0.300 mM). (B) Log-trans-

formed differences in P50 values of HbA isoforms of the two species in the presence and

absence of allosteric effectors. The Δlog-P50 values measure the extent to which Hb-O2 affinity

is reduced in the presence of a given allosteric effector (Cl-, IHP, or both anions together). (C)

P50 values for HbD isoforms of Andean goose and Orinoco goose (experimental conditions as

above). (D) Δlog-P50 values for HbD isoforms of the two species.

(PDF)

S9 Fig. Oxygenation properties of HbA and HbD isoforms from high- and low-altitude

populations of crested ducks, Lophonetta specularioides. (A) P50 values (means ± SEM) for

purified HbA variants of highland and lowland ducks measured at pH 7.4 and 37°C in the

absence (stripped) and presence of allosteric effectors ([Cl-], 0.1 M; [HEPES], 0.1 M; IHP/Hb

tetramer ratio, 2.0; [Heme], 0.300 mM). (B) Log-transformed differences in P50 values of high-

land and lowland HbA variants in the presence and absence of allosteric effectors. The Δlog-

P50 values measure the extent to which Hb-O2 affinity is reduced in the presence of a given allo-

steric effector (Cl-, IHP, or both anions together). (C) P50 values for HbD variants of highland

and lowland ducks (experimental conditions as above). (D) Δlog-P50 values for HbD variants

of highland and lowland ducks.

(PDF)

S10 Fig. Oxygenation properties of HbA and HbD isoforms from Puna teal (Anas puna), a

high-altitude native, and silver teal (Anas versicolor), a low-altitude native. (A) P50 values

(means ± SEM) for purified HbA isoforms of the two species measured at pH 7.4 and 37°C in

the absence (stripped) and presence of allosteric effectors ([Cl-], 0.1 M; [HEPES], 0.1 M; IHP/

Hb tetramer ratio, 2.0; [Heme], 0.300 mM). (B) Log-transformed differences in P50 values of

HbA isoforms of the two species in the presence and absence of allosteric effectors. The Δlog-

P50 values measure the extent to which Hb-O2 affinity is reduced in the presence of a given allo-

steric effector (Cl-, IHP, or both anions together). (C) P50 values for HbD isoforms of Puna teal

and silver teal (experimental conditions as above). (D) Δlog-P50 values for HbD isoforms of the

two species.

(PDF)

S11 Fig. Oxygenation properties of HbA and HbD isoforms from high- and low-altitude

populations of yellow-billed pintail, Anas georgica, and HbA isoforms from a pair of high-

and low-altitude African species, Abyssinian blue-winged goose (Cyanochen cyanoptera)

and Hartlaub’s duck (Pteronetta hartlaubii), that share one of the same β-chain substitu-

tions. (A) P50 values (means ± SEM) for purified HbA variants of highland and lowland pin-

tails measured at pH 7.4 and 37°C in the absence (stripped) and presence of allosteric effectors

([Cl-], 0.1 M; [HEPES], 0.1 M; IHP/Hb tetramer ratio, 2.0; [Heme], 0.300 mM). (B) Log-trans-

formed differences in P50 values of highland and lowland HbA variants in the presence and

absence of allosteric effectors. (C) P50 values for HbD variants of highland and lowland pintails

(experimental conditions as above). (D) Δlog-P50 values for HbD variants of highland and low-

land pintails. (E) P50 values (means ± SEM) for purified HbA isoforms of the blue-winged

goose and Hartlaub’s duck (experimental conditions as above). (F) Δlog-P50 values for HbA

isoforms of the blue-winged goose and Hartlaub’s duck.

(PDF)
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S1 Table. Percentage concentrations of the HbA and HbD isoforms (mean ± SD [same for

both values]) in the red blood cells of high- and low-altitude waterfowl taxa. All data are

from wild-caught specimens. Sample sizes (no. individuals) are given in parentheses.

(DOCX)

S2 Table. O2 affinities (P50, torr) and cooperativity coefficients (n50) of purified HbA and

HbD isoforms from highland and lowland waterfowl. O2 equilibria were measured in 0.1

mMHEPES buffer at pH 7.4 (± 0.01) and 37°C in the absence (stripped) and presence of Cl-

ions ([KCl]) and IHP (at two-fold molar excess over tetrameric Hb). P50 and n50 values were

derived from single O2 equilibrium curves, where each value was interpolated from linear Hill

plots (correlation coefficient r> 0.995) based on 4 or more equilibrium steps between 25 and

75% saturation. Due to allelic polymorphism, two alternative Hb variants were present in the

low-altitude sample of ruddy ducks (‘low1’ and ‘low2’) and in the high-altitude sample of

speckled teal (‘high1’ and ‘high2’). In the case of the ruddy ducks, ‘low 1’ and ‘low 2’ represent

triply homozygous βA-globin genotypes ‘13Ser-14Ile-69Ser’ and ‘13Gly-14Leu-69Thr’, respec-

tively. In the case of speckled teal, ‘high 1’ and ‘high 2’ represent triply homozygous βA-globin

genotypes ‘13Ser-116Ser-133Met’ and ‘13Gly-116Ser-133Met’, respectively.

(DOCX)
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