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Abstract

Convergent evolution of semiochemical use in organisms from different Kingdoms is a rarely described phenomenon. Tree-
killing bark beetles vector numerous symbiotic blue-stain fungi that help the beetles colonize healthy trees. Here we show for
the first time that some of these fungi are able to biosynthesize bicyclic ketals that are pheromones and other semiochemicals
of bark beetles. Volatile emissions of five common bark beetle symbionts were investigated by gas chromatography-mass
spectrometry. When grown on fresh Norway spruce bark the fungi emitted three well-known bark beetle aggregation
pheromones and semiochemicals (exo-brevicomin, endo-brevicomin and trans-conophthorin) and two structurally related
semiochemical candidates (exo-1,3-dimethyl-2,9-dioxabicyclo[3.3.1]nonane and endo-1,3-dimethyl-2,9-dioxabicyclo[3.3.1]
nonane) that elicited electroantennogram responses in the spruce bark beetle Ips typographus. When grown on malt agar
with 13C D-Glucose, the fungus Grosmannia europhioides incorporated 13C into exo-brevicomin and trans-conophthorin.
The enantiomeric compositions of the fungus-produced ketals closely matched those previously reported from bark beetles.
The production of structurally complex bark beetle pheromones by symbiotic fungi indicates cross-kingdom convergent
evolution of signal use in this system. This signaling is susceptible to disruption, providing potential new targets for pest
control in conifer forests and plantations.

Introduction

Symbiotic interactions between insects and microorganisms
are widespread in nature. There is growing evidence that
microbial symbionts play instrumental roles in animal
ecology [1–3] and many of these roles are potentially
mediated by microbe-produced chemical signals [4]. It has
been noted that many insects with aggregation behavior are
closely associated with specific microbial communities [5–
10]. A potential explanation for these specific insect-
microbe associations can involve the convergent synthesis
of chemical communication signals (semiochemicals)
across Kingdoms [11, 12].

A small subset of the world’s 6000 bark beetle species
are aggressive tree-killers, and these tree-killing species are
some of the most devastating pests in conifer forests
worldwide. The key to the beetles’ ability to kill trees seems
to be their complex chemical communication system and
symbiotic relationship with phytopathogenic blue-stain
fungi [13, 14]. Bark beetles use chemical cues to distin-
guish suitable hosts [15]. As soon as pioneer beetles land on
a suitable host, they release aggregation pheromones that
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may coordinate a deadly mass attack on the tree [13, 16].
When the number of invaders reaches a critical level, the
beetles release anti-aggregation pheromones to repel new-
comers and limit intraspecific competition in the bark [13,
16]. Fungi carried externally and in the beetle gut increase
the virulence of each beetle attack and help neutralize the
trees’ defenses [17, 18]. Thus, the association between bark
beetles and their symbiotic fungi seems to increase the fit-
ness of both partners. The symbiotic relationship is obligate
in so far as the fungi depend on the beetle for their own
dispersal [19]. It would be adaptive, therefore, for the fungi
and the beetle to use mutually intelligible signaling systems,
despite belonging to different biological Kingdoms.

The phytopathogenic blue-stain fungi associated with
tree-killing bark beetles belong to Endoconidiophora,
Ophiostoma, Grosmannia, and related genera [20, 21].
Blue-stain fungi are chemically versatile organisms that
effectively metabolize phenolic and terpenoid compounds
in conifers [18, 22, 23]. Recently, these fungi have been
found to produce volatile compounds that act as semi-
ochemicals for several bark beetle species. These com-
pounds have all been structurally relatively simple alcohols,
acetates and terpenoids [24]. For example, in an exploratory
study we found that the fungal symbionts of the spruce bark
beetle (Ips typographus) produce the tertiary alcohol 2-
methyl-3-buten-2-ol, a key component of the beetle’s
aggregation pheromone blend [25].

In contrast to the structurally simple pheromone com-
pound 2-methyl-3-buten-2-ol, we report here that some
beetle-associated fungi produce multiple bicyclic ketals of
fatty-acid origin that play essential roles in the chemical
communication of many bark beetle species [26–28]. Among
these structurally complex compounds are exo-brevicomin
and endo-brevicomin (7-ethyl-5-methyl-6,8-dioxabicyclo
[3.2.1]octane) that are important attractants produced by
males of the European species Dryocoetes autographus [27].
(+)-exo-Brevicomin is an aggregation pheromone compo-
nent released by female western pine beetles (Dendroctonus
brevicomis) [29] and male mountain pine beetles (Den-
droctonus ponderosae) [30], two important tree-killers in
North America. The (+)-enantiomer of endo-brevicomin is a
key component in the aggregation pheromone of the south-
ern pine beetle (Dendroctonus frontalis) [31]. Another
bicyclic ketal, (5S,7S)-trans-conophthorin ((E)-7-methyl-1,6-
dioxaspiro-[4.5]decane), is best known as a non-host
volatile serving as an anti-attractant in several economic-
ally important bark beetle species, including I. typographus

[28, 32, 33].
The biosynthesis of bicyclic ketals is relatively well

studied in bark beetles but much less is known about fungi.
In D. ponderosae, exo-brevicomin has been shown to be
derived de novo from oxidation of mono-unsaturated
fatty acids and subsequent P450-mediated conversion of

(Z)-6-nonen-2-one in the beetle fat body [34, 35]. In fungi,
the biosynthesis of bicyclic ketals is largely unknown [36],
although several fungi have been shown to produce con-
ophthorin when linoleic acid is used as the growth medium
[37]. The limited information available suggests that bark
beetles and fungi use different biosynthethic pathways to
produce bicyclic ketals and that fungi use a more compli-
cated pathway involving oxidation of poly-unsaturated fatty
acids which requires additional enzymes [37].

In this study, we investigated the production of bicyclic
ketals by five common fungal symbionts of European bark
beetles: Endoconidiophora polonica, Grosmannia euro-

phioides, G. penicillata, Ophiostoma bicolor, and O. piceae.
The products detected included three well-known bark beetle
semiochemicals (exo-brevicomin, endo-brevicomin and
(5S,7S)-trans-conophthorin) and two structurally related
compounds (exo-1,3-dimethyl-2,9-dioxabicyclo[3.3.1]non-
ane (1,3-DMDBN) and endo-1,3-DMDBN) (Fig. 1) that
elicited antennal responses in I. typographus. The production
of structurally complex bark beetle pheromones and other
possible semiochemicals by symbiotic fungi indicates cross-
kingdom convergent evolution of signal use in bark beetles
and blue-stain fungi.

Materials and methods

Fungal symbionts

Five common fungal symbionts of European bark beetles,
Endoconidiophora polonica, Grosmannia europhioides, G.
penicillata, Ophiostoma bicolor, and O. piceae, were used
in this study. Endoconidiophora polonica is mainly asso-
ciated with the spruce bark beetle, while the other four
fungal species are associated with multiple bark beetle
species (Table S1) [38–43]. All fungal isolates were
obtained from the culture collection of the Norwegian
Institute of Bioeconomy Research in Ås, Norway. Isolates
were maintained on malt agar (2% malt, 1.5% agar) at 4 °C,
and transferred to fresh malt agar and cultivated at 25 °C in
darkness for 7–10 days before the start of the experiments.
For more details on the isolates used and the biology of the
species, see Table S1 and Zhao et al. [18, 25].

Bioassays to detect bicyclic ketal production by
fungi in spruce bark

We assayed the fungi’s ability to produce bicyclic ketals
and other volatiles using the method described by Zhao
et al. [25]. Bark plugs (10 mm diameter) with a pre-drilled
hole (4 mm) in the center were taken from a fresh spruce log
and placed individually in screw-top glass headspace vials
(20 ml, Supelco, PA, USA). A plug (4 mm diameter) of
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sterile malt agar or malt agar colonized by one of the five
fungi was inserted into the center of the bark plug to allow
the fungi to colonize the bark. A total of 36 vials were
prepared, with six replicates for each of the six treatments
(agar with actively growing fungal mycelium of the five
fungi and sterile agar control). When the bark plugs with
agar or fungus had been loaded into the vials, the vials were
immediately sealed by a stainless-steel cap with a
polytetrafluoro-ethylene (PTFE)-faced butyl septum
(Supelco, PA, USA) and incubated at 25 °C in darkness.
Volatiles present in the headspace of each vial were col-
lected for gas chromatography-mass spectrometry (GC-MS)
analysis every 2 days for 9 days. Two days after GC-MS
analysis was completed, the bark plugs were extracted
individually in 0.5 ml hexane for 24 h for GC-electro-
antennogram detection (GC-EAD) analysis.

Bioassays on malt agar with 13C labeled glucose

To confirm that any bicyclic ketals detected in the bark plug
incubation assay were produced de novo by fungi, we
cultivated G. europhioides (a fungus that produced all
bicyclic ketals on spruce bark) on malt agar (2% malt, 1.5%
agar) spiked with 0.5% D-Glucose (>99.5%, Sigma-Aldrich,
MO, USA) or 0.5% 13C labeled D-Glucose (99% U-13C6,
Cambridge Isotope Laboratories, MA, USA) in 20 ml
headspace vials. After fungal inoculation, all vials were
sealed as above and kept at 25 °C for one week. Volatiles
present in the headspace of each vial were then collected
and analyzed by GC-MS (see below). The incorporation of
13C into bark beetle semiochemicals by G. europhioides

was confirmed by comparing mass spectra of compounds
collected from fungi growing on malt agar medium with
and without 13C labeled glucose.

Volatile collection and GC-MS analysis

Volatiles present in the headspace of each vial were col-
lected for 50 min using a Gerstel multipurpose sampler
equipped with a solid phase micro-extraction (SPME)
device with a 65 µm polydimethylsiloxane/divinylbenzene
(PDMS/DVB) fiber (Supelco, PA, USA). Immediately after
SPME collection, volatiles were analyzed using the method
described by Zhao et al. [25]. Briefly, the SPME fiber was
inserted into the split/splitless injector of the GC-MS with a
30 s splitless injection at 225 °C for 5 min. Volatiles were
analyzed using an Agilent 7890 GC combined with a 5975C
MS with a triple-axis detector and an HP-5 capillary column
(30 m × 0.25 mm inner diameter, 0.25 μm film thickness)
(Agilent Technologies, CA, USA). Helium was used as the
carrier gas at a constant flow of 1 ml/min. The temperature
of the ion source was 150 °C and the electron impact
ionization was 70 eV. The mass detector was operated with
a mass range of 30–400m/z. The oven program was 40 °C
for 3 min, increasing by 4 °C min−1 to 160 °C, then by
20 °C min−1 to 230 °C and held constant for 5 min. Bark
beetle semiochemicals were identified by comparison with
published mass spectra [26] and confirmed by comparing
retention times and mass spectra with synthesized reference
compounds. The amounts of the detected compounds were
calculated from the peak areas of the total ion chromato-
grams (TIC).

To determine the enantiomeric composition of the
chiral compounds, we collected volatiles released by G.

europhioides growing on malt agar and in spruce bark.
Volatiles were collected at five time-points 2–15 days
after fungal inoculation (three replicates per time point) to
monitor the enantiomeric composition over time. Enan-
tiomers were detected using an Agilent 6890 GC and a

Fig. 1 Structures of bicyclic
ketals detected from cultures of
bark beetle-associated blue-stain
fungi: a brevicomin, b 1,3-
dimethyl-2,9-dioxa-bicyclo
[3.1.1]nonane (1,3-DMDBN),
c trans-conophthorin

Convergent evolution of semiochemicals across Kingdoms: bark beetles and their fungal symbionts 1537



5973 MSD (Hewlett Packard, CA, USA) with an enan-
tioselective capillary column (CyclosilB, 30 m × 0.25 mm
inner diameter, 0.25 μm film thickness) (J&W Scientific,
CA, USA). Helium was used as a carrier gas at a constant
flow of 1 ml min−1. The mass detector was operated with a
mass range of 30–400m/z at 70 eV. The temperature pro-
gram started at 40 °C for 3 min, increasing by 3 °Cmin−1

to 150 °C, then by 15 °C min−1 to 250 °C and held constant
for 10 min. The enantiomers of the bicyclic ketals released
by the fungi were verified by co-elution with enantiomeri-
cally enriched synthetic reference compounds on a
GC-column with the chiral stationary phase described
above.

Synthesis and enantiomeric purification of bicyclic
ketals

All isomers of brevicomins (Fig. 1a), were synthesized from
methyl (R)-2-hydroxybutanoate and methyl (S)-2-hydro-
xybutanoate via intermediate non-8-ene-2,4-diols (Fig. S1)
[44, 45]. By analogy, 1,3-dimethyl-2,9-dioxabicyclo[3.3.1]
nonanes (1,3-DMDBNs) (Fig. 1b) were synthesized from
methyl (R)-3-hydroxybutanoate and methyl (S)-3-hydro-
xybutanoate via non-8-ene-3,4-diols (Fig. S1) [45, 46]. A
racemic mixture of conophthorin diastereomers (trans:cis=
95:5) was provided by Syntastic AB, Sweden and the
enantiomers (Fig. 1c) were separated on an enantioselective
GC column as described above. The elution order was
determined with the help of a reference of (5S,7S)-trans-
conophthorin obtained from Prof W. Francke (University of
Hamburg) via SLU, Alnarp, Sweden.

Combined gas chromatography and
electroantennogram detection (GC-EAD)

We used GC-EAD to determine antennal responses of the
spruce bark beetle to exo-1,3-DMDBN and endo-1,3-
DMDBN, following the method described by Schiebe [47].
In brief, an IDAC-2 (Syntech, Kirchzarten, Germany) was
coupled to an Agilent 6890 GC with a HP-5 column
(Agilent Technologies, CA, USA) and a FID detector.
Hexane extracts (2 µl) of the fungus-infested bark plugs
from the headspace vials were injected manually into the
GC injector in splitless mode (0.5 min). The injector tem-
perature was 225 °C, and the oven temperature program was
50 °C for 3 min, increasing by 5 °C min−1 to 150 °C, held
for 3 min at 150 °C, followed by an increase of 8 °C min−1

to 250 °C, and a final increase of 15 °C min−1 to 325 °C.
Spruce bark beetle antennae were prepared according to
Zhang et al. [48] and mounted as close as possible to the
outlet of the glass tube. Replicates of four beetles were used
to verify each response. Recordings were obtained and

assessed using the software Syntech GC-EAD versions 1.1
and 1.2.3.

Data analysis

Amounts of ketals released by different fungi were sub-
jected to a repeated measures one-way ANOVA (Statistica
6.0, Statsoft Inc., USA). Data were log (X+ 1) transformed
to correct for unequal variance and departures from nor-
mality, and treatment means were separated using Tukey
HSD post hoc test at p= 0.05.

Results

Bicyclic ketal production by blue-stain fungi
growing on spruce bark

To determine if blue-stain fungi could produce bicyclic
ketals while growing on fresh Norway spruce bark
we analyzed volatile emissions from five common fungi
associated with bark beetles: Endoconidiophora polonica,

Grosmannia europhioides, G. penicillata, Ophiostoma

bicolor, and O. piceae. Un-colonized control bark plugs and
bark plugs colonized by E. polonica emitted mostly mono-
and sesquiterpenes originating from the bark. However,
bark plugs colonized by the four other fungi emitted a
more complex mixture of volatile compounds, including
five bicyclic ketals (Fig. 2 and 3). All fungi except E. polo-
nica emitted exo-brevicomin, endo-brevicomin, exo-1,3-
DMDBN and endo-1,3-DMDBN. The two Grosmannia

species also emitted (5S,7S)-trans-conophthorin (Fig. 4).
The amount of emitted endo-brevicomin did not differ

significantly among G. europhioides, G. penicillata, O.

bicolor and O. piceae at any sampling time (p > 0.09), but
the two Ophiostoma species emitted significantly more exo-
brevicomin than the two Grosmannia species (p < 0.01).
For example, 7 days after inoculation, O. piceae emitted
seven times more exo-brevicomin than G. europhioides, and
three times more than G. penicillata (Fig. 4). Consequently,
the two Ophiostoma species emitted a significantly higher
ratio of exo-brevicomin to endo-brevicomin than did the
Grosmannia species (p < 0.03).

All Grosmannia and Ophiostoma species released
about 10 times more 1,3-DMDBN than brevicomin
(Fig. 4). For 1,3-DMDBN, the four fungi released simi-
lar amounts of the endo-isomer at all sampling times
(p > 0.11), but the Ophiostoma species released more
exo-1,3-DMDBN than the Grosmannia species (p < 0.05)
(Fig. 4).

Unlike the other ketals, (5S,7S)-trans-conophthorin
was only released by the two Grosmannia species:
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Fig. 2 a Representative chromatograms showing bicyclic ketals
released from the blue-stain fungus Grosmannia europhioides growing
on malt agar (top) or fresh spruce bark (bottom). Exo-brevicomin,
endo-brevicomin and trans-conophthorin were detected from both
growth media, whereas exo-1,3-dimethyl-2,9-dioxabicyclo[3.1.1]

nonane (1,3-DMDBN) and endo-1,3-DMDBN were detected exclu-
sively from the bark. b Mass spectra of endo-brevicomin, exo-1,3-
DMDBN and endo-1,3-DMDBN. For mass spectra of exo-brevicomin
and trans-conophthorin, see Fig. 3

Fig. 3 Representative mass spectra showing incorporation of 13C into
exo-brevicomin and trans-conophthorin produced by the blue-stain
fungus Grosmannia europhioides. Upper and lower mass spectra

represent fungus growing on malt agar with 0.5% unlabeled D-Glucose
or 13C labeled D-Glucose (U-13C6), respectively. Red enlargements of
spectra show representative fragments labeled by 13C

Convergent evolution of semiochemicals across Kingdoms: bark beetles and their fungal symbionts 1539



G. penicillata released seven times more trans-con-
ophthorin than G. europhioides in total over the 9-day
sampling period, with a peak on day 5 when it released 12
times more trans-conophthorin (Fig. 4).

De novo bicyclic ketal production by Grosmannia

europhioides

To determine if bark beetle-associated blue-stain fungi
could produce bicyclic ketals de novo, we investigated
volatiles present in the headspace of malt agar cultures of G.
europhioides, a species that produced all five detected ketals
when growing on spruce bark. When growing on malt agar,
the fungus produced exo-brevicomin and trans-con-
ophthorin, but no 1,3-DMDBNs and only minute amounts
of endo-brevicomin (Fig. 2). When G. europhioides was
incubated on malt agar containing 0.5% 13C labeled D-
Glucose, a clearly visible incorporation of 13C into exo-
brevicomin and (5S,7S)-trans-conophthorin was detected in

the headspace of the fungus 7 days after incubation (Fig. 3).
This is conclusive evidence that G. europhioides can pro-
duce these compounds de novo.

Enantiomeric composition of fungus-produced
bicyclic ketals

The enantiomeric composition of the bicyclic ketals
released by G. europhioides were determined by co-
injection of synthetic standards with fungal samples in
enantioselective gas chromatography (GC) (Fig. S2).
Grosmannia europhioides released mainly (+)-exo-brevi-
comin (>94%) and (5S,7S)-trans-conophthorin (>94%),
with minor amounts of (−)-exo-brevicomin (<6%) and
(5R,7S)-cis-conophthorin (<6%). When growing on spruce
bark (Fig. S2), G. europhioides also released enantiomeri-
cally pure (>99%) (−)-exo-1,3-DMDBN and (>96%)
(−)-endo-1,3-DMDBN constantly over the whole sampling
period.

Fig. 4 Abundance of five
bicyclic ketals released from
Norway spruce bark incubated
with sterile malt agar (control) or
different blue-stain fungi
associated with European bark
beetles. Data are expressed as
mean abundance ± 1 SD 1–
9 days after incubation (N= 6).
1,3-DMDBN represents 1,3-
dimethyl-2,9-dioxabicyclo
[3.3.1]nonanes. No ketals were
detected from control bark or
bark incubated with
Endoconidiophora polonica
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Antennal responses in the spruce bark beetle

To determine whether the spruce bark beetle could percieve
exo-1,3-DMDBN and endo-1,3-DMDBN we measured the
antennal response by I. typographus to these compounds
using combined gas chromatography and electro-
antennogram detection (GC-EAD). Highly repeatable EAD
responses (using an achiral GC-column) were recorded to
both compounds present in hexane extracts of G. euro-

phioides-infested bark. The compounds induced antennal
responses in both male and female beetles, with the endo-
isomer eliciting the strongest responses (Fig. 5).

Discussion

In this study we show an example of cross-kingdom con-
vergent evolution of semiochemical use involving symbio-
tic fungi producing aggregation pheromones, anti-
aggregation pheromones, and spacing semiochemicals of
several primary and secondary bark beetle species. The
convergent evolution of semiochemical use between
organisms of different kingdoms is a rarely described phe-
nomenon. Best known are perhaps the sexually deceptive
orchids that hijack the pollination services of male wasps by
emitting identical semiochemicals to those of the female
wasps [11, 12]. However, there are other intriguing exam-
ples of convergent evolution that have evolved under
completely different ecological selection pressures, includ-
ing defense against herbivory. Plant cyanogenic glucosides
are highly toxic anti-feedants that are sometimes seques-
tered by caterpillars for their own anti-predator defense

[49]. Such anti-predator defense provides a sufficiently
strong selective advantage that the Burnet moth (Zyaena
filipenduale) has evolved the ability not only to sequester
linamarin and lotaustralin from its host plant Lotus corni-

culatus, but also to synthesize these compounds de novo
[50].

In our study system, the association between bark beetles
and blue-stain fungi benefits both parties. Blue-stain fungi
depend on bark beetles for their dispersal, whereas fungi
increase the efficacy of beetle attacks since the fungi help to
neutralize tree defenses [17, 18]. This mutual benefit suggests
that it would be a selective advantage for fungi and beetles to
use mutually intelligible signaling systems. The production
of the same chemical signals by blue-stain fungi and insects
in our case, is most probably not a synplesiomorphy (an
ancestral trait shared by insects and fungi), but rather a
homoplasy (convergent evolution of similar traits between
species with no recent common ancestor). If biosynthesis of
bicyclic ketals was an ancestral trait present in the common
ancestor of fungi and animals we would expect to find this
trait in many or most extant species of fungi and animals, but
this is not the case. The available information suggests that
bicyclic ketal production occurs sporadically among fungi,
insects, plants and mammals [28, 29, 37, 51–53]. The fact
that fungi and insects appear to use different biosynthetic
pathways to produce bicyclic ketals [34, 37] also suggest that
de novo synthesis of bicyclic ketals in blue-stain fungi and
bark beetles is an example of convergent evolution and not a
synplesiomorphy. The bark beetle D. ponderosae utilizes
mono-unsaturated palmitic and oleic acid to produce exo-
brevicomin [34]. Spores of five different fungal species
produced no bicyclic ketals when provided with these fatty
acids, but produced spiroketals on poly-unsaturated linoleic
and linolenic acid media [37]. We therefore infer that we
have established yet another example of the rarely docu-
mented phenomenon of convergent evolution of semi-
ochemicals across kingdoms.

There is increasing evidence that volatile metabolites of
microbial symbionts act as signals to insects, providing
information about various aspects of habitat suitability [3,
4]. In bark beetle-fungal systems, it is known that volatiles
released by Ophiostoma novo-ulmi (the pathogen causing
Dutch elm disease) are attractive to its American vector, the
elm bark beetle (Hylurgopinus rufipes) [54]. The redbay
ambrosia beetle (Xyleborus glabratus) and three co-
occurring beetle species (Xyleborus ferrugineus, Xylosan-
drus crassiusculus and Xyleborinus saxesenii) are attracted
to the odors of their symbiotic fungal species [55]. Simi-
larly, the parasitoid pteromalid wasp (Heydenia unica)
attacking the larvae of the pine engraver beetle (Ips pini)
can exploit volatiles released by the blue-stain fungus
Ophiostoma ips to locate its bark beetle host [56]. However,
the chemical basis underlying these different interactions is

Fig. 5 Representative GC-EAD recordings showing that both male
and female Ips typographus have a clear antennal response towards
exo-1,3-dimethyl-2,9-dioxa-bicyclo[3.1.1]nonane (1,3-DMDBN) and
endo-1,3-DMDBN presented in hexane extracts of bark plugs inocu-
lated with the blue-stain fungus Grosmannia europhioides. Extractions
were conducted 11 days after fungal inoculation

Convergent evolution of semiochemicals across Kingdoms: bark beetles and their fungal symbionts 1541



largely unknown. Our study provides the first evidence that
blue-stain fungi can synthesize bicyclic ketals functioning
as bark beetle aggregation pheromones, anti-aggregation
pheromone or other semiochemicals.

Many Dendroctonus, Dryocoetes, and Hylastes bark beetle
species synthesize exo-brevicomin and endo-brevicomin and
use them as aggregation or anti-aggregation pheromones [51].
In Europe, males of D. autographus produce a blend of exo-
brevicomin and endo-brevicomin that attracts both male and
female beetles on Norway spruce [27]. Interestingly, there are
also reports that I. typographus has olfactory receptor cells
specific to exo-brevicomin [57, 58] and that this compound
enhances the attraction of male beetles to the commercial
pheromone blend Ipslure (consisting of ipsdienol, cis-verbe-
nol and 2-methyl-3-butene-2-ol) [58]. exo-Brevicomin has
also been found to be attractive to I. typographus, the six-
spined spruce bark beetle(Pityogenes chalcographus) and
other secondary bark beetle species in field experiments [59].
Collectively, these observations suggest that exo-brevicomin
and endo-brevicomin produced by fungi may be used as
interspecific chemical cues for host location by bark beetles in
Norway spruce ecosystems.

trans-Conophthorin functions as a spacing signal that
reduces attack density and competition in several conifer-
infesting bark beetles in Europe, including I. typographus,
the two-toothed pine beetle (Pityogenes bidentatus) and the
twig beetle (Pityophthorus pubescens) [28, 60, 61]. This
compound has been reported as a non-host volatile from
broadleaf tree species [28], but has also been detected in
male ash bark beetles (Leperisinus varius), in the frass of
the fir bark beetle (Cryphalus piceae) [62] and from spores
of almond-infecting and pistachio-infecting Aspergillus,
Penicillium and Rhizopus fungi [37]. In our study, trans-
conophthorin was only produced by the two Grosmannia

species which are virulent tree pathogens that very effec-
tively metabolize tree defense chemicals [18]. Seven times
more trans-conophthorin was produced by G. penicillata

than by its less virulent relative G. europhioides. A possible
interpretation of this result is that virulent fungi have
evolved volatile signaling mechanisms to reduce beetle
density and thus diminish competition from other beetle-
vectored fungal communities.

In addition to brevicomins and trans-conophthorin, we
detected the bicyclic ketals exo-1,3-DMDBN and endo-1,3-
DMDBN from spruce bark colonized by species of Gros-
mannia and Ophiostoma. Interestingly, both 1,3-DMDBN
diastereomers induced antennal responses in both female
and male I. typographus. The endo-isomer of 1,3-DMDBN
has been suggested to be a host-specific substance, whereas
the exo-isomer has not previously been identified from bark
beetle systems [26]. We showed that spruce bark colonized
by species of Grosmannia and Ophiostoma emitted both
compounds, but the compounds were not detected from

fungi growing on malt agar, control spruce bark, or bark
colonized by E. polonica. This suggests that the tested
Grosmannia and Ophiostoma species can produce these
compounds from precursors present in spruce bark. Further
studies are needed to explore whether these compounds
induce behavioral responses in bark beetles.

Our 13C labeling studies unequivocally demonstrated that
G. europhioides can produce (+)-exo-brevicomin and
(5S,7S)-trans-conophthorin de novo. It is interesting to note
from the experiments that the exo-diastereomer and endo-
diastereomer of brevicomin might be produced by different
biosynthetic pathways, as G. europhioides mainly produced
exo-brevicomin when growing on malt agar, but required
bark precursors to produce significant amounts of endo-
brevicomin.

From our enantioselective GC analysis, it was evident
that the enantioselectivity of the bicyclic ketals synthesized
by G. europhioides closely matched the enantioselectivity
of bark beetle- and plant-produced semiochemicals. The
fungi produced (+)-exo-brevicomin and (5S,7S)-trans-con-
ophthorin of high enantiomeric purity. This is in agreement
with previous observations from the Western balsam bark
beetle (Dryocoetes confusus) and the mountain pine beetle
for brevicomin [63], and from angiosperm trees for trans-
conophthorin [33]. The closely matched stereochemistry
between plants, animals and fungi supports convergent
evolution and possible signal appropriation between the
organisms.

Blue-stain fungi are vectored by specialist or generalist
bark beetles colonizing living trees or downed timber [20,
40, 64]. Sticky fungal spore masses carried on long-necked
fruiting bodies provide a direct mechanism for the fungi to
attach to the bodies of their vectors [10]. Blue-stain fungi
have probably evolved the ability to produce volatile che-
mical signals to attract insect vectors that can transport the
fungi to a new tree. In this study, E. polonica which is
mainly associated with the spruce bark beetle [40, 41, 43],
was the only fungus that did not produce any bicyclic ketals
in either fresh spruce bark or malt agar. The ketal-producing
Ophiostoma and Grosmannia species we studied are, on the
other hand, associated with a range of bark beetle vectors
(Table S1) [38–40, 42, 43] including D. autographus [42,
43, 65], a European bark beetle species that produces and
uses exo-brevicomin and endo-brevicomin in its intraspe-
cific communication [19, 49]. In central Europe, 44% of the
examined D. autographus carry O. piceae [42], suggesting
a close association between the beetle and the fungus.
Interestingly, O. piceae, which is associated with a wide
range of bark beetle species in Europe and North America
[42, 43, 66], produced the highest amounts of exo-brevi-
comin in our study. These observations suggest that pro-
duction of exo-brevicomin and endo-brevicomin by fungi
may enhance their likelihood to be transported to host trees
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by multiple bark beetle species. However, the fact that the
two studied Grosmannia species also produced trans-con-
ophthorin, an anti-attractant and spacing signal for different
bark beetles, suggests that interactions between Grosman-

nia blue-stain fungi and beetles may be more complex.
More in-depth studies considering the dose and proportion
of the compounds are needed to evaluate the behavioral
effects of fungal volatile mixtures on bark beetles and other
insects.

In conclusion, this study provides the first evidence that
blue-stain fungi can biosynthesize bicyclic ketals acting as
bark beetle pheromones and other semiochemicals. These
results confirm the outcome of our exploratory study of
blue-stain fungi producing the key pheromone component
of the spruce bark beetle [25], and provide important new
insights into beetle pheromone production as well as the
interaction between bark beetles and symbiotic blue-stain
fungi. Further, our findings support the hypothesis of con-
vergent evolution of chemical signal use between blue-stain
fungi and bark beetles. We demonstrate an intriguing
commonality in chemical signals between species of dif-
ferent Kingdoms: by producing bark beetle semiochemicals,
fungi probably increase the probability of their own survival
and transmission to new hosts, while the bark beetles may
use these compounds as chemical cues to find suitable
hosts. The symbiotic relationship between beetles and fungi
is intricate, and thus potentially vulnerable to disruption;
our findings may, therefore, lay the foundation for new
innovative pest management strategies using fungal
volatiles.
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