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Given the mounting convergent evidence implicating many
more genes in complex disorders such as bipolar disorder
than the small number identified unambiguously by the first-
generation Genome-Wide Association studies (GWAS) to date,
there is a strong need for improvements in methodology. One
strategy is to include in the next generation GWAS larger
numbers of subjects, and/or to pool independent studies
into meta-analyses. We propose and provide proof of
principle for the use of a complementary approach, convergent
functional genomics (CFG), as a way of mining the existing
GWAS datasets for signals that are there already, but did
not reach significance using a genetics-only approach. With
the CFG approach, the integration of genetics with genomics,
of human and animal model data, and of multiple independent
lines of evidence converging on the same genes offers a way of
extracting signal from noise and prioritizing candidates. In
essence our analysis is the most comprehensive integration of
genetics and functional genomics to date in the field of bipolar
disorder, yielding a series of novel (such as Klf12, Aldhlal,
A2bp1, Ak311, Rorb, Rora) and previously known (such as Bdnf,
Arntl, Gsk3b, Discl, Nrgl, Htr2a) candidate genes, blood bio-
markers, as well as a comprehensive identification of pathways
and mechanisms. These become prime targets for hypothesis
driven follow-up studies, new drug development and personal-
ized medicine approaches. © 2008 Wiley-Liss, Inc.
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The recent availability of massively parallel genotyping techno-
logies has made genome wide association studies (GWAS) feasible,
with initial interesting results reported in a variety of complex
disorders [GWAS, 2007; McPherson et al., 2007; Kingsmore et al.,
2008; Willer et al., 2008]. However, the number of SNPs identified
unambiguously, after correction for multiple comparisons, is rela-
tively small, and the number of known genes unambiguously
implicated by them is even smaller [Zeggini et al., 2007]. At least
part of the problem facing genetic-only approaches in complex
disorders may be related to extreme genetic heterogeneity [Walsh
et al., 2008]. Given the mounting convergent evidence implicating
many more genes in complex disorders [Walsh et al., 2008; Sun
et al., 2008a] than the small number identified by the first-genera-
tion GWAS to date, there is a strong need for improvements in
methodology. One strategy is to include in the next generation of
GWAS larger number of subjects, and/or pool independent studies
into meta-analyses [Zeggini et al., 2008]. We propose the use of a
complementary approach, convergent functional genomics (CFG)
[Niculescu et al., 2000a; Ogden et al., 2004; Le-Niculescu et al.,
2007a,b; Le-Niculescu et al., 2008a,b], as a way of mining the
existing GWAS datasets for signals that are there already, but did
not reach significance using a genetics-only approach. With the
CFGapproach, the integration of genetics with genomics, of human
and animal model data, and of multiple independent lines of
evidence converging on the same genes offers a way of extracting
signal from noise, and prioritizing candidates for future focused
validatory studies-individual candidate gene association studies
with more SNPs tested per gene, deep re-sequencing, and/or
biological validation such as transgenic animal work [Le-Niculescu
et al., 2008b].

Aspart ofa CFG strategy, we have used data from three published
GWAS datasets for bipolar disorder [GWAS, 2007; Baum et al.,
2008]. We integrated those data with human postmortem brain
gene expression data and human blood gene expression data, as well
as with relevant animal model brain and blood gene expression data
generated by our group [Niculescu et al., 2000a; Ogden et al., 2004;
Le-Niculescu etal., 2007b, 2008a,b]. In addition, we have integrated
as part of this comprehensive approach other published human
genetic (linkage or association) data for bipolar and related dis-
orders to date, and relevant mouse genetic (QTL or transgenic)
data. Genes were prioritized based on a scoring of multiple inde-
pendent lines of evidence, followed by pathway analyses of the top
candidate genes. Finally, we have looked at whether the top candi-
date genes identified by our analysis are represented in a recently
published independent GWAS [Sklar et al., 2008].

The GWA data for the bipolar study from the Wellcome Trust
is available at http://www.wtccc.org.uk/info/access_to_data_
samples.shtml [2007]. The GWA data from NIMH and German
studies is available at http://mapgenetics.nimh.nih.gov/bp_pooling
[Baum et al., 2008]. We have used the genotypic test P-value
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(standard analysis). We used two nominal P-value thresholds for
SNP selection-alower stringency threshold (P < 0.05), and a higher
stringency threshold (P < 0.001). The GWA data from the STEP-
BD study, used as a replication cohort to test our top findings, is
available at http://pngu.mgh.harvard.edu/~purcell/bpwgas. No
Bonferroni correction for number of SNPs tested was performed.

To identify the genes that correspond to the selected SNPs, the lists
of SNPs from the GWAS was uploaded to the SNPPER website
(http://snpper.chip.org). In the cases where a SNP mapped to a
region close to multiple genes, we selected all the genes that were
provided by SNPper. SNPs for which no gene was identified were
not included in our subsequent analysis.

Information about our candidate genes was obtained using
GeneCards (http://www.genecards.org), the Online Mendelian
Inheritance of Man database (http://ncbi.nlm.nih.gov/entrez/
query.fcgitdb=OMIM), as well as database searches using
PubMed (http://ncbi.nlm.nih.gov/PubMed) and various combi-
nations of keywords (gene name, bipolar, depression, human,
postmortem, brain).

To designate convergence for a particular gene, the gene had to map
within 10 ¢cM [see Niculescu et al., 2000b for detailed discussion] of
a microsatellite marker for which at least one published study
showed evidence for linkage for bipolar disorder or depression,
or a positive association study for the gene itself was reported in the
literature. The University of Southampton’s sequence-based inte-
grated map of the human genome (The Genetic Epidemiological
Group, Human Genetics Division, University of Southampton:
http://cedar.genetics.soton.ac.uk/public_html/) was used to obtain
cM locations for both genes and markers. The sex-averaged cM
value was calculated and used to determine convergence to
a particular marker. For markers that were not present in the
Southampton database, the Marshfield database (Center for Medi-
cal Genetics, Marshfield, WI: http://research.marshfieldclinic.org/
genetics) was used with the NCBI Map Viewer web-site to evaluate
linkage convergence.

We have established in the lab manually curated databases of all
the published human postmortem and human genetic literature to
date on bipolar and related disorders. These large databases have
been used in our CFG cross-validation analyses.

For animal model brain and blood gene expression evidence,
we have used previously generated data from two different
animal models for bipolar disorder developed by our group, one
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pharmacogenomic and one transgenic [Ogden et al., 2004; Le-
Niculescu et al., 2007a,b, 2008a,b].

Mouse Genetic (QTL, Transgenic) Convergence

To search for mouse genetic evidence—quantitative trait loci
(QTL) or transgenic—for our candidate genes, we utilized the
MGI_3.54—Mouse Genome Informatics (Jackson Laboratory, Bar
Harbor, ME) and used the search menu for mouse phenotypes and
mouse models of human disease/abnormal behaviors, using the
following sub-categories: abnormal emotion/affect behavior and
abnormal sleep pattern/circadian rhythm. To designate conver-
gence for a particular gene, the gene had to map within 10 cM of a
QTL marker for the abnormal behavior, or a transgenic mouse of
the gene itself displayed that behavior.

Convergent Functional Genomics (CFG)
Analysis Scoring

Genes from GWAS data that had SNPs with nominal P-values of
<0.05 received 1 point; those that had SNPs with nominal P-values
of <0.001 received 2 points (see Fig. 1). All other cross-validating
lines of evidence (other human data, animal model data) received a
maximum of 1 point each (for human genetic data, 0.5 points if it is
linkage, 1 point ifit is association; for mouse genetic data, 0.5 points
ifitis QTL, 1 point if it is transgenic). Thus the maximum possible
CFG score for each gene is 12 (6 =2 x 3 points from the three
GWAS, and 6 points from the other lines of evidence). As we are
interested in discovering signal in GWAS, we weighted data from
GWAS more heavily, bringing the data from this one methodolog-
ical approach on par with the data from all the other methodological
approaches combined. It has not escaped our attention that other
ways of weighing the scores of line of evidence may give slightly
different results in terms of prioritization, if not in terms of the list of
genes per se. Nevertheless, we feel this simple scoring system
provides a good separation of genes based on our focus on
identifying signal in the GWAS.

Animal Model
OTL{Transgenic Evidence

Postmortem Brain

Animal Model Evidonce

Brain Evidence

Blamarier

Sensitivity

Pathway Analysis

Ingenuity 6.0 (Ingenuity Systems, Redwood City, CA) was em-
ployed to analyze the molecular networks, biological functions and
canonical pathways of the top candidate genes resulting from our
CFG analysis (Fig. 3), as well as to identify genes in our datasets that
are the target of existing drugs (Table IIS).

We have also used another independent pathway analysis pack-
age, MetaCore (GeneGo, Encinitas, CA) to analyze genes functions
in diseases (Fig. 5).

RESULTS
Top Candidate Genes

In order to minimize false negatives, we initially cast a wide net,
using as a filter a minimal requirement for a gene to have both some
genetic and some functional genomic evidence (Table IS). We thus
generated an initial list of 1,529 unique genes with P < 0.05 in at
least one of the three primary GWAS analyzed, that also had some
functional (gene expression) evidence (human or animal model
data), implicating them in bipolar disorder or depression. Of
interest, a similar analysis for a recent independent GWAS
(STEP-BD) [Sklar et al., 2008] yielded just 96 additional new
genes (see Supplementary Information—Table IS) over the 1,529
we originally identified, suggesting that: (1) with our genetic-
genomic filtering of the three GWAS in the primary analysis we
are already capturing most of the genes that may be involved in
bipolar disorder, with additional studies providing an asymptotic
contribution beyond this point; and (2) that the number of genes
potentially involved, directly or indirectly, in bipolar disorder may
be indeed quite large, up to 10% of the genome.

In order to minimize false positive, we then used a CFG analysis
integrating multiple lines of evidence to prioritize this initial list of
1,529 genes, and focused our subsequent analyses on only the top
CFG scoring candidate genes. Forty-one genes had a CFG score of 6
and above (>50% of maximum possible score) (Fig. 2). One
hundred thirteen genes had a CFG score of 5 and above
(>2 42+ 1 = maximum score for gene expression data in human
brain and blood + maximum score for gene expression data in
animal models brain and blood + at least one nominal P-value
signal in a GWAS) (Table I).

As a way of testing the validity of our approach, we have
examined if our top findings were over-represented in an indepen-
dent GWAS of bipolar disorder [Sklar et al., 2008]. Thirty of the top
41 genes identified by our approach had a P-value of <0.05 in that
independent study, an estimated fourfold enrichment over what
would be expected by chance alone in that study (see Table II).

Candidate Blood Biomarkers

Of the top candidate genes from Table I (see also Fig. 2), 32 out of
113 have prior blood gene expression evidence implicating them as
potential blood biomarkers. The additional evidence provided by
GWAS data indicates a genetic rather than purely environmental
(medications, stress) basis for their alteration in disease, and their
potential utility as trait rather than purely state markers.
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Human Postmortem Evidence

Blood Biomarker Candidate

Cacnata

Pathways and Mechanisms

We classified our top candidate genes from Table I into biological
groups of interest previously reported to have relevance to the
pathophysiology of bipolar and related disorders (see Table III).
Ingenuity pathway analysis was carried out on the top 41 genes
(Fig. 3A), as well as on the more extensive list of 113 top genes
(Fig. 3B). Ingenuity was employed to analyze the molecular net-
works, biological functions and canonical pathways of the top
candidate genes resulting from our CFG analysis (Fig. 3A,B), as
well as to identify genes in our datasets that are the target of existing
drugs (Table IIS). We have also used another independent pathway
analysis package, MetaCore (GeneGo, Encinitas, CA) to analyze
genes functions in diseases (Fig. 5). Finally, a model summarizing
the data is depicted in Figure 4.

DISCUSSION

Our CFG approach helped prioritize, as expected, genes for which
there was consistent evidence among the three GWAS datasets, or
stronger evidence in one or another of the datasets. However, it also
prioritized genes with weaker evidence in the GWAS data, but with
strong independent evidence in terms of gene expression studies
and other prior human or animal genetic work.

Atthe top of our list of candidate genes we have four genes: Arntl,
Bdnf, Aldhlal, and KlIf12. Notably, of the four top candidate genes
for bipolar disorder identified by our combined approach (KIf12,
Arntl, Bdnf, Aldhlal) (Fig. 2), one of them—XKIf12 (Kruppel-like
factor 12), had not been previously suspected to be involved in
bipolar disorder, or indeed in neuropsychiatric disorders. It shows
modest but consistent signal (P< 10>, 10~*) across all three

k1 Discl Grial Lmal
it <S5 S R Ty

primary GWAS datasets. KIf12 maps to a mouse QTL for abnormal
emotion/affect behavior, and to a linkage locus on chromosome
13q22.1 previously implicated in bipolar disorder [Potash et al.,
2003]. KIf12 is a transcription factor, more specifically a zinc finger
transcriptional repressor. Other transcription factor top candidate
genes identified by our analysis include Mytll, Tshz2, and Zhx2
(Fig. 2, and Tables I and III). Transcription factors are particularly
interesting as effectors of broad phenotypic changes, due to thelarge
number of genes they regulate. It is thus possible that by themselves,
or in oligogenic combinations, they can account for complex
disorders such as bipolar disorder. In our own animal model work,
KIf12 was inversely changed in the pre-frontal cortex (decreased)
and the amygdala (increased) of Dbp KO ST manic-like mice
[Le-Niculescu et al., 2008b]. We have also identified KIf12 as a
candidate blood biomarker in recent human studies, increased in
expression in low mood (depression) [Le-Niculescu et al., 2008a].
The model that emerges, then, is that KIf12 may be involved in
suppressing genes involved in elevated mood. Gain of function
mutations or promoter mutations that lead to overexpression are
likely to manifest as depressive phenotypes, and loss of function
mutations or promoter mutations that lead to decreased expres-
sion, as manic phenotypes.

Arntl (aryl hydrocarbon receptor nuclear translocator-like), also
atranscription factor, is a circadian clock gene. Other circadian top
candidate genes identified by our analysis include Rorb, Rora, and
Rxrg (Fig. 2, and Tables I and III). Circadian rhythm and
sleep abnormalities have long been described in bipolar
disorder—excessive sleep in the depressive phase, reduced need
for sleep in the manic phase [Bauer et al., 2006]. Sleep deprivation is
one of the more powerful and rapid acting treatment modalities for
severe depression, and can lead to precipitation of manic episodes
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in bipolar patients [Wirz-Justice et al., 2004]. Clock genes ex- which is a primary regulator of circadian rhythms and clock gene
pression levels (Dbp, Perl, and Per2) have been reported to be expression;associations between polymorphisms in the clock genes
changed by sleep deprivation in rodents [Wisor et al., 2002]. Arntl, Per2, and Npas2 and SAD have previously been reported
Seasonal affective disorder (SAD), a variant of bipolar disorder [Johansson et al., 2003; Partonen et al., 2007]. We had previously
[Magnusson and Partonen, 2005], is tied to the amount of daylight, described the identification of clock gene D-box binding protein
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(Dbp) as a potential candidate gene for bipolar disorder [Niculescu
et al., 2000b], using a CFG approach. Dbp was changed in expres-
sion by acute methamphetamine treatment in rat pre-frontal cortex
(PFC) [Niculescu et al., 2000b], and mapped near a human genetic
linkage locus for bipolar disorder [Morissette et al., 1999] and for
depression [Zubenko et al., 2002] on chromosome 19q13. Subse-
quently, Dbp was also reported changed in expression by acute and
chronic amphetamine treatments in mice [Sokolov et al., 2003].

Moreover, Dbp knock-out mice have abnormal circadian and
homeostatic aspects of sleep regulation [Franken et al., 2000]. More
recently, we have conducted extensive behavioral and gene expres-
sion studies in Dbp KO mice. These mice display a bipolar-like
phenotype [Le-Niculescu et al., 2008b], which is modulated by
stress. Decreases in Dbp expression have also been recently reported
in fibroblasts from bipolar subjects [Yang et al., 2008]. In parallel,
work carried out by us using an expanded CFG approach ina mouse
pharmacogenomic model for bipolar disorder identified Arntl and
aseries of other clock genes (Cry2, Csnk1d, and Ccr4/nocturnin), as
potential bipolar candidate genes [Ogden et al., 2004]. Following
that, three independent reports have shown some suggestive asso-
ciation for Arntl in human bipolar samples [Mansour et al., 2006;
Nievergelt et al., 2006; Shi et al., 2008]. Arntl is upstream of Dbp in
the circadian clock intracellular molecular machinery, driving the
transcription of Dbp [Ripperger and Schibler, 2006; van der Veen
et al., 2006]. An increase in Arntl gene expression was reported in
postmortem brains from bipolar subjects [Nakatani et al., 2006].
Overall, Arntl and related circadian clock genes are compelling
candidates for involvement in bipolar disorders, especially the core
clinical phenomenology of cycling and switching from depression
to mania [Bunney and Bunney, 2000; Wager-Smith and Kay, 2000;
Niculescu et al., 2000b; Niculescu and Kelsoe, 2001; Kelsoe and
Niculescu, 2002; Lenox et al., 2002; Hasler et al., 2006; Wirz-Justice,
2006; McClung, 2007; Le-Niculescu et al., 2008b].

Bdnfis a growth factor involved in neurotrophicity and synaptic
transmission. Other growth factor top candidate genes identified by
our analysis include Nrgl, Fgf12, and Ptn (Fig. 2, and Tables I and
III). Bdnf has been previously implicated in a variety of neuropsy-
chiatric disorders, by both animal model and human studies:
depression [Pezawas et al., 2008; Sen et al., 2008], bipolar
disorder [Ogden et al., 2004], anxiety, alcoholism [Rodd et al.,
2007], and schizophrenia [Le-Niculescu et al., 2007a; Chao et al.,
2008]. Notably, there are several candidate gene association studies
to date implicating Bdnf in bipolar disorder [Fan and Sklar, 2008;
Liu et al., in press].

Aldhlal has been previously implicated in brain development
[Denisenko-Nehrbass et al., 2000], schizophrenia [Galter et al.,
2003], and alcoholism [Moore et al., 2007]. An intriguing finding is
that of Oprm1 (opioid receptor mu 1) as a top candidate gene for
bipolar. Oprm1 has been implicated in pain regulation [Oertel
and Lotsch, 2008], substance abuse disorders [Luo et al., 2008],
attachment behaviors [Barr et al., 2008], and suicide [Hishimoto
et al., 2008]. Earlier work by us using animal models and a CFG
approach had identified an overlap between candidate genes in-
volved in mood regulation and pain regulation, such as Penk
(preproenkephalin) [Ogden et al., 2004; Le-Niculescu et al., 2008b].

A surprising finding is that of amyloid beta precursor protein
(App), an Alzheimer disease (AD) candidate gene, among the top
candidate gene for bipolar disorder (Table I), as well as the overall
amyloid pathway being among the top canonical pathways
identified (Fig. 3A). Another key gene involved in AD, Gsk3b, is
also present on our list of top candidate genes. There is an
interesting epidemiological literature showing increased AD in
bipolar patients, and the prophylactic effect of the mood stabilizer
lithium on the incidence of AD in bipolar patients [Nunes et al.,
2007]. Notably, Gsk3b is a target of lithium treatment [Beaulieu
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Growth Factars
Bdnf, Nrgl, Fgf12, al.

r'f
Connectivity/ Cell Adhesion
Mbp, Qki, Olig2, Mytll, Pedhd,
Pcdh?, Cdh13, Cdad, Nav2,
Ankz, Nream, al.

P

Metabolism/ Proliferation/
Apoptosis

AZbpl, Atxnl, Aldhlal, Ak3I1,

Acach, Ndufs2, Gsk3b, Dapkl,
Cacnala, al.

et al., 2008a], as well as of serotonergic anti-depressants [Beaulieu
etal., 2008b]. App has recently been shown to have a neurotrophic
role [Oh etal., 2008], similar in some ways to growth factors such as
Bdnf. App has also been reported to be increased in expression in
bipolar postmortem brains compared to normal controls [Jurata
etal.,2004]. It remains unclear if App’s role in AD is pathogenicor is
in fact a defense/compensatory mechanisms to try to maintain
neuronal survival [Rohn et al., 2008]. If the later scenario is true,
new compounds being developed for AD that target App might not
stop the illness. Regardless if that turns out to be the case or not,
drugs that regulate App levels may have an impact on mood (i.e.,
downregulation of App may be depressogenic), a particular con-
cern given the prevalence of depression in the elderly in general
[Alexopoulos et al., 2005], and in AD patients in particular [Sun
et al., 2008b].

Limitations and Confounds

No correction of best P-values for number of SNPs tested/gene size
effect was performed. While this is arguably a valid statistical issue
for genetic studies by themselves, some of the multiple SNPs tested
per gene could be in linkage disequilibrium, and the Bonferroni
correction might be too conservative [Rice et al., 2008]. Moreover,

N

e 9

Neurotransmitters/ Signaling

Grial, Grikl, Grm3, Grml,
Htr2a, Nos1, Oprm1, Syn3,
Kcnkl, Kend2, SlcBal, Ryr3,

Prkce, Pdel0a, Discl, al.

/

Clock Genes/
Transcription Factors

Arntl, Rorb, Rora, Rxrg, KIf12,
Nr3cl, al, |

it could introduce a bias against large-size genes, which generally
have more SNPs tested than smaller genes. Of course, the converse is
true if we do not correct for number of SNPs tested and one would
expect some noise due to gene size effects. However, we did not
observe a significant correlation between gene size and our
top candidate genes (Supplementary Information—Fig. 1S and
Table IIIS). That may be due to the fact that we are using this
evidence for integration across platforms and modalities, along
with a series of other lines of evidence that have their own attendant
noise, as part of a Bayesian-like approach to pull signal from noise
and prioritize findings. The convergence of lines of evidence
arguably factors out the noise of the different individual ap-
proaches, and makes our network-like CFG approach relatively
resilient to error even when one or another of the nodes (lines of
evidence) is weak (Fig. 1).

Our approach relies on a list of genes from the GWAS datasets
generated by SNPPER identifying SNPs in genes. We may thus be
missing genes where the assignment is not made by the software,
and discarding SNPs that fall into regulatory regions, such as
promoter or enhancer regions. Moreover, genes where the illnesses
associated SNPs do not lead to a change in expression levels are not
included in our CFG-GWA cross-validation. Similarly, genes that
have changes in expression levels but no intragenic SNP in the
GWAS datasets are not included. Interestingly, some of these later
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genes may be changed in expression as a consequence of distal
regulatory SNPs or other genes in a network, an exciting area for
future system biology studies awaiting better bioinformatic tools
and data analysis now on the horizon [Stumpf et al., 2008].

Other animal models data could potentially be used for CFG
cross-validation, in addition to the data from the pharmaco-
genomic (methamphetamine/valproate) [Ogden et al., 2004] and
the genetic (DBP knock-out mouse) [Le-Niculescu et al., 2008b]
models that we generated and used. However, these are some of the
best animal models with corresponding comprehensive brain and
blood gene expression datasets published to date. Moreover, we
relied, as an additional line of evidence, on an extensive public
mouse QTL/transgenic database.

2. Schizophrenia and Disorders with Psychotic Features
3. Mental Disorders
4. Psychiatry and Psychology
5. Bipolar Disarder
6. Affective Disorders, Psychatic
7. Mood Disorders
8. Bran [nseases
9. Delinum, Dementia, Amnestic, Cognitive Cisorders
10. Central Nervous System Diseases
11. Dementia
12. Neurodegenerative Diseases
13. Nervous System Diseases
14. Tauopathies
15. Alzheimer Disease
18. Cardiovascular Diseases
17. Movement Disorders
18. Basal Ganglia Diseases
19. Parlansonian Disorders
20. Neurclogic Manifestations

As new human blood, postmortem brain, and human genetic
studies are published, new evidence will be available for some of the
genes we have identified. However, any new evidence will not
remove genes from our results, but rather move them up higher
in the prioritization list/pyramid (Fig. 2).

Different ways of weighing the lines of evidence included in the
CFG analysis rather than the equal weight approach we have used
may become available in the future, based on more empirical and
quantitative methods. Other ways of weighing the scores of line of
evidence may give slightly different results in terms of prioritiza-
tion, if not in terms of the list of top genes per se.

Pathways identified by Ingenuity and GeneGo may be based on
some of the same body of knowledge and published literature used
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in our direct CFG scoring. However, it is reassuring to see that
different independent systematization and curation effortslead to a
consistent picture of genes involved in behavior, neurological
disease, psychological disorders, and nervous system development
coming up at the top of the over-represented pathways from our
top candidate genes for bipolar disorder identified by our
genetic—genomic combined approach.

In spite of these notable limitations, our analysis is arguably the
most comprehensive integration of genetics and functional geno-
mics to date in the field of bipolar disorder, yielding a series of
candidate genes, blood biomarkers, pathways and mechanisms,
that are prime targets for follow-up hypothesis driven studies. Such
studies may include individual candidate gene association studies
with more SNPs tested per gene, deep re-sequencing, and/or
biological validation such as cell culture [Pletnikov et al., 2007]
and transgenic animal work [Hikida et al., 2007; Le-Niculescu et al.,
2008b].

First, the model that emerges from this work (Fig. 4) is consistent
with mood being a function of trophicity [Niculescu, 2005],
through energy metabolism [Quiroz et al., 2008] as well as cellular
growth and proliferation [Le-Niculescu etal., 2008a]. Speculatively,
from an evolutionary standpoint, it may make sense for the
organism to react to a favorable environment by activity and
expansion, and to an unfavorable environment by inactivity and
retraction-the “mood as a muscle” model [Niculescu, 2005]. In this
view, high resources translate into high mood and high libido, as the
environment is favorable and can support growth, expansion and
progeny. The threshold to pain may be elevated [Ogden et al., 2004],
so activity can occur even in the face of actual injuries. Conversely,
low resources translate into a low mood and low libido, as the
environment is unfavorable and cannot support more growth,
expansion and progeny. The threshold to pain is reduced, so one
can react and retract in the face of potential injuries [Niculescu
and Akiskal, 2001a,b]. In clinical illness (bipolar disorder,
depression), this congruence between mood and environment is
arguably lost and/or the mood reaction to environmental cues is
disproportionate.

Second, despite the fact that our analysis uses only data from
human and animal studies focused on bipolar and related disorders,
it is likely that some of the genes and pathways identified in this
report are not implicated only in bipolar disorder and depression,
but also in other psychiatric disorders, such as schizophrenia [Le-
Niculescu et al., 2007a]. Indeed, we provide some evidence for that
(Fig. 5). While some of this overlap might be due to limitations in
precision of diagnostic ascertainments in human studies and
limitations in specificity to a disorder in animal studies, an alter-
native and more compelling explanation is that the genetic and
neurobiological structure of psychiatric disorders is modular in a
Lego-like fashion [Niculescu et al., 2006], with building blocks in
different permutations leading to different clinical disorders.

Third, our work provides additional integrated evidence focus-
ing attention on and prioritizing a number of genes as candidate
blood biomarkers for bipolar disorder, with an inherited genetic
basis (Table I). While prior evidence existed as to alterations in gene
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expression levels of those genes in whole-blood samples or lym-
phoblastoid cell lines (LCLs) from mood disorders patients, it was
unclear prior to our analysis whether those alterations were truly
related to the disorder or were instead related to medication effects
and environmental factors, or indeed were frankly artifactual.

Last but not least, our work provides a proof of principle for how
such a combined approach, integrating functional and genotypic
data, can be used for other complex disorders-psychiatric and non-
psychiatric. What we are beginning to see across GWAS of complex
disorders are not necessarily the same genes showing the strongest
signal, but rather consistency at the level of gene families or
biological pathways. The distance from genotype to phenotype
may be a bridge too far for genetic-only approaches, given the
intervening complex layers of epigenetics, gene expression regula-
tion and endophenotypes [Tan et al., 2008]. Using GWAS data in
conjunction with gene expression data as part of CFG or integrative
genomics [Degnan et al., 2008] approaches, followed by
pathway—Ilevel analysis of the prioritized candidate genes, can
serve as the necessary Rosetta Stone for unraveling the genetic
code of complex disorders such as bipolar disorder. A whole body of
work will then need to follow in terms of personalizing diagnosis
and treatment based on particular combinations of genes and gene
expression patterns, leading to major re-evaluations of current
clinical nosology.
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Figure 1S. Top candidate genes - gene size. Top candidate genes (n=113) from Table 1 are
depicted. There is no significant correlation between gene size and the identification/prioritization of
candidate genes using our CFG approach.
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Table 1S. Overlap of genetic and functional genomic evidence.

Number of these genes
for which there is

Number of genes with published gene
Number<c6f(;35NPs at at least one SNP at expression evidence in
p<P. p<0.05 bipolar and related
disorders (animal models
and/or human data)
NIMH 35,389 6,541 936
German 29,296 6,202 865
WTCC 28,345 4,951 723

Unique genes combining
the 3 above studies: 1529

STEP-BD 20,991 3,654 572

Extra genes identified by

STEP-BD in addition to

those identified by the 3
GWAS used in the
primary analysis: 96




Table 2S. Top candidate genes and existing drugs. Genes in Table 1 that are targets of
existing drugs (Ingenuity analysis).

Gene Symbol/ Name Type Drugs
Aldh1at
aldehyde dehydrogenase 1 family, member enzyme disulfiram, chlorpropamide
Al
App
amyloid beta (A4) precursor protein other AAB-001
(peptidase nexin-Il, Alzheimer disease)
Griat ion channel talampanel, Org 24448, LY451395, LY 293558

glutamate receptor, ionotropic, AMPA 1

Grm1

G-protein coupled

glutamate receptor, metabotropic 1 receptor fasoracetam

Grm3 . G-protein coupled fasoracetam

glutamate receptor, metabotropic 3 receptor

Gsk3b . .

glycogen synthase kinase 3 beta kinase enzastaurin

Hmox1 . )
enzyme tin mesoporphyrin

heme oxygenase (decycling) 1

paliperidone, risperidone, buspirone, caffeine/ergotamine, eplivanserin, blonanserin, flibanserin, asenapine,

Htr2a G-protein coupled ocaperidone, abaperidone, psilocybine, APD125, trazodone, cyproheptadine, fluoxetine/olanzapine,

5-hydroxytryptamine (serotonin) receptor 2A receptor epinastine, fenfluramine, quetiapine, olanzapine, nefazodone, mirtazapine, ziprasidone, aripiprazole,
dihydroergotamine, apomorphine, ergotamine, azatadine

Itgav

integrin, alpha V (vitronectin receptor, alpha other abciximab, CNTO 95, EMD121974

polypeptide, antigen CD51)

Nos1 enzyme GW 273629, omega-N-methylarginine

nitric oxide synthase 1 (neuronal)

Nr3c1
nuclear receptor subfamily 3, group C,
member 1 (glucocorticoid receptor)

ligand-dependent
nuclear receptor

rimexolone, medrysone, clocortolone pivalate, diflorasone diacetate, fluorometholone, dexamethasone
phosphate, cortisone acetate, halcinonide, flurandrenolide, desoximetasone, desonide, prednisolone,
clobetasol propionate, fluocinolone acetonide, prednisone, hydrocortisone, triamcinolone, dexamethasone
21-acetate, 11beta hydrocortisone acetate, betamethasone,

Oprm1
opioid receptor, mu 1

G-protein coupled
receptor

dihydrocodeine, morphine/dextromethorphan, alvimopan, hydrocodone, propoxyphene, fentanyl, sufentanil,
alfentanil, methadone, codeine, tramadol,

Rxrg
retinoid X receptor, gamma

ligand-dependent
nuclear receptor

bexarotene, retinoic acid, 9-cis-retinoic acid

Table 3S. Gene size and number of SNPs tested for top candidate genes from

Table 1.




GWAS WTC GWAS NIMH GWAS German
Gene Size Best p-value Best p-value Best p-value

Gene Symbol/ Name CFG Score

(kilobases) Number of SNPs Number of SNPs Number of SNPs
tested tested tested

Kif12 2.76E-03 6.77E-04 1.68E-04
Kruppel-like factor 12 448 kb 112 139 139 Q‘O
Amntl 109 kb 7.71E-04 3.84E-02 3.72E-02 8.0
aryl hydrocarbon receptor nuclear translocator-like 24 27 27 .
Bdnf 1.05E-02 3.76E-02 1.91E-03
brain-derived neurotrophic factor 67kb 9 13 13 8.0
Aldh1a1 52 kb 1.29E-02 1.58E-04 3.34E-02 8.0
aldehyde dehydrogenase family 1, subfamily A1 17 22 22 .
A2bp1 3.42E-05 4.23E-04 1.59E-04
ataxin-2-binding protein 1 1,693 kb 747 583 583 7.5
Mbpl ‘ ' 154 kb 8.30!15—03 8.19I1E-04 75
myelin basic protein 3 3
Ak3I1 9.80E-05 1.79E-02 2.57E-02
adenylate kinase 3 alpha-like 1 80 kb 13 18 18 7.0
Gsk3b 9.82E-03 1.62E-02 6.72E-03
glycogen synthase kinase 3 beta 267 kb 20 20 20 7.0
Nrcam 1.63E-03 5.94E-04 8.60E-04
neuronal cell adhesion molecule 309 kb 96 107 107 7.0
El%?:]cgadherin 9 927 kb e M R 7.0
ggﬁamigen 94 kb 3.42!;—02 3.94;53—03 1.025—02 6.5
Kcnk1 58 kb 1.89E-02 7.60E-03 3.47E-04 6.5
potassium channel, subfamily K, member 1 26 31 31 .
Mbni2 2.94E-03 4.64E-02 4.02E-04
muscleblind-like 2 (Drosophila) 173 kb 48 51 51 6.5
nNeau‘:gn navigator 2 408 kb 4'11651_03 5-7271EO-04 2'0241EO_03 6.5
Nos1 163 kb 1.72E-02 3.73E-02 4.56E-02 6.5
Nitric oxide synthase 1, neuronal (Nos1), mMRNA 29 50 50 .
Oprm1 7.82E-04 7.31E-03 1.90E-03
Opioid receptor, mu 1 208 kb 60 73 73 6.5
El%(tjctgadherin 7 423 kb 4-0?15-04 1'7175_02 8-035-04 6.5
Prkce 4.59E-03 2.37E-04 1.20E-02
protein kinase C, epsilon 536 kb 157 248 248 6.5
Ptprm _ 839 kb 1.74E-02 1.10E-02 2.41E-04 6.5
protein tyrosine phosphatase, receptor type, M 168 128 128
Qki 3.06E-02 7.74E-05
quaking homolog, KH domain RNA binding (mouse) 159 kb 22 29 6.5
Rora 1.90E-04 3.55E-04 6.36E-03
RAR-related orphan receptor alpha 732 kb 216 172 172 6.5
Rorb 1.29E-02 5.88E-04 1.95E-02
RAR-related orphan receptor beta 190 kb 43 48 48 6.5
Ryr3 1.21E-03 2.89E-04 6.09E-03
ryanodine receptor 3 555 kb 187 161 161 6.5
Cacnala : ]
calcium channel, voltage-dependent, P/Q type, alpha 1A 300 kb 2'925 02 2'1?; 02 7'025-04 6.0
subunit
Dapk1 211 kb 4.02E-02 5.97E-05 4.04E-02 6.0
death-associated protein kinase 1 94 98 98 .
Disc1 1.31E-02 2.99E-03 6.08E-03
disrupted in schizophrenia 1 414 kb 93 110 110 6.0
Gria1 321 kb 1.47E-02 6.55E-03 9.19E-03 6.0
glutamate receptor, ionotropic, AMPA1 (alpha 1) 104 104 104 .
Grik1 5.39E-04 2.79E-03 3.36E-02
glutamate receptor, ionotropic, kainate 1 403 kb 112 118 118 6.0
Htr2a 1.86E-02 4.52E-02 1.65E-03
Seratonin receptor 2A 63 kb 36 42 42 6.0
Kend2 : ]
Potassium voltage-gated channel, Shal-related family, member 477 kb 5'7?; 03 4'025 03 5'225-05 6.0
2 (Kend2), mRNA
tlrl.\nllodzmain only 7 250 kb 6.6§§-05 ' 15I1E_02 &1 ?15_03 6.0
Mycbp2 5.66E-04 2.92E-02 2.39E-02
MYC binding protein 2 282 kb 23 22 22 6.0
Mytil 2.25E-04 1.31E-02 1.25E-02
myelin transcription factor 1-like 542 kb 88 95 95 6.0
nN;urlguIin 1 216 kb 1.037(5-05 2'129557_03 4'521;57_03 6.0
Scamp1 1.71E-02 1.31E-02 2.46E-03

. . 120 kb 6.0
secretory carrier membrane protein 1 27 14 14
Slc8a1 400 kb 457E-03 2.77E-04 2.28E-02 6.0
solute carrier family 8 (sodium/calcium exchanger), member 1 112 134 134 .
ssynrz]aspsin llla 546 kb 1-6174:53-04 4'9;1%03 4'1271EB;-03 6.0
Tiam1 7.39E-05 1.82E-03 2.65E-03
T-cell lymphoma invasion and n is 1 441kb 141 149 149 6.0
Tshz2 1.98E-02 8.22E-03 3.58E-04
teashirt family zinc finger 2 519 kb 172 172 172 6.0
Zhx2 2.47E-03 2.86E-02 1.69E-03
Zinc fingers and homeoboxes 2 193 kb 37 52 52 6.0
Acacb 2.94E-02 7.84E-04 1.42E-03
acetyl-Coenzyme A carboxylase beta 152 kb 28 44 44 5.5
App 3.37E-02 9.86E-03 7.81E-03
amyloid beta (A4) precursor protein 290 kb 71 70 70 5.5
):tt;(;]r‘]l ] 462 kb 1.111;-03 5.5%;%—03 6.5185;%-03 5.5
C14o0rf145 2.27E-04 1.89E-02 1.03E-03
chromosome 14 open reading frame 145 443 kb 78 96 96 5.5
C18orf1 1.16E-04 4.21E-03 3.04E-03
Chromosome 18 open reading frame 1 434 kb 96 78 78 55
Cacnb2 401 kb 2.40E-09 6.57E-03 4.23E-02 55
calcium channel, voltage-dependent, beta 2 subunit 137 164 164 .
Camk2a A o 71 kb 1.76E-02 3.62E-02 5.5
calcium/calmodulin-dependent protein kinase |l alpha 33 33
Camk2d 311 kb 1.69E-02 1.20E-03 2.90E-03 5.5
calcium/calmodulin-dependent protein kinase Il, delta 72 67 67 .






