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Convergent functional genomics of schizophrenia: from

comprehensive understanding to genetic risk prediction
M Ayalew1,2,9, H Le-Niculescu1,9, DF Levey1, N Jain1, B Changala1, SD Patel1, E Winiger1, A Breier1, A Shekhar1, R Amdur3,

D Koller4, JI Nurnberger1, A Corvin5, M Geyer6, MT Tsuang6, D Salomon7, NJ Schork7, AH Fanous3, MC O’Donovan8 and

AB Niculescu1,2

We have used a translational convergent functional genomics (CFG) approach to identify and prioritize genes involved in

schizophrenia, by gene-level integration of genome-wide association study data with other genetic and gene expression studies

in humans and animal models. Using this polyevidence scoring and pathway analyses, we identify top genes (DISC1, TCF4,

MBP, MOBP, NCAM1, NRCAM, NDUFV2, RAB18, as well as ADCYAP1, BDNF, CNR1, COMT, DRD2, DTNBP1, GAD1, GRIA1, GRIN2B,

HTR2A, NRG1, RELN, SNAP-25, TNIK), brain development, myelination, cell adhesion, glutamate receptor signaling, G-protein--

coupled receptor signaling and cAMP-mediated signaling as key to pathophysiology and as targets for therapeutic intervention.

Overall, the data are consistent with a model of disrupted connectivity in schizophrenia, resulting from the effects of

neurodevelopmental environmental stress on a background of genetic vulnerability. In addition, we show how the top

candidate genes identified by CFG can be used to generate a genetic risk prediction score (GRPS) to aid schizophrenia

diagnostics, with predictive ability in independent cohorts. The GRPS also differentiates classic age of onset schizophrenia from

early onset and late-onset disease. We also show, in three independent cohorts, two European American and one African

American, increasing overlap, reproducibility and consistency of findings from single-nucleotide polymorphisms to genes, then

genes prioritized by CFG, and ultimately at the level of biological pathways and mechanisms. Finally, we compared our top

candidate genes for schizophrenia from this analysis with top candidate genes for bipolar disorder and anxiety disorders from

previous CFG analyses conducted by us, as well as findings from the fields of autism and Alzheimer. Overall, our work maps the

genomic and biological landscape for schizophrenia, providing leads towards a better understanding of illness, diagnostics and

therapeutics. It also reveals the significant genetic overlap with other major psychiatric disorder domains, suggesting the need

for improved nosology.
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INTRODUCTION

‘Things fall apart; the center cannot hold’

-- WB Yeats, The Second Coming

Schizophrenia is a devastating disorder affecting B1% of the
population. While there is clear evidence for roles for both genes
and environment, a comprehensive biological understanding of
the disorder has been elusive so far. Most notably, there has been
until recently a lack of concerted integration across functional and
genetic studies, and across human and animal model studies,
resulting in missed opportunities to see the whole picture.
As part of a translational convergent functional genomics (CFG)

approach, developed by us over the last decade,1--5 and expanding
upon our earlier work on identifying genes for schizophrenia6 and
biomarkers for psychosis,7 we set out to comprehensively identify
candidate genes, pathways and mechanisms for schizophrenia,

integrating the available evidence in the field to date. We have
used data from published genome-wide association studies
(GWAS) data sets for schizophrenia.8,9 We integrated those data
with gene expression data---human postmortem brain gene
expression data, human induced pluripotent stem cell-derived
neuronal cells10 and human blood gene expression data7

published by others and us, as well as with relevant animal model
brain and blood gene expression data generated by our group6

and others. In addition, we have integrated as part of this compre-
hensive approach other genetic data---human genetic data
(linkage, copy number variant (CNV) or association) for schizo-
phrenia, as well as relevant mouse model genetic evidence
(Figure 1, Table 1 and Figure 2). Animal model data provide sensi-
tivity of detection, and human data provide specificity for the
illness. Together, they help to identify and prioritize candidate
genes for the illness, using a polyevidence CFG score, resulting in
essence in a de facto field-wide integration putting together the
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best available evidence to date. Once that is done, biological
pathway analyses can be conducted and mechanistic models can
be constructed (Figure 3).
An obvious next step is developing a way of applying that

knowledge to genetic testing of individuals to determine risk for
the disorder. On the basis of our comprehensive identification of
top candidate genes described in this paper, we have chosen the
nominally significant single-nucleotide polymorphisms (SNPs)
inside those genes in the GWAS data set used for discovery
(International Schizophrenia Consortium, ISC), and assembled a
genetic risk prediction (GRP) panel out of those SNPs. We then
developed a genetic risk prediction score (GRPS) for schizophrenia
based on the presence or absence of the alleles of the SNPs
associated with the illness in ISC, and tested the GRPS in
independent cohorts (GAIN European Americans (EA), GAIN
African Americans (AA), nonGAIN EA, nonGAIN AA)9 for which
we had both genotypic and clinical data available, comparing the
schizophrenia subjects to normal controls. Our results show
that a panel of SNPs in top genes identified and prioritized
by CFG analysis can differentiate between schizophrenia subjects
and controls at a population level, although at an individual
level the margin is minimal. The latter point suggests that,
like for bipolar disorder,11 the contextual cumulative combina-
torics of common variants and environment12 plays a major role in
risk for illness. Moreover, the genetic risk component identified
by us seems to be stronger for classic age at onset schizophrenia
than for early onset and late-onset schizophrenia, suggesting
that those subtypes may be different, either in having a
larger environmental component or having a different genetic
component.
We have also looked at genetic heterogeneity, overlap and

reproducibility between independent GWAS for schizophrenia. We
show that the overlap is minimal at a nominal P-value SNP level,
but increases dramatically at a gene level, then at a CFG-prioritized
gene level and finally at a pathway level. CFG provides a fit-to-
disease prioritization of genes that leads to generalizability in
independent cohorts, and counterbalances the fit-to-cohort
prioritization inherent in classic SNP level genetic-only approaches,

which have been plagued by poor reproducibility across cohorts.
Finally, we have looked at overlap with candidate genes for other
psychiatric disorders (bipolar disorder, anxiety disorders), as well as
with other disorders affecting cognition (autism, Alzheimer disease
(AD)), and provide evidence for shared genes.
Overall, this work sheds comprehensive light on the genetic

architecture and pathophysiology of schizophrenia, provides
mechanistic targets for therapeutic intervention and has implica-
tions for genetic testing to assess risk for illness before the illness
manifests itself clinically.

MATERIALS AND METHODS

Genome-wide association studies data for schizophrenia

The GWAS data from the ISC was used for the discovery CFG work.8 This

cohort consists of EA subjects (3322 schizophrenics and 3587 controls).

SNPs with a nominal allelic P-value o0.05 were selected for our analysis.

No Bonferroni correction was performed.

Four independent cohorts,9 two EA (GAIN EA 1170 schizophrenics and

1378 controls; nonGAIN EA 1149 schizophrenics and 1347 controls) and

two AA (GAIN AA 915 schizophrenics and 949 controls; nonGAIN AA 78

schizophrenics and 20 controls), were used for testing the results of the

discovery analyses. The GWAS GAIN and nonGAIN data used for analyses

described in this paper were obtained from the database of Genotype and

Phenotype (dbGaP) found at www.ncbi.nlm.nih.gov.

The software package PLINK (http://pngu.mgh.harvard.edu/~purcell)

was used to extract individual genotype information for each subject from

the GAIN GWAS data files. We analyzed EA, and separately, AA, schi-

zophrenia subjects and controls.

Gene identification

To identify the genes that correspond to the selected SNPs, the lists of

SNPs from the GWAS were uploaded to NetAFFX (Affymetrix, Santa Clara,

CA, USA; http://www.affymetrix.com/analysis/index.affx). We used the

Netaffx na32 Genotyping Annotation build. In the cases where a SNP

mapped to multiple genes, we selected all the genes. SNPs for which no

gene was identified were not included in our subsequent analyses.

Figure 1. Convergent functional genomics. GWAS, genome-wide association study; ISC, International Schizophrenia Consortium;
SNP, single-nucleotide polymorphism.
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CONVERGENT FUNCTIONAL GENOMICS ANALYSES

Databases

We have established in our laboratory (Laboratory of Neuro-
phenomics, Indiana University School of Medicine; www.neuro-
phenomics.info) manually curated databases of all the human
gene expression (postmortem brain, blood, cell cultures), human
genetic (association, CNVs, linkage) and animal model gene
expression and genetic studies published to date on psychiatric
disorders.12 Only the findings deemed significant in the primary
publication, by the study authors, using their particular experi-
mental design and thresholds, are included in our databases. Our
databases include only primary literature data, and do not include
review papers or other secondary data integration analyses, to
avoid redundancy and circularity. These large and constantly
updated databases have been used in our CFG cross-validation
and prioritization (Figure 1).

Human postmortem brain gene expression evidence

Information about genes was obtained and imported in our
databases by searching the primary literature with PubMed
(http://ncbi.nlm.nih.gov/PubMed), using various combinations of

Figure 2. Top candidate genes for schizophrenia. CFG, convergent
functional genomics; GWAS, genome-wide association study; ISC,
International Schizophrenia Consortium.

Figure 3. Schizophrenia as a disease of disconnection. (a) Biology of schizophrenia, (b) gene--environment interplay.
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keywords (for this work: schizophrenia, psychosis, human, brain,
postmortem). Convergence was deemed to occur for a gene if
there were published human postmortem brain data showing
changes in expression of that gene in tissue from patients with
schizophrenia.

Human blood and other peripheral tissue gene expression data

For human blood gene expression evidence, we have used
previously generated data from our group,7 as well as published
data from the literature. We also included recent data generated
from induced pluripotent stem cell-derived neurons.10

Human genetic evidence (association, CNVs, linkage)

To designate convergence for a particular gene, the gene had to
have independent published evidence of association, CNVs or
linkage for schizophrenia. We sought to avoid using any
association studies that included subjects that were also included
in the ISC or GAIN GWAS. For CNVs, all the known genes on a CNV
were taken. For linkage, the location of each gene was obtained
through GeneCards (http://www.genecards.org), and the sex-
averaged cM location of the start of the gene was then obtained
through http://compgen.rutgers.edu/old/map-interpolator/. For
linkage convergence, per our previously published criteria,2 the
start of the gene had to map within 5 cM of the location of a
marker linked to the disorder.

Animal model brain and blood gene expression evidence

For animal model brain and blood gene expression evidence, we
have used our own comprehensive pharmacogenomic mouse
model (phencyclidine and clozapine) data sets,6 as well as
published reports from the literature curated in our databases.

Animal model genetic evidence (transgenic)

To search for mouse genetic evidence (transgenic) for our
candidate genes, we utilized PubMed as well as the Mouse
Genome Informatics (http://www.informatics.jax.org; Jackson La-
boratory, Bar Harbor, ME, USA) database, and used the search
‘Genes and Markers’ form to find transgenics for categories
‘Schizophrenia’ as well as ‘abnormal nervous system physiology’
(subcategory ‘abnormal sensorimotor gating’).

Convergent functional genomics analysis scoring

We used a nominal P-value threshold for including genes from the
ISC GWAS in the CFG analysis: having a SNP with Po0.05. All six
cross-validating lines of evidence (other human data, animal model
data) were weighted equally, receiving a maximum of 1 point each
(for human genetic evidence: 0.5 points if it is linkage, 0.75 if it is
from CNVs, 1 point if it is association). Thus, the maximum possible
CFG score for each gene is 6. We have capped each line of
evidence at 1 point, regardless of how many different studies
support that line of evidence, to avoid potential ‘popularity’ biases,
where some genes are more studied than others.
The more lines of evidence, that is, the more times a gene

shows up as a positive finding across independent studies,
platforms, methodologies and species, the higher its CFG score
(Figure 1). This is similar conceptually to the Google PageRank
algorithm, in which the more links to a page, the higher it comes
up on the search prioritization list.13 Human and animal model
data, genetic and gene expression were integrated and tabulated,
resulting in a polyevidence CFG score. It has not escaped our
attention that other ways of weighing the lines of evidence may
give slightly different results in terms of prioritization, if not in
terms of the list of genes per se. Nevertheless, we feel this simple
scoring system provides a good separation of genes, with
sensitivity provided by animal model data and specificity provided
by human data.

Pathway analyses

IPA 9.0. (Ingenuity Systems, Redwood City, CA, USA) was used to
analyze the biological roles, including top canonical pathways, of
the candidate genes resulting from our work (Table 2 and
Supplementary Table S5), as well as used to identify genes in our
data sets that are the target of existing drugs (Supplementary
Table S2).

Intra-pathway epistasis testing

As an example,11 the ISC GWAS data were used to test for epistatic
interactions among the best P-value SNPs in genes from our data
set present in a top canonical biological pathway identified by
Ingenuity pathway analysis (Supplementary Table S4). SNP� SNP
allelic epistasis was tested for each distinct pair of SNPs between
genes, using the PLINK software package.

Genetic risk prediction panel and scoring

As we had previously done for bipolar disorder,11 we developed a
polygenic GRPS for schizophrenia based on the presence or
absence of the alleles of the SNPs associated with illness, and
tested the GRPS in independent cohorts for which we had both
genotypic and clinical data available, comparing the schizophrenia
subjects to normal controls. We tested two panels: a smaller one
(GRPS-42) containing the single best P-value SNP in ISC in each
of the top CFG prioritized genes (n¼ 42), and a larger one
(GRPS-542), containing all the nominally significant SNPs (n¼ 542)
in ISC in the top CFG prioritized genes (n¼ 42; Tables 3, 4,
Supplementary Table S3, and Figure 4).
Of note, our SNP panels and choice of affected alleles were

based solely on analysis of the ISC GWAS, which is our discovery
cohort, completely independently from the test cohorts. Each SNP
has two alleles (represented by base letters at that position).
One of them is associated with the illness (affected), the other
not (non-affected), based on the odds ratios from the discovery
ISC GWAS. We assigned the affected allele a score of 1 and the
non-affected allele a score of 0. A two-dimensional matrix of

Table 2. Ingenuity pathway analyses of top candidate genes

Top canonical pathways CFG X3 P-value Ratio

ISC (n¼ 186 genes)
Glutamate receptor signaling 9.25E�13 12/69 (0.174)
G-protein--coupled receptor signaling 9.33E�13 27/530 (0.051)
CREB signaling in neurons 1.76E�12 17/202 (0.084)
cAMP-mediated signaling 3.55E�11 17/219 (0.078)
Neuropathic pain signaling in dorsal
horn neurons

3.64E�11 13/112 (0.116)

GAIN EA (n¼ 173 genes)
Glutamate receptor signaling 4.57E�16 14/69 (0.203)
CREB signaling in neurons 4.72E�14 18/202 (0.089)
G-protein--coupled receptor signaling 2E�13 27/530 (0.051)
cAMP-mediated signaling 1.2E�12 18/219 (0.082)
Synaptic long-term potentiation 1.58E�12 14/114 (0.123)

GAIN AA (n¼ 201 genes)
cAMP-mediated signaling 7.6E-17 23/219 (0.105)
Glutamate receptor signaling 1.09E�16 15/69 (0.217)
Synaptic long-term potentiation 2.24E�15 17/114 (0.149)
G-Protein--coupled receptor signaling 2.43E�14 30/530 (0.057)
CREB signaling in neurons 4.52E�14 19/202 (0.094)

Abbreviations: AA, African American; CFG, convergent functional

genomics; EA, European American; ISC, International Schizophrenia

Consortium.

Discovery in ISC and reproducibility in two independent cohorts, GAIN EA

and GAIN AA.
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subjects by GRP panel alleles is generated, with the cells
populated by 0 or 1. A SNP in a particular individual subject can
have any permutation of 1 and 0 (1 and 1, 0 and 1, 0 and 0). By

adding these numbers, the minimum score for a SNP in an
individual subject is 0, and the maximum score is 2. By adding the
scores for all the alleles in the panel, averaging that, and
multiplying by 100, we generate for each subject an average
score corresponding to a genetic loading for disease, which we
call Genetic Risk Predictive Score (GRPS).
The software package PLINK (http://pngu.mgh.harvard.edu/

~purcell) was used to extract individual genotype information
for each subject from the GAIN and nonGAIN GWAS data files.
We analyzed separately EA and AA schizophrenia subjects and
controls, to examine any potential ethnicity variability (Tables 3
and 4, and Supplementary Table S3). To test for significance, a
one-tailed t-test was performed between the schizophrenia
subjects and the control subjects, looking at differences in GRPS.

RESULTS

Top candidate genes

To minimize false negatives, we initially cast a wide net, using as a
filter a minimal requirement for a gene to have both some GWAS
evidence and some additional independent evidence. We thus
generated an initial list of 3194 unique genes with at least a SNP at
Po0.05 in the discovery GWAS analyzed (ISC),8 that also had some
additional evidence (human or animal model data), implicating
them in schizophrenia (CFG score X1; Table 5). This suggests,
using these minimal thresholds and requirements, that the
repertoire of genes potentially involved directly or indirectly in
cognitive processes and schizophrenia may be quite large, similar
to what we have previously seen for bipolar disorder.11

To minimize false positives, we then used the CFG analysis
integrating multiple lines of evidence to further prioritize this list
of genes, and focused our subsequent analyses on only the top
CFG scoring candidate genes. Overall, 186 genes had a CFG score
of 3 and above (X50% of maximum possible score of 6), and 42
had a CFG score of 4 and above (Tables 1 and 5, and Figure 2).
Our top findings from ISC (Table 1) were over-represented in

two independent schizophrenia GWAS cohorts, the GAIN EA and
GAIN AA. In total, 37 of the top 42 genes identified by our
approach (88.1%) had at least a SNP with a P-value of o0.05 in
those independent cohorts, an estimated twofold enrichment

Table 3. GRPS-42: non-differentiation between schizophrenics and

controls in independent cohorts using a panel composed of the single

best SNP from ISC in each of the top candidate genes (42 SNPs, in 42

genes)

Description of panel GAIN EA GAIN AA

Single best P-value
SNPs in each of the top
42 candidate genes
from ISC GWAS, n¼ 42

P¼ 0.10308, 39 out
of the 42 ISC SNPs
were present in
GAIN EA

P¼ 0.13567, 37 out
of the 42 ISC SNPs
were present in
GAIN AA

Abbreviations: AA, African American; EA, European American; GRPS,

genetic risk prediction score; GWAS, genome-wide association study;

ISC, International Schizophrenia Consortium; SNP, single-nucleotide

polymorphism.

Table 4. GRPS-542: differentiation between schizophrenics and

controls in four independent cohorts using a panel composed of all

the nominally significant SNPs from ISC in the top candidate genes

(542 SNPs in 42 genes)

GAIN EA GAIN AA

P¼ 0.03213, 527 SNPs in 41
genes were present in GAIN EA

P¼ 0.00847, 516 SNPs in 42
genes were present in GAIN AA

NonGAIN EA NonGAIN AA
P¼ 0.00664, 537 SNPs in 42
genes were present in
nonGAIN EA

P¼ 0.03829, 537 SNPs in 42
genes were present in
nonGAIN AA

Abbreviations: AA, African American; EA, European American; GRPS,

genetic risk prediction score; ISC, International Schizophrenia Consortium;

SNP, single-nucleotide polymorphism.

Figure 4. Genetic risk prediction of schizophrenia in four independent cohorts. AA, African American; EA, European American; GRPS, genetic
risk prediction score.
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over what would be expected by chance alone at a genetic level
(as there were 9002 genes at Po0.05 in the GAIN-EA GWAS, and
the number of genes in the human genome is estimated at
20 500,14 the enrichment factor provided by our approach is
(37/42)/(9002/20 500)E2). Of note, there was no correlation
between CFG prioritization and gene size, thus excluding a
gene-size effect for the observed enrichment (Supplementary
Figure S1).

Candidate blood biomarkers

Of the top candidate genes from Table 1 (see also Figure 2), 15 out
of 42 have prior human blood evidence for change in schizo-
phrenia, implicating them as potential blood biomarkers. The
additional evidence provided by GWAS data suggests a genetic
rather than purely environmental (medications, stress) basis for
their alteration in disease, and their potential utility as trait rather
than purely state markers.

Biological pathways

Pathway analyses were carried out on the top genes (Table 2),
and on all the candidate genes (Supplementary Table S5).
Notably, glutamate receptor signaling, G-protein--coupled recep-
tor signaling and cAMP-mediated signaling were the top
canonical pathways over-represented in schizophrenia, which
may be informative for new drug discovery efforts by pharma-
ceutical companies.

Genetic risk prediction

Once the genes involved in a disorder are identified, and
prioritized for likelihood of involvement, then an obvious next
step is developing a way of applying that knowledge to genetic
testing of individuals to determine risk for the disorder. Based on
our identification of top candidate genes described above using
CFG, we pursued a polygenic panel approach, with digitized
binary scoring for presence or absence, similar to the one we have
devised and used in the past for biomarkers testing5 and for
genetic testing in bipolar disorder.11 Somewhat similar ap-
proaches but without CFG prioritization, attempted by other
groups, have been either unsuccessful15 or have required very
large panels of markers.8,16

We first chose the single best P-value SNPs in each of our top
CFG prioritized genes (n¼ 42) in the ISC GWAS data set used for
discovery, and assembled a GRP panel out of those SNPs (Table 3).
We then developed a GRPS for schizophrenia based on the
presence or absence of the alleles of the SNPs associated with the
illness, and tested the GRPS in independent cohorts (GAIN EA and
GAIN AA), comparing the schizophrenia subjects to normal

controls (Table 3). The results were not significant. We concluded
that genetic heterogeneity at a SNP level is a possible explanation
for these negative results. We then sought to see if we get better
separation with a larger panel, containing all the nominally
significant SNPs (n¼ 542) in the top CFG prioritized genes in ISC
(n¼ 42), on the premise that a larger panel may reduce the
heterogeneity effects, as different SNPs might be more strongly
associated with illness in different cohorts. We found that our
larger panel of SNPs was indeed able to significantly distinguish
schizophrenics from controls in both GAIN EA and GAIN AA, two
independent cohorts of different ethnicities. To verify this
unexpectedly strong result, we further tested our panel in two
other independent cohorts, nonGAIN EA and nonGAIN AA, and
obtained similarly significant results (Table 4 and Figure 4).
We also looked at whether our GRPS score distinguishes classic

age of onset schizophrenia (defined by us as ages 15 to 30 years)
from early onset (before 15 years) and late-onset (after 30 years)
illness. Our results show that classic age of onset schizophrenia
has a significantly higher GRPS than early or late-onset schizo-
phrenia, in three out of the four independent cohorts of two
different ethnicities (Figure 5).
Finally, as we had done previously for bipolar disorder,11 we

developed a prototype of how the GRPS score could be used in
testing individuals to establish their category of risk for schizo-
phrenia (Figure 6). The current iteration of the test, using the panel
of 542 SNPs, seems to be able to distinguish in independent
cohorts who is at lower risk for classic age of onset schizophrenia
in two out of three EA subjects, and who is at higher risk for classic
age of onset schizophrenia in three out of four AA subjects.

Overlap among studies

We examined the overlap at a nominally significant (Po0.05) SNP
level between ISC, GAIN EA and GAIN AA, and found that a
minority of these SNPs (0.4%) overlap (Table 5 and Figure 7). We
then examined the overlap at a gene level, then CFG prioritized
genes level and finally biological pathways level, and found
increasing evidence of commonality and reproducibility of find-
ings across studies.

DISCUSSION

Our CFG approach helped prioritize genes, such as DISC1 and
MBP, with weaker evidence in the GWAS data but with strong
independent evidence in terms of gene expression studies and
other prior human or animal genetic work. Conversely, some of
the top findings from GWAS, such as ZNF804A, have fewer
different independent lines of evidence, and thus received a lower
CFG prioritization score in our analysis (Supplementary Informa-

Table 5. Reproducibility between independent GWAS

Numbers and overlap across studies ISC GAIN EA GAIN AA
ISC vs

GAIN EA
ISC vs

GAIN AA
GAIN EA vs
GAIN AA

ISC vs. GAIN-EA vs.
GAIN-AA (% of ISC)

SNPs Pp0.05 45 972 42 336 57 118 2649 2986 2839 163 (0.4%)
Genes 10 180 9002 11 260 6470 7583 6807 5518 (54.2%)
Genes CFG X1 3194 2913 3524 2243 2564 2384 2012 (63.0%)
Genes CFG X3 186 173 201 147 160 153 134 (72.0%)
Genes CFG X4 42 41 45 37 37 38 35 (83.3%)
Pathways for genes with CFG X1 217 210 205 194 188 180 176 (81.1%)
Pathways for genes with CFG X3 79 85 108 72 76 81 72 (91.1%)
Pathways for genes with CFG X4 34 50 75 33 34 48 33 (97.1%)

Abbreviations: AA, African American; CFG, convergent functional genomics; EA, European American; GWAS, genome-wide association study; ISC, International

Schizophrenia Consortium; SNP, single-nucleotide polymorphism.

Increasing consistency and overlap observed from nominally significant SNPs (0.4%) to genes, then to CFG prioritized genes, and finally to pathways of CFG

prioritized genes (97.1%).
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tion-Table S1), although ZNF804A is clearly involved in schizo-
phrenia-related cognitive processes.17 While we cannot exclude
that more recently discovered genes have had less hypothesis-
driven work done and thus might score lower on CFG, it is
to be noted that the CFG approach integrates predominantly
non-hypothesis driven, discovery-type data sets, such as gene
expression, GWAS, CNV, linkage and quantitative traits loci. We
also cap each line of evidence from an experimental approach
(Figure 1) at a maximum score of 1, to minimize any ‘popularity’
bias, whereas multiple studies of the same kind are conducted on
better-established genes. In the end, it is gene-level reproduci-
bility across multiple approaches and platforms that is built into
the approach and gets prioritized most by CFG scoring during the
discovery process. Our top results subsequently show good
reproducibility and predictive ability in independent cohort
testing, the litmus test for any such work.
At the very top of our list of candidate genes for schizophrenia,

with a CFG score of 5, we have four genes: DISC1, TCF4, MBP and
HSPA1B. An additional five genes have a CFG score of 4.5: MOBP,
NRCAM, NCAM1, NDUFV2 and RAB18.
DISC1 (Disrupted-in Schizophrenia 1), encodes a scaffold

protein that has an impact on neuronal development and
function,18--20 including neuronal connectivity.21 DISC1 has been
identified as a susceptibility gene for major mental disorders by
multiple studies.22--24 DISC1 isoforms are upregulated in expres-
sion in blood cells in schizophrenia, thus serving as a potential
peripheral biomarker as well.25,26 Developmental stress interacts
with DISC1 expression to produce neuropsychiatric phenotypes in
mice.27 Notably, its interacting partners PDE4B,28 TNIK,29 FEZ1
(ref. 30) and DIXDC1 (ref. 31) are also present on our list of
prioritized candidate genes, with CFG scores of 4, 4, 3.5 and 2.5,
respectively (Table 1 and Supplementary Table S1).
TCF4 (transcription factor 4) encodes a basic helix-turn-helix

transcription factor, expressed in immune system as well as
neuronal cells. It is required for the differentiation of subsets of
neurons in the developing brain. There are multiple alternatively
spliced transcripts that encode different proteins, providing for
biological diversity and heterogeneity. Defects in this gene are a
cause of Pitt-Hopkins syndrome, characterized by mental retarda-
tion with or without associated facial dysmorphisms and inter-
mittent hyperventilation. TCF4 has additional genetic evidence
for association with schizophrenia-relevant phenotypes.32--35 It is

changed in expression in postmortem brain,36 induced pluripotent
stem cell-derived neurons10 and blood from schizophrenia
patients.7 Notably, it is a candidate blood biomarker for level of
delusional symptoms (decreased in high delusional states) based
on our previous work.7

MBP (myelin basic protein) is a major constituent of the myelin
sheath of oligodendrocytes and Schwann cells in the nervous
system. MBP-related transcripts are also present in the bone
marrow and the immune system. MBP has additional genetic
evidence for association with schizophrenia.37 It is decreased in
expression in postmortem brain38 and blood39 from schizophrenia
patients. MBP is also changed in expression in the brain and blood
of a pharmacogenomics mouse model of schizophrenia, based on
our previous work.6 It was also decreased in expression in a stress-
reactive genetic mouse model of bipolar disorder,40 and treatment
with the omega-3 fatty acid docosahexaenoic acid led to an
increase in expression. Notably, MBP is a candidate blood
biomarker for level of mood symptoms (increased in high mood
states in bipolar subjects), based on our previous work.5 Overall,
the data indicate that MBP and other myelin-related genes41,42

may be involved in the effects of stress on psychosis and mood.
Demyelinating disorders such as multiple sclerosis tend to be
precipitated and exacerbated by stress, and have co-morbid
psychiatric symptoms.43 Of note, other myelin-related genes are
also present on our list of prioritized candidate genes: MOBP and
MOG, with CFG scores of 4.5 and 3, respectively (Table 1 and
Supplementary Table S1).
HSPA1B (heat-shock 70-kDa protein 1B), a chaperone involved

in stress response, stabilizes existing proteins against aggregation
and mediates the folding of newly translated proteins.
HSPA1B has additional genetic evidence for association with
schizophrenia.44 It is changed in expression in postmortem
brain45 and induced pluripotent stem cell-derived neurons10 from
schizophrenia patients. HSPA1B is also increased in expression in
the brain and blood of a pharmacogenomics mouse model of
schizophrenia, based on our previous work.6 It was also co-
directionally changed in the brain and blood in a phramaco-
genomic mouse model of anxiety disorders, we have recently
described,46 as well as in a stress-reactive genetic mouse model.40

Treatment with the omega-3 fatty acid docosahexaenoic acid
reversed the increase in expression of HSPA1B in this stress-
reactive genetic mouse model.47 Another closely related molecule,

Figure 5. Genetic risk score and age at onset of schizophrenia. AA, African American; AAO, age at onset; EA, European American; GRPS, genetic
risk prediction score.
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HSPA1A (heat-shock 70-kDa protein 1A), is also present on our list
of prioritized candidate genes, with a CFG score of 3.5
(Supplementary Table S1). Heat-shock proteins may be involved
in the biological and clinical overlap and interdependence
between response to stress, anxiety and psychosis.
NRCAM (neuronal cell adhesion molecule) encodes a

neuronal cell adhesion molecule. This ankyrin-binding protein
is involved in neuron--neuron adhesion and promotes direc-
tional signaling during axonal cone growth. NRCAM is also
expressed in non-neural tissues and may have a general role in
cell--cell communication via signaling from its intracellular
domain to the actin cytoskeleton during directional cell
migration. It is decreased in expression in postmortem brain48

and peripherally in serum49 from schizophrenia patients.
NRCAM is also changed in expression in the brain of a
pharmacogenomics mouse model of schizophrenia, based on
our previous work.6 It was also increased in the amygdala in a
stress-reactive genetic mouse model studied by our group.40

Another closely related molecule, NCAM1 (neural cell adhesion
molecule 1), is among our top candidate genes as well. These
data support a central role for cell connectivity and cell
adhesion in schizophrenia.

Another top candidate gene is CNR1 (cannabinoid receptor 1,
brain). CNR1 is a member of the guanine-nucleotide-binding
protein (G-protein) coupled receptor family, which inhibits
adenylate cyclase activity in a dose-dependent manner. CNR1 has
additional genetic evidence for association with schizophrenia.50,51

It is decreased in expression in postmortem brain from schizo-
phrenics.52 The other main cannabinoid receptor, CNR2 (cannabi-
noid receptor 2), is among our top candidate genes too
(Supplementary Table S1), and is decreased in expression in
postmortem brain from schizophrenics as well. These data support
a role for the cannabinoid system in schizophrenia, perhaps
through a deficiency of the endogenous cannabinoid signaling that
leads to vulnerability to psychotogenic stress,53 and is accompa-
nied by increased compensatory exogenous cannabinoid con-
sumption that may have additional deleterious consequences.54

A number of glutamate receptor genes are present among our
top candidate genes for schizophrenia (GRIA1, GRIA4, GRIN2B and
GRM5), as well as GAD1, an enzyme involved in glutamate
metabolism, and SLC1A2, a glutamate transporter (Table 1). Other
genes involved in glutamate signaling present in our data, with a
lower scores, are GRIN2A, SLC1A3, GRIA3, GRIK4, GRM1, GRM4 and
GRM7 (Supplementary Table S1). Glutamate receptor signaling is

Figure 6. Prototype of how genetic risk prediction score (GRPS) testing could be used at an individual rather than population level, to aid
diagnostic and personalized medicine approaches. We used the average values and standard deviation values for GRPS from the GAIN
samples from each ethnicity (European American (EA) and African American (AA)) as thresholds for predictive testing in the independent
nonGAIN EA and nonGAIN AA cohorts. The average GRPS score for schizophrenics in the GAIN cohort is used as a cut-off for schizophrenics in
the test cohort (that is, being above that threshold), and the average GRPS score for controls in the GAIN cohort is used as a cut-off for
controls in the test nonGAIN cohort (that is, being below that threshold). The subjects who are in between these two thresholds are called
undetermined. Furthermore, to stratify risk, we categorized subjects into risk categories (in red, increased risk; in blue, decreased risk):
Category 1 if they fall within one standard deviation above the schizophrenics’ threshold, and category �1 if they fall within one standard
deviation below the controls threshold. Category 2 and �2, subjects are between one and two standard deviations from the thresholds,
category 3 and �3, subjects are between two and three standard deviations, and category 4 and �4, subjects are those who fall beyond three
standard deviations of the thresholds. The positive predictive value (PPV) of the tests increases in the higher categories, and the test is
somewhat better at distinguishing controls in EA (that is, in a practical application, individuals that are lower risk of developing the illness),
and schizophrenics in AA (that is, in a practical application, individuals that are higher risk of developing the illness).
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one of the top canonical pathways over-represented in our
analyses (Table 2), and that finding is reproduced in independent
GWA data sets (Table 2). One has to be circumspect with inter-
preting such results, as glutamate signaling is quasi-ubiquitous in
the brain, and a lot of prior hypothesis-driven work has focused on
this area, potentially biasing the available evidence. Nevertheless,
our results are striking, and contribute to the growing body of
evidence that has emerged over the last few years implicating
glutamate signaling as a point of convergence for findings in
schizophrenia,55 as well as for autism56 and AD.57 Glutamate
signaling is the target of active drug development efforts,58 which
may be informed and encouraged by our current findings.
Our analysis also provides evidence for other genes that have

long been of interest in schizophrenia, but have had previous
variable evidence from genetic-only studies: BDNF, COMT, DRD2,
DTNBP1 (dystrobrevin binding protein1/dysbindin; Table 1). In
addition, our analysis provides evidence for genes that had
previously not been widely implicated in schizophrenia, but do
have relevant biological roles, demonstrating the value of
empirical discovery-based approaches such as CFG (Table 1):
ANK3,48 ALDH1A1 and ADCYAP1, which is a ligand for schizo-
phrenia candidate gene VIPR2,59,60 also present in our data set,
albeit with a lower CFG score of 2. Other genes of interest in
our full data set (Supplementary Table S1) include ADRBK2 (GRK3),
first described by us as a candidate gene for psychosis,1

CHRNA7,61 and PDE10A,62 which are targets for drug development
efforts.

Pathways and mechanisms

Our pathway analyses results are consistent with the accumulating
evidence about the role of synaptic connections and glutamate
signaling in schizophrenia, most recently from CNV studies63

(Table 2, Supplementary Table S5, Figure 3). Very importantly,
the same top pathways were consistent across independent
GWA studies we analyzed (Tables 2, 5, and Supplementary
Table S5). We also did a manual curation of the top candidate
genes and their grouping into biological roles examining them
one by one using PubMed and GeneCards, to come up with a
heuristic model of schizophrenia (Figure 3). Overall, while multiple
mechanistic entry points may contribute to schizophrenia
pathogenesis (Figure 3a), it is likely at its core a disease of
decreased cellular connectivity precipitated by environmental
stress during brain development, on a background of genetic
vulnerability (Figure 3b).

Genetic risk prediction

Of note, our SNP panels and choice of affected alleles were based
solely on analysis of the discovery ISC GWAS, completely
independently from the test GAIN EA, GAIN AA, nonGAIN EA
and nonGAIN AA GWAS. Our results show that a relatively limited
and well-defined panel of SNPs identified based on our CFG
analysis could differentiate between schizophrenia subjects and
controls in four independent cohorts of two different ethnicities,
EA and AA. Moreover, the genetic risk component identified by us
seems to be stronger for classic age of onset schizophrenia than
for early or late-onset illness, suggesting that the latter two may
be more environmentally driven or have a somewhat different
genetic architecture. It is likely that such genetic testing will have
to be optimized for different cohorts if done at a SNP level.
Interestingly, at a gene and pathway level, the differences
between studies seem much less pronounced than at a SNP
level, if at all present (Table 5), suggesting that gene-level and
pathway-level tests may have more universal applicability. In the
end, such genetic data, combined with family history and other
clinical information (phenomics),64 as well as with blood
biomarker testing,5 may provide a comprehensive picture of risk
of illness.65,66

Reproducibility among studies

Our work provides striking evidence for the advantages,
reproducibility and consistency of gene-level analyses of data, as
opposed to SNP level analyses, pointing to the fundamental issue
of genetic heterogeneity at a SNP level (Table 5 and Figure 7).
In fact, it may be that the more biologically important a gene
is for higher mental functions, the more heterogenity it has
at a SNP level67 and the more evolutionary divergence,68 for
adaptive reasons. On top of that, CFG provides a way to prioritize
genes based on disease relevance, not study-specific effects
(that is, fit-to-disease as opposed to fit-to-cohort). Reproducibility
of findings across different studies, experimental paradigms and
technical platforms is deemed more important (and scored as
such by CFG) than the strength of finding in an individual study
(for example, P-value in a GWAS). The CFG prioritized genes show
even more reproducibility among independent GWAS cohorts
(ISC, GAIN EA, GAIN AA) than the full list of unprioritized genes
with nominal significant SNPs. The increasing overlap and
reproducibility between studies of genes with a higher average
CFG score points out to their biological relevance to disease
architecture. Finally, at a pathway level, there is even more

Figure 7. Overlap between independent genome-wide association study (GWAS). AA, African American; EA, European American; CFG, con-
vergent functional genomics; ISC, International Schizophrenia Consortium; SNP, single-nucleotide polymorphism.
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consistency across studies. Again, the pathways derived from the
top CFG scoring genes show more consistency than the pathways
derived from the lower CFG scoring genes. Overall, using our
approach, we go from a reproducibilty between independent
studies of 0.4% at the level of nominally significant SNPs to a
reproducibility of 97.1% at the level of pathways derived from top
CFG scoring genes.

Overlap with other psychiatric disorders

Despite using lines of evidence for our CFG approach that have to
do only with schizophrenia, the list of genes identified has a
notable overlap with other psychiatric disorders (Figure 8,
Supplementary Table S1). This is a topic of major interest and
debate in the field.12,69 We demonstrate an overlap between top
candidate genes for schizophrenia and candidate genes for
anxiety and bipolar disorder, previously identified by us through
CFG (Figure 8), thus providing a possible molecular basis for the
frequently observed clinical co-morbidity and interdependence
between schizophrenia and those other major psychiatric
disorders, as well as cross-utility of pharmacological agents. In
particular, PDE10A is at the overlap of all three major psychiatric
domains, and may be of major interest for drug development.62

The overlap between schizophrenia and bipolar may have to do
primarily with neurotrophicity and brain infrastructure (underlined
by genes such as DISC1, NRG1, BDNF, MBP, NCAM1, NRCAM,
PTPRM). The overlap between schizophrenia and anxiety may
have to do primarily to do with reactivity and stress response
(underlined by genes such as NR4A2, QKI, RGS4, HSPA1B, SNCA,
STMN1, LPL). Notably, the overlap between schizophrenia and
anxiety is of the same magnitude as the previously better
appreciated overlap between schizophrenia and bipolar disor-
der,6,70 supporting the consideration of a nosological domain of
schizoanxiety disorder,46 by analogy to schizoaffective disorder.
Clinically, while there are some reports of co-morbidity between
schizophrenia and anxiety,71 it is an area that has possibly been
under-appreciated and understudied. ‘Schizoanxiety disorder’ may
have heuristic value and pragmatic clinical utility.
We also looked at the overlap with candidate genes for autism

and AD from the literature (Supplementary Table S1), to elucidate
whether schizophrenia, autism and AD might be on a spectrum,

that is, whether autism might be a form of ‘schizophrenia praecox’,
similar to schizophrenia being referred to as ‘dementia praecox’
(Kraepelin). We see significant overlap between the three
disorders among the top genes with a CFG score of 4: a third of
the genes overlap between schizophrenia and autism, and a
quarter between schizophrenia and AD. Additional key genes of
interest are lower on the list as well, with a CFG score of 3:
CNTNAP2 for autism, MAPT and SNCA for AD (Supplementary
Table S1).

Conclusions and future directions

First, in spite of its limitations, our analysis is arguably the most
comprehensive integration of genetics and functional genomics
to date in the field of schizophrenia, yielding a comprehensive
view of genes, blood biomarkers, pathways and mechanisms that
may underlie the disorder. From a pragmatic standpoint, we
would like to suggest that our work provides new and/or more
comprehensive insights on genes and biological pathways to
target for new drug development by pharmaceutical companies,
as well as potential new uses in schizophrenia for existing drugs,
including omega-3 fatty acids (Supplementary Table S2).
Second, our current work and body of work over the years

provides proof how a combined approach, integrating functional
and genotypic data, can be used for complex disorders-psychiatric
and non-psychiatric, as has been attempted by others as well.72,73

What we are seeing across GWAS of complex disorders are not
necessarily the same SNPs showing the strongest signal, but
rather consistency at the level of genes and biological pathways.
The distance from genotype to phenotype may be a bridge too
far for genetic-only approaches, given genetic heterogeneity
and the intervening complex layers of epigenetics and gene
expression regulation.74 Consistency is much higher at a gene
expression level (Table 5),75 and then at a biological pathway level.
Using GWAS data in conjunction with gene expression data as
part of CFG or integrative genomics76 approaches, followed by
pathway-level analysis of the prioritized candidate genes, can lead
to the unraveling of the genetic code of complex disorders such as
schizophrenia.
Third, our work provides additional integrated evidence

focusing attention and prioritizing a number of genes as
candidate blood biomarkers for schizophrenia, with an inherited
genetic basis (Table 1 and Figure 2). While prior evidence existed
as to alterations in gene expression levels of those genes in whole-
blood samples or lymphoblastoid cell lines from schizophrenia
patients, it was unclear prior to our analysis whether those
alterations were truly related to the disorder or were instead
related only to medication effects and environmental factors.
Fourth, we have put together a panel of SNPs, based on the top

candidate genes we identified. We developed a GRPS based on
our panel, and demonstrate how in four independent cohorts of
two different ethnicities, the GRPS differentiates between subjects
with schizophrenia and normal controls. From a personalized
medicine standpoint, genetic testing with highly prioritized panels
of best SNP markers may have, upon further development
(Figure 6) and calibration by ethnicity and gender, a role in
informing decisions regarding early intervention and prevention
efforts; for example, for classic age of onset schizophrenia before
the illness fully manifests itself clinically, in young offspring from
high-risk families. After the illness manifests itself, gene expression
biomarkers and phenomic testing approaches, including clinical
data, may have higher yield than genetic testing. A multi-modal
integration of testing modalities would be the best approach to
assess and track patients, as individual markers are likely to not be
specific for a single disorder. The continuing re-evaluation in
psychiatric nosology66,77 brought about by recent advances will
have to be taken into account as well for final interpretation of any
such testing. The complexity, heterogeneity, overlap and inter-

Figure 8. Genetic overlap among psychiatric disorders.
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dependence of major psychiatric disorders as currently defined by
DSM suggests that the development of tests for dimensional
disease manifestations (psychosis, mood and anxiety)66 will
ultimately be more useful and precise than developing tests for
existing DSM diagnostic categories.
Finally, while we cannot exclude that rare genetic variants with

major effects may exist in some individuals and families, we
suggest a contextual cumulative combinatorics of common
variants genetic model best explains our findings, and accounts
for the thin genetic load margin between clinically ill subjects and
normal controls, which leaves a major role to be played by gene
expression (including epigenetic changes) and the environment.
This is similar to our conclusions when studying bipolar disorder,11

and may hold true in general for complex medical disorders,
psychiatric and non-psychiatric. Full-blown illness occurs when
genetic and environmental factors converge, usually in young
adulthood for schizophrenia. When they diverge, a stressful/
hostile environment may lead to mild or transient illness even in
normal genetic load individuals, whereas a favorable environment
may lead to supra-normative functioning in certain life areas
(such as creative endeavors) for individuals who carry a higher
genetic load. The flexible interplay between genetic load,
environment and phenotype may permit evolution to engender
diversity, select and conserve alleles, and ultimately shape
populations. Our emerging mechanistic understanding of psycho-
sis as disconnectivity, mood as activity11 and anxiety as reactivity46

may guide such testing and understanding of population
distribution as being on a multi-dimensional spectrum, from
supra-normative to normal to clinical illness.
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