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I. Introduction. In this paper we define a quasi-local ring R, or (R, M), to be
a commutative ring with unity having a unique maximal ideal M such that
Pln°=i Mn={0}. Thus a Noetherian quasi-local ring is a local ring. A higher
derivation D={Di}?L1 on a quasi-local ring R is said to be convergent if, for all
a in R, 2(™ o L>t(a) is a convergent series in the M-adic topology. D0 always denotes
the identity mapping. If R is complete the mapping aD: a -*■ 2i" o A(«) ¡8 an endo-
morphism of F which induces the identity mapping on the residue field of R
(Lemma 1). With suitable restrictions on D, aD is an automorphism and hence an
inertial automorphism. A seemingly "natural" additional condition sufficient to
insure that aD is an automorphism is the condition

(1) Di(M) <= M2,       i è 1.

A convergent higher derivation which satisfies (1) is said to be Af-convergent.
In a number of recent papers [4], [5], [7], Neggers, Wishart, and the author

have used convergent higher derivations to study the inertial automorphisms of
particular kinds of complete local rings. In particular Neggers [5] used higher
derivations to relate properties of the higher ramification groups of a ramified
D-ring to its derivation structure. The author has shown [4, Theorem 3.1] that if R
is an unramified «-dimensional complete regular local ring then every inertial
automorphism of F is of the form aD where D={Diy.in} is a convergent higher
derivation on «-indices. By definingHmto bej¡l + ...tin=mí)il.¡n one obtains a
higher derivation H on one index such that aH = aD, and H is, in fact, what is called
"strongly convergent" in this paper (Definition 3). The representation of inertial
automorphisms by higher derivations provides a convenient means for deter-
mining the factor groups of the higher ramification groups of R in this case
[4, Theorems 2.1, 2.2, 2.3].

This paper is primarily concerned with convergent higher derivations as such.
A bit of calculation with the possibility of defining a composition of higher
derivations so that the condition aDoD. = aDaD- obtains leads to Definition 2. Theorem
1 asserts that the set of all higher derivations H(R, R) on any (noncommutative)
ring F is a group with respect to this composition. §11 is concerned with closure
properties of various convergent subsets of H(R, R) with respect to both the group
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operation and taking inverses, all in the case in which R is quasi-local. Theorem 2
states that the convergent higher derivations form a subsemigroup HC(R, R) of
H(R, R) and Theorem 3 states that the subsets H¡?(R, R), H^(R, R), and Hf,
(R, R) of M-convergent, uniformly M-convergent and strongly M-convergent
higher derivations (see Definition 3) form subgroups of H(R, R). An example
following the proof of Theorem 2 illustrates the fact that D may be convergent
and aD may be an automorphism whereas Z>-1 is not convergent.

It is readily seen that if D is M-convergent then aD is in Hu the subgroup of
those inertial automorphisms a satisfying the condition a(a) — a e M2 for all a in M.
Conversely, if a = aD and a is in H1 then D is M-convergent. If F is a t'-ring
(unramified) every inertial automorphism is in Hx. If R is an unramified complete
regular local ring then the mapping A: D -> aD is a homomorphism of H^(R, R)
onto Hx. As a matter of fact A restricted to HtM(R, R) still maps onto Hx. It
follows from work of Wishart [7, pp. 50, 51] that a ramified taring may have inertial
automorphisms represented by D in H^(R, R) but not by D in HtM(R, R).

§111 deals with the question of necessary and sufficient conditions on a complete
local ring R that every convergent higher derivation be uniformly convergent.
Theorem 5 asserts that if the residue field k has characteristic p, the condition that
k have a finite /»-basis is sufficient and if R is regular this condition is necessary.
If R is regular and k has characteristic zero (R is a power series ring over k) then
every convergent higher derivation is uniformly convergent if and only if k has
finite transcendency degree over its prime field.

II. Closure properties. Initially we assume 5 to be an arbitrary associative ring
and R an over ring of S.

Definition 1. A higher derivation D of S into F is a set {A}i°°= i of mappings of
S into R such that for all / S: 1 and all a, b in S,

(i) A(a + 6) = A(a) + A(¿>),
(ii) A(a¿) = Z} = oA(a)A-/6),

where D0 denotes the identity mapping. The symbol H(S, R) will designate the set
of all higher derivations of S into R, and Q will represent the higher derivation
{Qi} such that Qt is the zero mapping for all fel.

Definition 2. If H and D are in H(S, S) then K = H ° D is the set of mappings
{K(}¡% ! where

(2) K% -   2  H^-r
i = o

Proposition 1. The set of mappings K as defined by (2) is a higher derivation.

Proof. Proposition 1 and Theorem 1, below, follow immediately from the
following fact first observed by Schmidt [6]. Let G represent the group of all
automorphisms a on the power series ring FtfA1]] satisfying the conditions
(i) a(X) = X and (ii) r¡a(a)=a for a in F where r¡(2aiXi)=a0. Given aeG,
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Da = {D?} is in H(R, R) where Df(a) is the coefficient of X* in a(a). The mapping
a —> Da is a one-to-one correspondence between G and H(R, R) which then induces
a group structure on H(R, R), the induced operation being (2). Thus, we have

Theorem 1. Given any ring R, H(R, R) is a group with respect to the composition

(2).
For later use we exhibit below an explicit description of D ~l in terms of D.

Let (r, n) be a partition of the integer n into r nonnegative summands. If (r, n) = iu
..., ir we let [/)](,,„> be the sum of the formally distinct products of the r maps
Dh,...,Dir. Thus, if (3, 5) = {1, 2,2} then [Z)](3>6) is AAH AAA +AlA-
Given D in H(R, R) we define D by

(3) Ä = 2 (-l)r[£]<r,n),       «i 1,
(r,n)

and contend that D=D~1.
The expression 2?=o AA-. is a sum of terms of the form Z);i • • • Djr+X each

such terms occuring twice in DhDn_Jl with coefficient (—l)r and in A A with
coefficient (—l)r + 1. Hence D ° D=Q. But this equality uniquely determines the
set of maps D and thus D^=D~X.

Lemma 1. Let (R, M) be a quasi-local ring and let S be a subring of R with the
property that every nonunit of S is in M. If D in H(S, R) converges then Dw(S)c:M
for i>0.

Proof. Let u be a unit in S such that A(") is a urut for some i > 0 and let n be
the least such integer. Since

0 = Dn(l) = At"""1) = uDn(u~1) + u-1Dn(u)+ 2 A(«)Ai-i(«_1),
¡ = i

it follows that Dn(u~x) is also a unit. Since D converges there is a largest integer,
say s, such that Ds(u) is a unit, and a largest integer t such that Z)((w_1) is a unit.
Now 0 = Ds + t(l) = Ds + t(uu~1) and Ds + t(uu'1) = Ds(u)Dt(u~1), mod A/, which
yields a contradiction. Thus A(") is in M for all units u. Next, let a be in S n M.
Then D¡(l+a) = A(l) + Dt(a)is in M and thus Dt(a) is in Af. This proves Lemma 1.

Theorem 2. If R is a quasi-local ring the set HC(R, R) of convergent higher
derivations on R is a subsemigroup of H(R, R).

Proof. Let D and H be in HC(R, R). Given a in F and a positive integer n, there
is an integer m such that if i^m then //¡(a) is in Mn and there exists an integer /
such that if i^t then AW/a) is in Mn for y'=0, 1,..., /n —1. It is readily seen
from (ii) of Definition 1 and from Lemma 1 that D^M^^M* for all />0, and
i>0. Thus, if s is the maximum of 2m and 2t and if j>s then 2¡ = o A#¡-/fl) is
in Ml. Thus Z) ° H is in #C(F, F).
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A simple example illustrates the fact that a convergent higher derivation need
not have a convergent inverse. Let k be any field and let /r[[A']] be the power series
ring in the indeterminate X over k. We define D e H(k[[X]], k[[X]]) by the
conditions

(i) A(«)=0 for a e k and all j> 0 ;
(ii) Di(X)=X, D¿X)=0foTÍ£2.

These conditions determine an obviously unique higher derivation by [2, Theorem
2] and Proposition 2 which appears later in this paper. We note that:

DñKX) =   2  (-l)r[¿>]<r,n)W - (-1)"W) - (-1TX.
<r,n)

Since this is true for any « > 0 it follows that D~l does not converge. Note, however,
that aD is an automorphism. As this example suggests a sufficient condition for
D g HC(R, R) to have a convergent inverse is that D(M)<=M2, by which is meant
A(M)cM2 for all />0. We shall see (Lemma 5) that this condition is fullfilled if
F is a t'-ring, a one-dimensional complete regular local ring having characteristic
zero with residue field having characteristic p / 0.

Definition 3. Let (R, M) be a quasi-local ring and let S be a subring. D in
HC(S, R) is said to be

(a) M-convergent if D(S n M)^M2;
(b) uniformly M convergent if D is M-convergent and converges uniformly ;
(c) strongly convergent if Di(S)'=Mi for i—l, 2,... Strong M-convergence is

defined as in (b).
The symbols HU(S, R) and Ht(S, R) will represent the subsets of H(S, R) con-

sisting of the uniformly convergent D and the strongly convergent D respectively.
A superscript M indicates M convergence i.e. H"(S, R) is the set of all uniformly
M convergent D in H(S, R).

Theorem 3. Let R be a quasi-local ring. H?(R, R), H?(R, R) and HtM(R, R) are
all subgroups of HC(R, R). HU(R, R) is a subsemigroup of HC(R, R).

Proof. Obviously the product of M-convergent higher derivations is M-
convergent. We note that if D and H of the proof of Theorem 2 are in HU(R, R)
then the proof is independent of the choice of a and hence D ° H is in HU(R, R).
If D is in Hf(R, R) then

(4) Di(Mj) c Mi+i,       (èl,    « H 0.

Relation (4) implies closure in HtM(R, R) and also leads immediately to the con-
clusion that if (r, i) is any partition of i and D e HtM(R, R) then [D]ir4)(Mj) <= Mi+i.
Thus if D is in HtM(R, R) so is D'1. The example following Theorem 2 is a strongly
convergent higher derivation. If D represents the higher derivation in question
and H=D° D then H2(X) = X, illustrating the fact that Ht(R, R) is neither closed
with respect to product nor with respect to taking inverse.
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In order to verify that the inverse of D in H^(R, R) is in H^(R, R) it is sufficient
to show that, given a in F and m^O, there is an integer n such that if iu ..., ir
is any partition into positive integers of t > n then,

(5) Dh---Dir(a)eMm.

Since for D in H^(R, R)
DIM1) c Mi + 1,       i > 0,   7^0

it follows that (5) holds if r^m. There is an integer nx such that if i>n1 then
Di(a) e Mm and an integer n2 such that if i2>n2 then DhDiL(a) e Mm for /'i= 1, 2,

Iteratively, we define integers nu n2,..., nm_± such that, if 0<j<m and i,>n,;
then DijDil_l,...,Dh(a)eMm if 0</fáw¡ for /=l,...,y'-l. Let n' be the
maximum of nu n2, ■ ■ -, «m-i and let n = m(ri +1). Ify1;.. .,jr are positive integers
such that y'i + • • • +jr > n then either r g m or jt> ri for some t. In either case
Dti,..., Dir(a) e Mm. It follows then from (3) that if D is Af convergent so is D'1.
If Z> is in Hu(R, R) the above argument again applies independently of the choice
of a. We conclude that D~l is in H™(R, R) if Z> is in H^(R, R).

III. Uniformly convergent higher derivations. We begin with some basic facts
about extensions of higher derivations and their convergence properties. Let T be
a commutative overring of a ring S and let a e S be invertible in S. Then if
D e H(S, T)
(6, n) Dn(a^) - T (- l)r+1ß-(r+1)C(r, «)U)(a)L,n>

(.r.n)

where C(r, n) = rl/(n1l ■ ■■ nt\) and nu...,nt represent the number of times the
distinct integers of (r, ri) occur in (r, ri). Also if (r, «)=./i,.. .,j, then [Z)(fl)](rn) is
the sum of all the formally distinct products of the r quantities Dh(a),..., DJr(a).
For «=1 we have Z>!(a_1)= — a'2D1(a). Proceeding by induction, Q=Dn(aa~l)
»2A(«)i,-.(«'1) or A(a_1)= -a"1 SïVo1 A,-i(ö)A(e-1). Substitution of (6, i)
in the right hand side of this equality for i=\,.. .,n— 1 yields (6, n) without
difficulty. Let T and 5 be as above and let D be in H(S, T). The mapping
td: S-> T[[X]] given by (7) is an isomorphism with the property r¡TD is the

(7) rD(a) = 2 A(a)^
i = 0

identity on S where again ij(2 a¡Arí)=o0. Conversely, if t: 5^- TtfA']] is a homo-
morphism such that rjr is the identity on Sthen r(a) = a + Ji X'DKa) and DX={D}}
is in //(S, T). As in the proof of Theorem 1, D ->■ td is a one-to-one correspondence
between #(5, 7") and the set of isomorphisms t of S into 7n[[A']] such that -nr is
the identity map on S.

Let Af be a multiplicatively closed subset of S each element of which has an
inverse in T. Thus SM the ring of quotients with respect to Af is a subring of T.

Lemma 2. Each D in H(S, T) has a unique extension to H(SM, T).
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Proof. The lemma follows from the existence and uniqueness of che extension
of tb to SM-

Lemma 3. Let S be a subring of the quasi-local ring (R, M) and let B be a subset
ofR. Let D be in H(S[B], R).

(i) // D converges on S and on B then D e HC(S[B], R).
(ii) If D  is uniformly  convergent on  S and on  B and D(S[B])'^M then

DeHu(S[B],R).
(iii) If D is strongly convergent on S and on B then D e Ht(S[B], R).
(iv) IfD(S nM)<=M2 and D(B c\M)<=M2 then D(S[B] n M)^M2.

Proof. Each element in S[B] is a sum of terms of the form sbx ■ ■ ■ bt where
s e S; bx,..., bte B and t S: 0. Now

(8) Dn(s,bu...,bt)=        2       AoOWW • • • Du(bd.
l0 + ■ • ■ +it = n

Clearly, if D converges at s, blt..., bt then D converges at sbx ■ ■ ■ bt.
Statement (ii) is a consequence of the following lemma which will be useful

elsewhere.

Lemma 4. Let S be a subring of a quasi-local ring (R, M) and let Bbea subset ofS.
If D e H(S, R) converges uniformly on B and D(B) <= M then given « > 0, there is an
m > 0 such that given any product bx- ■ ■ bt of t ^ 1 elements in B, Dh (b{) ■ ■ ■
Dit(bt) e Mn whenever ixH-1-it>m.

Proof. There is an integer r such that if i>r, then D¡(B)<=Mn. Let m=nr. Then,
if ii +•••+/<> m either « of the /"s are different from zero or one of them is greater
than r. In either case A^i) ■ ■ ■ A, (A) 's in Mn.

To prove (iii) of Lemma 3 we simply observe that if Dt(a) e Mi for a in S or in
B then (8) is in Mn. Statement (iv) is immediate.

Corollary 3.1. If D e HC(S[B], R) converges uniformly on S, where B is a
finite set and D(S[B])<=M, then D e HU(S[B], R).

Corollary 3.2. Let M be a multiplicatively closed subset of S each element of
which has an inverse in R and let D e H(SM, R) be the extension of D e H(S, R).
If D(S) c M, /'/ follows that

(i) if De HC(S, R) then D e HC(SM, R);
(ii) if De HU(S, R) then D e HU(SM, R);
(iii) if De Ht(S, R) then D e Ht(SM, R).

Proof. Let M ~1 denote the set of inverses of the elements of M. Then D(M ~1)
c M in view of (6) and the assumption that D(S)c M. Also, it follows from Lemma
4 and (6) that if D e HC(S, R) then D converges on M -\ and if D e HU(S, R) then
D converges uniformly on M"1. If D e Ht(S, R) it is apparent from (6) that D is
strongly convergent on M"1. The observation that SM = S[M~l] and an appeal
to Lemma 3 completes the proof.
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The symbol V will represent a valuation ring having characteristic zero with
residue field k of characteristic p # 0. Let ir be a prime element of V and let e be the
ramification of V, that is pV=neV, and we write e=psr where (p,r)=\. Let
(R, M) be a regular local ring containing V such that ttV= V n M.

Lemma 5. Fac« Z> /« i/c(F, R) has the property D(ttV)^M2 and thus HC(V, R)
= H?(V,R).

Proof. For some positive integer t, ■nV'^Mt\Ml*x, i.e. nV^M1 but ttV<^Mí+1.
Thus ne Ml\Mt + 1. Let i be the least integer such that Ato^M2. We assume
f>l. Now

Arto) = [Ator + 2 Dh to, • • •. A,to-
ii + ■ • • + ír = ir: some if < i

Since [AtoF 6 Mr\Mr+1 and the second term is seen to be in Mr + 1 we have
Arto)eMr\Mr+1. Similarly,

(9) As¡rtoSr) = [Arto)]p,+ 2 A>0--- ApSto)-
ij + • • ■ +ips = psir; ij #ifc for some j.fc.

Again [Arto)]"' e MrpS\Mrp, + 1 and the remaining term on the right of (9) is seen
to be in MrpS + 1 since each summand occurs a multiple of p times. We conclude
from (9) that

Asirto'r)eMi,"r\MpSr + 1.

For some unit u in Vp = wnp"' and

(10) o = zv,rO0 = «A-i^O+'S A(")Asir-;to'r)-
i = l

By an argument like that above applied to the right side of (10) we conclude that
Dp'irip) s MpSr\Mp'r + 1 which is the desired contradiction.

If /= 1 then we observe as above that Ato) e Mr\Mr+1 and hence that
DPu(^Sr)eMp'r\Mp!r + 1. It follows that D^(p) = Dtft(m',f) $ Mp>r+1; a contra-
diction. This proves Lemma 5.

Lemma 6. If D is in H(V, R) and a is in V then Di(apn)^Mi for i<pn~>.

Proof. We note that

Ato")=        2       Dh(a)-.. Dipn(a)
il + • ■• +ipn = i

(H)
= C[p";qi,..., gt][Dh(a)]\ ..., [Dh(a)]°<

where the set'ij,..., iPn consists of qr integers;; for r= 1,..., t and C[pn; qlt..., qt]
is the indicated multinomial coefficient. Since i<pn~\ and hence qr<pn~¡ for at
least one qr, it follows that the maximum integer / such that pl\qr, for all qr is less
than n—j. Thus p^Clp"; qu .. .,qt]. (Here we are using the fact that if s is the
largest integer such that/?s|<7r for all r then pn~s\C[pn;q1,..., qt].) It follows from
(11) that DAa^M'.
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We now make an additional assumption on V and R, namely that R is complete
in the Af-adic topology and V is a complete subring with e= 1.

Theorem 4. Let S be a p-basis for k the residue field of V and let S^V be a set
of representatives of the elements in S. If f is a mapping of Sx I into R where I
denotes the positive integers then

(a) There is one and only one D e H(V, R) with the property D,(s)=f(s, i) for
(s, i) in Sx I.

(b) D is in (i) H?(V, R), (ii) H?(V, R), (iii) HtM(V, R) if and only if D(S)<^M
and if) D converges on S, (ii) D converges uniformly on S, (iii) Di(S)'^Mi for i=\,
2,....

Proof. In order to prove part (a) we consider V0 the complete subring of V
having residue field k0, the maximal perfect subfield of k. Since S is an algebraically
independent set over k0, S is algebraically independent over V0. Thus by a standard
Zorn's Lemma argument using [2, Theorem 2] we can define He H(V0(S), R) by
the conditions (i) //restricted to V0 is the zero higher derivation and (ii) Hi(s)=f(s, i)
for s e S and i e I.

Let U be a basis for A; as a linear space over k0(S) and let U be a set of repre-
sentatives in V of the elements in U. We assume that 1 is in U.

The set Ü"n of pnth powers of elements of U is also a basis for k over k0(S)
[3, p. 347]. If V0(S) is the ring of rational functions over V0 in the elements of S
then V1= V0(S) n Fis a valuation ring with residue field kQ(S). Thus, given a e V,
there are elements 0\,..., an in Vx and uu .. .,unin U such that

(12) a = ^atufn,       mod/)".

Moreover, the a¡ are uniquely determined, mod/?", by the condition (12).
For /= 1.m and a e V, let

( 13) D¡m\a +PmV) = 2 #t(o/)«f m + Mm,

where a = 2 o-juf", mod/)"1, according to (12). The fact that the a¡ are determined,
mod/)", assures that Am) is a well defined map of V/pmV into R/Mm. We define
the desired D e H(V, R) by the coset intersection

(14) Did) =  O D¡m)(a+pmV).
m>i

The following equalities which will be verified in turn, permit us to conclude
that D is a higher derivation. For A and B in V/pm V

(15) D\m)(A + B) = D¡m\A) + Df\B)       for i - 1,.. „m,
i

(16) D¡m)(AB) = 2 Df\A)D^i(B)
i = o

and for aeVthe following coset inclusion holds.

(17) D\m)(a+pmV) => D¡m + 1)(a+pm+1V).
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Statement (15) is clear from the definition. In order to establish (16) we let
A=Zakui3m+pmVand B=2b¡ufm+pmV, using (12). Thus

(18) ^ = 2 akb¡utmufm +pmV.

Using (12) we have ukUj = J, dru„ modpV. Thus [2, Lemma 1],
3m-1

(19) ufmufm =   2 P'Zskj.ucfJ.u'ur,       modp^V,
t = 0 ¡

where sk¡i¡til is a rational integer and ce Vt, Substituting (19) into (18) we have

(20) D^(AB) = 2 #i(2 a^pXj^cCfjyf m + AT.
Since p and skJtt,i are rational integers Hi(pt) = Hi(skJitil)=0, for all /'. Also, by
Lemma 6, H^cfJfJ) is in Afm if t<m, since i^m. Thus, mod Afm, we have

Hi(Z a*t>lP*5k.i.tM*H~l) = 2 Hi(akbi)PtSk.i,t.lCk7,U

= 22 Hr(ak)Hi-r(bJ)pXJ,tJcC,u-
r = 0

Thus, substituting this last expression into (20) and then using (19) we find that
(20) reduces to 2 Hr(ak)Hi.r(bj)ufmufm+Mm from which (16) follows.

Relation (17) can be verified as follows. Using (12) for n = 1 we have uf = 2 a¡«i,
mod/?, the at being in Vx. Thus [2, Lemma 1]

3m-1

(21) Mf"+1> = [2<wTm =   2 i'l^uCi",       modp^V.
i = 0

Again, sk¡t¡n is a rational integer and cMt„ e Vx. Thus if a+pm + 1V=^ akuf(m + 1)
+pm+1Vthen

D\m + 1\a+pm+1V) = 2Äri(flfc)«rm+1> + Mm + 1

3m-1
(22) = 2 H¿ak)  2 P* 2 s*.t.nc£Z;'ufm + Mm^

i = 0

= 2 A(a, 2^ 2 ^.t.ncf.un")ufm+Mm + \

But, a+//»K=2 (afc 2/^2 ÎM,nC£Ïn~'K3m +/>mK and

A(m,(a+;,mK)  = 2 //((afc 2^,!,nC^7>fm+Mm-

Relation (17) then follows in view of (22).
Since P|7?=i Af"=0, D¡ as defined by (14) is a uniquely determined element of

R. Properties (15) and (16) assure that conditions (i) and (ii) of Definition 1 hold
mod Mm for all m. Thus D is a higher derivation.

In order to show that D is an extension of H we note that if a e Vx then
D¡m)(a) = Hi(a) + Mm since 1 g U. Thus Dt(a) = fk Dfl\a+pmV) = Hi(a).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



40 NICKOLAS HEEREMA [June

It remains to show that D is determined by W={Dt(s)}¡t1¡seS. Certainly, the
restriction of D to V¡.<= V0(S) is completely determined by W since Ato = 0 for
/>0 and a in V0 by Lemma 6 and the fact that V0 is for each «>0 the completion
of the subring generated by the/>nth powers of elements in V0. Let a be any element
in V. By (12) a=2 atufm, modp3m + \ where the a, are in Vx. \fj<m,

A(2 «V*f) = 2 A(«.)"f3m.       mod M-,
by Lemma 6. Hence AfatoZ D^a^uf", mod Mm. Thus D is determined, mod Mm
by its restriction to S. But «3 is arbitrary. It follows that D is uniquely deter-
mined by its action on S. This proves (a) of Theorem 4.

If D in H(V, R) converges then D(V)^M. Hence the condition D(S)<^M is
necessary for D to be in H?(V, R), H™(V, R) or HtM(V, R). The remaining
condition is clearly necessary in each case.

Let D in H(V, R) be such that D(S)<=-M and 2 AC?) converges for all jeS,
To show that D is in H™( V, R) it is only necessary to show that D converges in
view of Lemma 5. Given «>0. By Lemma 6 Dj(Vpn*1)<^M for j^n. But
V=Vpn + 1[S]+pVand hence D,(V)c M or

(23) Z>(F) c M.

Lemma 7. Lei (F, M) ¿>e a quasi-local ring with residue field having characteristic
p^Q. Let S be a subring ofT. If D e H(S, T) maps S into M then

(24) D(SP") c MB + 1,       for n = 1,2,....

Proof. We argue by induction on « using

(25) Ato) = pap~ * A to + 2 DhM ' ' " Apto-
Il + ••• +fp =i;f/<i

Since at least two of the integers ilt..., i„ are different from zero Ato) is in
M2. If in (25) a = bp" then, by induction, D(bpn) e M n +» and hence A to"+ * ) e M n + 2.

By relation (23) and Lemma 7 then D(Vpn)^Mn + 1. Given a in Fand />0,
a=f(su ..., sg), mod/j'K, where/e Vpl[X1,..., XQ] has degree <pt in each Af{, and
{i1;..., sq}<=S. We choose « so that if i>n/qpl then A(sv) e Ml for j==l,...,q.

(26) A(M* • • • «SO = 2 AoWA^íi) • • • Ani +... +n,to).
Í0.*ni + ... + nq — Í

If />« in (26) either /0>0 or i^njqp1 for some y>0. Thus, since beVpt,
AotoAiCsi)--- Ani + ...+„,CO is in M(. Since every term in Vp'[s1,..., sq] is
of the type treated in (26) it follows that, if />«, Ato e Ml. Thus D converges.

If D converges uniformly on S then the « of the previous paragraph can be
chosen so that if i>n/qpt then A(5)CM(, from which it follows that Ato)
= Di(Vpt[S]+ptV)<=Mt.

Thus DeH™(V,R). Similarly, if Di(S)'^Mi a like argument leads to the
conclusion that Ato)c^!-
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Theorem 5. If(R, M) is a complete local ring with residue field k having charac-
teristic p^O then HC(R, R) = HU(R, R) if k has a finite p-basis. If R is regular
HC(R, R) = HU(R, R) only if k has a finite p-basis.

Proof. As in Theorem 4 we let S be a set of units in R which map biuniquely
onto a /7-basis 5 for k under the canonical map of R onto k. It is assumed that S
is finite. Let Jt be the set of multiplicative representatives of the element in k0,
the maximal perfect subfield of k. We choose an arbitrary D in HC(R, R) and
observe first that D(Ji) = {0}, by Lemma 7 since each a in Jt is a /?mth power for all
m. Thus if Fis the subring of R generated by JÍ then D\T, the restriction of D to T
is the zero higher derivation. By Corollary 3.1 D\T[S] is uniformly convergent.

Let U be a subset of R which maps biuniquely onto U a basis for A: as a linear
space over k0(S). As we have observed before the set Un of pnth powers of the
elements in U maps onto a basis for k over k0(S).

Let />0 be fixed. If M=2?=1 wtR, thenaeF=>:

a = 2W+^       t*GMt>   fi£T[S][Wl,...,ws].
t

Hence applying Corollary 3.1 to obtain AlFtSHtv,.,..., ws] uniformly convergent,
we pick an « such that j>n implies

Ato[S][w1,...,ws])cMt.

Thus since D(Mt)<=Mt,

Dj(a) = D^fiufj + D^eMK

Since the choice of « depends only on /, S, and {n^,..., ws} it follows that D
converges uniformly on R. Inclusion the other way is obvious so the first part of
Theorem 5 is proved.

In proving the rest of Theorem 5 we will have use for the following proposition
whose proof is standard and will be omitted.

Proposition 2. Let S be a subring of a complete local ring (R, M) and let D be
in H(S, R). If D is continuous in the induced topology then D extends and in only
one way to a higher derivation D* on S* the completion of S in R. If D is convergent
so is D*. If D is uniformly convergent so is D*. If D(S)<^M then D*(S*)<^M.

Assuming R to be regular we consider the converse. If R has characteristic p
then F is a power series ring k[[X1,..., Xn]] in a finite number of indeterminates
Xu...,Xn over its residue field k. We assume that k possesses a /»-basis S with
infinite cardinal. Let {j(},™ j be a countable sequence of elements in S. A higher
derivation A° in H(k, k[[Xx,..., Xn]]) is uniquely determined by the conditions
(i) D(i'\si) = 8ij (ii) Df(s)=0 forj^ 1 and s e S, í#í¡ [2, Theorem 1]. The theorem
referred to here applies to D e H(k, k) but the proof applies to the case in which
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the range of D is a ring containing k. Let HU) be defined by H¡§**XíB$P, n= 1,
and H$ = d, for m not a multiple of /, 6 being the zero map. Hw so defined is a
convergent higher derivation. H{i) is extended to Hm on £[A\,..., Xn] by the
condition //ji)(Art)=0for/'ä 1, and r= 1,..., n. HU) extended is again, by Lemma 3,
a convergent higher derivation. Finally, let E=Ha) ° H<2) o. • .o //<*» o.... Thus
En = (Ha)°- • -o #<»>)„ since //¿i> = 0 for w</. It follows readily that £ is a well-
defined higher derivation, and is clearly convergent. Let E* represent the ex-
tension of £to k[[Xu ..., Xn]]. Again by Proposition 2, E* is a convergent higher
derivation. It follows immediately from the definition of E* that Ej*(s¡) is in M
and not in M2. Hence, E* is not uniformly convergent.

Assume now that R has characteristic zero. Then R=R1[rr] where

R,= V[[Xu...,Xn]]

is a power series ring in n indeterminates over an unramified n-ring V and -n is a
root of an Eisenstein polynomial/over 7? [1, Theorem 1].

The following facts will be useful. Let K be the quotient field of Ry.
(A) A given higher derivation on R1 has a unique extension to a higher derivation

on K. This follows from Lemma 2.
(B) A higher derivation D on A has a unique extension D to K[n] [2, Theorem 3].

If D is convergent on K, D will be convergent if and only if 2 A(w) converges.
If D(R1) <= 7? then D(R) <^R\{ and only if D(n) e R.

Let the minimal polynomial/ of it over R, bef=Xe+fe-1Xe~1+ ■ ■ '■ +f0 and
let/' denote the ordinary derivative of/.

Lemma 8. Iff'(") e Af'\Mí + 1 aw¿ Z) e ^(Äj, i?,.) & shcA íactí D(/y) e Af3'"' for
j=0,..., e — 1 rAen i/;e extension of D to R will be convergent and will map R into R.

Proof. We choose the same symbol D for the extension of the given higher
derivation. Application of the defining properties of a higher derivation to
A(/fcr))=0 yields

/'WAW = -/B'W- 2 A» • • ■ A»
ii + ■■• +le=U0Siq <l

(27)
-"2 2 A„(/DA» • • • A»

t = o io + ••• +i(=i;0Sy,<i

where fDl = Di(fe.1)Xe~1-{-hAC/o)- For i=l we have the familiar formula
D1(ir)=fDi(iT)lfXn) and hence, since AC/}) e [/»PM'"' for y=0,..., e-1 we
have D^tt) £/'(tt)M'. If, for f<r, A(")e/V)^' then by (27) AWe/'W^'.
Thus Z)(/?)c ^- In order to show that 2 A(w) converges we assume that for any
integer s, l<s<r, there is an integer N,>eNs_x such that if />Ns then Dt(f}) e Mst
for/'=0,..., n and Ai"") e Af(s_1)i. Then since D converges on /?! there is an TV
such that if /' > N then AC//) e Afri for all /'. Let 7Yr be the larger of eN and eNr _ x.
It follows then from (27) that for i>N„ A(^) e Af<r_1)i and the lemma is proved.
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If 5 is a set of representatives in I7 of a /»-basis for its residue field k then
V= Vpm[S]+pmV for any «j>0. Thus there is a finite subset S1 of S such that

fe Fp31[S1]-l-/r3iF. Assuming 5 to be an infinite set we enumerate a countable
subset {a,}¡"Li of S-Si and we define a higher derivation DeH™(V,R) by
Ato> = Wto)]2, for i,j>0, and D(s)=0 for s e S-{s,)r=1. By Theorem 4, D is
in Hf(V, R) and is not in HU(V, R) since D does not converge uniformly on S.
We extend D to V[XU ..., Xm] and hence, by Proposition 2, to Fx by the require-
ment £>(^i)=0 for ;'=1,...,«, using the same symbol for the extended map.
Since 2 Ato;) converges for j=\,..., n, D e H?(Rit F), D $ HU(RU R). By
construction of D the conditions of Lemma 8 are met and hence D extends to a
higher derivation in HC(R, R) which is not in HU(R, R).

The following lemma is needed in order to obtain an analogue to Theorem 5 in
case the residue field F has characteristic zero.

Lemma 9. Let k0, klt and k be fields such that ¿0c^cfc Let

DeHc(kuk[[Xu...,Xn]])

and assume k1 separable algebraic over k0. If D restricted to k0 is uniformly con-
vergent then D is also uniformly convergent. If D e H(k1,k[[X1,..., Xn]]) is
convergent (M convergent) on k then

D e Hc(kx, k[[Xu ..., Xn]])       (D e H^(ku k[[Xu ..., Xn]])).

Proof. Let u be in k± and let /be its minimal polynomial over k0. If

f-X*+*f ¿X1
i = 0

then, as in the proof of Lemma 8,

/'to Ato = -fD<u) - 2 Aito • • • A»
/!+••■ +i„=i;0Sii<i

(28,i)
-2 2 Di0(ft)Dh(u) ■ ■ ■ Dh(u)

( = o jo + ••• +ii = i;0Si,<i

for i=\, 2,....
Using (28) and induction on i we observe below that Dt(u) is a sum of terms of

the form

(29, i) bAxto) • • • Ato),      <!+••• + »V - i.
Relation (28, i) exhibits a representation of Auto as a sum of terms of the

form (29, 1). Assuming that, for i<j, Dt(u) is a sum of the form (29, i) we substitute
these sums in (28, j) and conclude that D}(u) is of the same form. The first assertion
of Lemma 9 now follows from Lemma 4.

Let D e H(kx, k[[Xu ..., Xn]]) be convergent on k0 and let u be as above. Now
f'(u)Di(u) was observed to be a sum of terms of the form (29, i) from which fact
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one concludes that 2 A(") converges if D converges on k0. The remaining state-
ment is obvious.

Theorem 6. If(R, M) is a complete regular local ring having residue field k with
characteristic zero then HC(R, R) = HU(R, R) if and only ifk has finite transcendency
degree over its prime field.

Proof. In this case R is a power series ring k[[Xlt..., Xn]] in w-indeterminates
over k. Let k0 be the prime field of k and let Abe a transcendency basis of k.
Then, by Proposition 2 and Lemma 9, it is sufficient to show that Hc(k0(B), R)
= Hu(k0(B), R) if and only if B is finite. Since the first nonzero mapping of a
higher derivation is a derivation and there are no nonzero derivations with domain
k0 it follows that every higher derivation on k is trivial on k0. Hence if D e
Hc(kQ(B), R) then D is uniformly convergent on k0 and, if-S is finite, D is uniformly
convergent on k0[B] by Lemma 1 and Corollary 3.1, and hence is uniformly
convergent on k0(B) by Corollary 3.2.

If B is infinite we choose a countable subset {bi}™=1 = B' in B and define a
D e HM(k0(B), R) by the conditions A(¿;) = SÜ^1, for i,j^l, and A(¿)=0 for
i= 1 and bin B,b not in B'. D is Af-convergent on k0 and on B and hence D is in
H^(k0(B), R) by Lemma 3. Since D¡(b,) $ M2 for all j, D is not uniformly
convergent.
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