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Abstract

We consider reinforcement learning algorithms in normal form games.
Using two-timescales stochastic approximation we introduce a model-free
algorithm which is asymptotically equivalent to smooth fictitious play,
since both result in asymptotic pseudotrajectories to the flow defined by
the smooth best response dynamics. Both of these algorithms are shown
to converge almost surely to the Nash distribution in two-player zero-
sum games and N -player partnership games. However there are simple
games for which these, and most other adaptive processes, fail to converge
— in particular we consider the N -player matching pennies game and
Shapley’s variant of the rock-scissors-paper game. By extending stochastic
approximation results to multiple timescales we can allow each player to
learn at a different rate. This extension will converge for two-player zero-
sum games and two-player partnership games. It will also converge for
the two special cases we consider.

1 Introduction

Current work in the theory of multiagent reinforcement learning has pro-
vided renewed impetus for the study of adaptive processes which evolve
to equilibrium in general classes of normal form games. Recent devel-
opments in this area have used the theory of stochastic approximation
to study the long term behaviour of adaptive processes in which players
repeatedly play a normal form game and adjust their mixed strategies
in response to the observed outcomes. This theory uses results from the
theory of deterministic dynamical systems to gain information about the
asymptotic behaviour of the stochastically evolving adaptive process.

One of the most generally applicable recent schemes for adaptive learn-
ing in games is smooth fictitious play, studied by Benäım and Hirsch [3].
At each play of the game, each player estimates the expected reward
to be obtained from each of their actions using knowledge of the game
and their observations of the actions played by the other players in the
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past; a mixed strategy based upon these estimates (a smooth best re-
sponse) is then played. This results in a stochastic approximation process
and it follows that the appropriate deterministic dynamical system is the
smooth best response dynamics studied by Hopkins [13] and Hofbauer
and Hopkins [12]. However these dynamics are only known to converge
for rescaled two-player zero-sum games and rescaled two-player partner-
ship games, and so Benäım and Hirsch’s smooth fictitious play algorithm
is only proven to converge in these cases. Further, there are two particular
games — Jordan’s matching pennies game [15] and Shapley’s variant of
rock–scissors–paper [24] — for which it is known that the smooth best re-
sponse dynamics have a unique equilibrium which is linearly unstable for
certain smooth best response functions. Therefore in these simple cases
the smooth fictitious play algorithm will almost surely not converge to the
equilibrium point.

There is also a more general issue regarding Benäım and Hirsch’s al-
gorithm: all players must observe the actions played by all other players,
and also know the structure of the game (how many players are playing
and the reward function) in order to calculate the expected values of their
actions. In Section 2 we present a model-free multiagent reinforcement
learning algorithm which also approximates the smooth best response dy-
namics, and so has the same convergence properties as smooth fictitious
play. For this new algorithm it is not necessary for players to know any-
thing about the game being played, nor to observe the opposition, nor
even to know that they are playing a game at all. All that is required
is for each player to observe the reward they obtain at each play of the
game.

However the convergence properties of this algorithm are only as good
as the convergence properties of the smooth best response dynamics which
it approximates, and, as stated above, there are simple games for which
these dynamics fail to converge. The basic technique used in the first
algorithm allows us to aproximate any of the standard dynamical systems
of adaptive game theory which are based on the expected values of actions;
but the search for a continuous time dynamical system which converges
to Nash equilibrium in general games has been largely unsuccessful, with
the two ‘difficult’ games already mentioned causing problems for most
(if not all) of the proposed dynamics. Section 3 generalises a result of
Borkar [6]. This allows us to show, in Section 4, that a modification of
our reinforcement learning algorithm approximates a singularly perturbed
[14] variant of the smooth best response dynamics. Consequently we see
in Sections 5 and 6 that this modified algorithm must converge in the two
classes of games for which the standard smooth best response dynamics
converge (two-player zero-sum, and two-player partnership games) as well
as converging for the two difficult special cases previously mentioned.

1.1 Related work

Claus and Boutilier [8] have considered reinforcement learning algorithms
in normal form games where all players receive identical rewards (part-
nership games). In their algorithm players estimate the value of their
actions using standard reinforcement learning (see the books by Sutton
and Barto [25] and Bertsekas and Tsitsiklis [4] for an introduction to these
techniques). Players then use these estimates to choose a smooth best re-
sponse, just as in smooth fictitious play. Littman and Stone [19] point
out several problems with this approach when it is applied to other types
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of game (partnership games are qualitatively easier since pure strategy
equilibria must exist). In essence the problems arise because a player’s
estimates of the values of actions can not change sufficiently quickly to
keep up with changing opponent strategies.

A complementary approach is that used by Börgers and Sarin [5],
which in turn is based upon earlier work in the field of learning automata
(see Narendra and Thathachar’s book [21] for an introduction). Here the
reward at each stage is used to directly update the mixed strategy to
be played, as opposed to maintaining an estimate of action values. This
however creates the problem that the only randomness in the algorithm
comes from the strategy which is currently being updated, so as this gets
close to a pure strategy there is very little noise in the system. Therefore
it is possible for the algorithm to converge to a pure strategy combination
which is not an equilibrium.

In the field of Markov decision processes, there is an analogous problem
of how to deal with both action values and strategies. Algorithms based
upon classical value iteration are the basis for the adaptive learning algo-
rithms of Claus and Boutilier [8] and Littman and Stone [19]. Algorithms
based upon policy iteration are related to Börgers and Sarin’s algorithm
[5]. A hybrid scheme has proved popular in the field of Markov decision
processes: actor–critic algorithms maintain separate estimates of the ac-
tion values and the current optimal policy, using the former to update the
latter towards optimality. Although these have been successfully used in
empirical approaches for some time (see [1, 27] and references therein),
few theoretical results were available until recently. Konda and Borkar
[16] use a two-timescales stochastic approximation method [6] and update
the actor (the strategy) on a slower timescale than the critic (the value
function). Two further papers, by Sutton et al. [26] and Konda and Tsit-
siklis [17], use a functional approximation of both the value function and
the strategy. This has proved theoretically tractable, and convergence to
a local maximum is proved.

We adapt the approach of Konda and Borkar [16] to provide the algo-
rithms presented in this paper. Borkar [7] has applied his two-timescales
stochastic approximation theory in a similar manner to Markovian games,
adapting the value functions and strategies on different timescales. He
shows convergence to ‘generalised Nash equilibrium’ in these games.

1.2 Preliminaries

We consider a game of N players, labelled 1, . . . , N . Each player i ∈
1, . . . , N has a set Ai of available actions, one of which must be chosen
each time the game is played. Together these action sets form the joint
action set A = A1×. . .×AN . When the game is played, each player chooses
an action ai ∈ Ai, resulting in a joint action a ∈ A. Each player receives
a subsequent reward ri(a), where ri : A → R is the reward function of
player i.

As is standard in game theory we consider mixed strategies πi for each
player i, where πi ∈ ∆(Ai), the set of probability distributions over the
set Ai; in abuse of notation we write πi(ai) for the probability that action
ai is played in mixed strategy πi. This gives rise to a joint mixed strategy
π = (π1, . . . , πN ) ∈ ∆(A1) × . . . ×∆(AN ). There are unique multilinear
extensions of the payoff functions to the mixed strategy space, and in
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standard abuse of notation we write

ri(π) = E(ri(a) | aj ∼ πj , j = 1, . . . , N) =
∑
a∈A

(
N∏

j=1

πj(aj)

)
ri(a).

Given a joint mixed strategy π = (π1, . . . , πN ) we define the opponent
joint strategy π−i = (π1, . . . , πi−1, πi+1, . . . , πN ), and identify the pair
(πi, π−i) with the joint mixed strategy (π1, . . . , πi−1, πi, πi+1, . . . , πN ).
Also, in further standard abuse of notation, we identify ai with the mixed
strategy πi for which πi(ai) = 1; this allows us to write (ai, π−i) for the
joint mixed strategy where all players other than i play as if joint mixed
strategy π is played, and player i uses the pure strategy ai.

Using this notation we see that ri(ai, π−i) is the expected reward to
player i if action ai is played against the opponent joint strategy arising
from joint mixed strategy π. Nash [22] discusses equilibria of games —
joint strategies where each player must play a strategy (pure or mixed)
that is a best response to the opponent strategies. That is, at a Nash
equilibrium π̃ we must have

ri(π̃) = max
ai∈Ai

ri(ai, π̃−i) for each i.

Nash shows [22] that every game must have an equilibrium. However diffi-
culties arise when we try to use this maximisation in learning algorithms,
including

1. At an equilibrium π̃, each action ai for which π̃i(ai) > 0 receives
the same expected reward ri(ai, π̃−i). So if the value of actions is
the only available information there is no motivation for a player to
stay at the Nash equilibrium (as opposed to playing any of the pure
strategies played with positive probability at the Nash equilibrium,
or any other mixed strategy using only these actions).

2. The inherent discontinuity in taking a maximum means that strate-
gies arising from sampling of observed rewards will rarely result in a
mixed strategy being played. See [20] for further discussion of this
issue.

To circumvent these difficulties we replace the absolute best response
in the definition of a Nash equilibrium with a smooth best response. Here,
instead of choosing actions to maximise ri(ai, π−i), a distribution πi is
chosen to maximise

ri(πi, π−i) + τvi(πi)

where τ > 0 is a temperature parameter and vi : ∆(Ai) → R is a player-
dependent smoothing function, which is a smooth, strictly differentiable
concave function such that as πi approaches the boundary of ∆(Ai) the
slope of vi becomes infinite. This is the approach used by Fudenberg and
Levine [10] and Hofbauer and Hopkins [12]. The conditions on vi mean
that there is a unique maximising πi, so we can define the function

βi(π−i) = argmax
πi

{
ri(πi, π−i) + τvi(πi)

}
.

Note that this can be written as

βi(π−i) = argmax
πi

 ∑
ai∈Ai

πi(ai)ri(ai, π−i) + τvi(πi)

 ,
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and so the only use of the opponent joint strategy π−i is in the assess-
ment of the action values ri(ai, π−i). Therefore if we have a vector Q of
estimates of the action values we will often write

βi(Q) = argmax
πi

 ∑
ai∈Ai

πi(ai)Q(ai) + τvi(πi)

 , (1)

and in this way
βi(ri(·, π−i)) = βi(π−i).

It is clear that βi will approximate the absolute best response as τ → 0,
and βi will approximate the uniform distribution over actions as τ →∞.

Since absolute best responses are no longer relevant, the equilibria of
a game under the assumption that players make smooth best responses
are joint mixed strategies π̃ such that

π̃i = βi(π̃−i).

Such points are called Nash distributions. Henceforth, ‘convergence’ of
an algorithm is taken to mean convergence to Nash distribution under a
fixed temperature parameter τ .

These smooth best responses can be viewed as a realisation of the in-
complete games of Harsanyi [11]. He shows that the equilibria of a game
are limit points of sequences of Nash distributions as the temperature pa-
rameter τ → 0. So when trying to learn the equilibria of a game it makes
sense to consider smooth best responses with a small temperature param-
eter. This is the approach used by Benäım and Hirsch when considering
smooth fictitious play [3].

However the introduction of mixed strategies necessitates use of sto-
chastic approximation theory. A good introduction to this area, and the
approach we follow, is that of Benäım [2] (this is a development of the ODE
approach to stochastic approximation originally proposed by Kushner and
Clark [18]). This general theory considers equations of the form

θn+1 = θn + λn (F (θn) + Un+1) , (2)

where θn, Un+1 ∈ Rm, F : Rm → Rm and λn ∈ R+. We make the
following generic assumptions throughout this paper:

G1 F is a globally Lipschitz continuous vector field,

G2 the iterates θn are bounded, i.e. supn ‖θn‖ < ∞,

G3 the learning parameters decrease at a suitable rate:∑
n≥0 λn = ∞,

∑
n≥0 λn

2 < ∞.

These assumptions naturally hold true in all of our applications, and
are frequently necessary for the stochastic approximation theory to be
valid. We use two main results from Benäım’s lecture notes [2], Proposi-
tions 4.1 and 4.2:

Proposition 1 (Benäım) Consider a stochastic approximation process
(2). Let tn =

∑n−1
k=0 λk and define the interpolated process Θ : R+ → Rm

by

Θ(tn + s) = θn +
s

tn+1 − tn
(θn+1 − θn) for 0 ≤ s < λn.
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Assume that for all T > 0

lim
n→∞

sup

{∥∥∥∥∥
k−1∑
l=n

λlUl+1

∥∥∥∥∥ : k = n + 1, . . . , m(tn + T )

}
= 0, (3)

where m(t) = sup{κ ≥ 0 : tκ ≤ t}. Then Θ is an asymptotic pseudotra-
jectory of the flow ϕ induced by F .

Proposition 2 (Benäım) Consider a stochastic approximation process
(2) for which

1. {λn}n≥0 is a deterministic sequence,

2. {Un}n≥1 is adapted with respect to the σ-field Fn
def
= σ(θ0, . . . , θn),

3. E(Un+1 | Fn) = 0,

4. supn E(‖Un+1‖2) < ∞.

Then the assumption (3) is true with probability 1.

Now an asymptotic pseudotrajectory of a flow ϕ in a metric space
(M, d) is a continuous function X such that

lim
t→∞

sup
0≤h≤T

d(X(t + h), ϕh(X(t))) = 0

for any T > 0. That is, the function X moves like ϕ, but is allowed
an asymptotically vanishing amount of correction every T units of time.
Adapting Proposition 5.3(iii) of [2] shows the following:

Proposition 3 (Benäım) If J is a global attractor for the flow ϕ and X
is an asymptotic pseudotrajectory of ϕ then the limit set of X is contained
in J .

Further, define a point θ to be attainable if for each n and every open
neighbourhood U of θ

P(∃m ≥ n : θm ∈ U) > 0.

Proposition 7.5 of [2] tells us:

Proposition 4 (Benäım) Consider a stochastic approximation process
satisfying the conditions of Proposition 2, and let A be an attractor for
the flow ϕ defined by the vector field F . Suppose the basin of attraction
of A contains an attainable point. Then

P( lim
n→∞

d(θn, A) = 0) > 0.

This shows that any attractor of the flow ϕ may contain the limit set of
the stochastic approximation process, and a global attractor for the flow
ϕ contains the limit set with probability 1. The following complementary
result is provided by Pemantle [23]:

Theorem 5 (Pemantle) Consider a stochastic approximation process
(2) and let p ∈ Rm be a linearly unstable critical point of the vector field F .
Let N be a neighbourhood of p and assume there are constants ρ ∈ (1/2, 1]
and c1, c2, c3, c4 > 0 such that whenever θn ∈ N

1. F has continuous first derivative,

2. c1/nρ ≤ λn ≤ c2/nρ,

3. ‖Un‖ ≤ c3,
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4. E((Un+1 · e)+|Fn) ≥ c4 for every unit vector e ∈ Rm,

where (Un · e)+ = max{Un · e, 0}. Then

P(θn → p) = 0.

Benäım and Hirsch use these theorems to study smooth fictitious play.
It turns out that the appropriate deterministic dynamical system is the
smooth best response dynamics, given by

π̇i = βi(π−i)− πi.

Thus the asymptotic behaviour of (stochastic) smooth fictitious play is
closely related to the asymptotic behaviour of the (deterministic) smooth
best response dynamics: attractors for these dynamics contain the limit
set of the learning process with positive probability, and linearly unstable
points contain the limit set with probability zero. It is this that shows
that smooth fictitious play will not converge for certain combinations of
temperature parameter and smoothing function — those combinations
for which the unique Nash distribution is linearly unstable (as shown by
Cowan [9] for Shapley’s game and Benäım and Hirsch [3] for Jordan’s
pennies game).

We are now in a position to extend these ideas to stochastic approx-
imation algorithms with multiple timescales, and apply these extensions
to develop model-free algorithms for learning in games.

2 A two-timescales learning algorithm

The motivation for this work is our observation that the only reason play-
ers need to know the structure of the game and observe opponent be-
haviour is so that they can estimate the expected value of each of their
actions in order to calculate the smooth best response. Reinforcement
learning is a model-free alternative for estimating expected values of a set
of actions, although it relies on the fact that these expected values do not
change with time.

Assume we have a stationary random environment where at each stage
player i must choose an action ai from a finite set Ai, and associated with
each action ai ∈ Ai there is a random reward R(ai) which has a fixed
distribution and bounded variation. Consider the learning scheme

Qn+1(a
i) = Qn(ai) + λnI{ai

n=ai}(R
i
n −Qn(ai)),

where ai
n is the action chosen at stage n, Rn is the subsequent reward and

{λn}n≥0 is a deterministic sequence satisfying∑
n≥0

λn = ∞,
∑
n≥0

λn
2 < ∞.

It is well-known in the reinforcement learning literature ([25], [4]) that,
provided each action is chosen infinitely often, the Q values in this algo-
rithm will converge almost surely to the expected action values, i.e.

Qn(ai) → E[R(ai)] as n →∞ a.s.

However when we move to multiagent learning the players’ strategies
are all changing simultaneously as each player learns, and consequently
the sampled rewards, Ri

n, do not come from a stationary distribution. So
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when learning ri(ai, π−i) the standard results no longer apply. A solution
is to be found in Borkar’s two-timescales stochastic approximation [6].
We state a slight generalisation of Borkar’s results which he obtains in
the course of proving his main theorem.

Theorem 6 (Borkar) Consider two coupled stochastic approximation pro-
cesses

θ
(1)
n+1 = θ(1)

n + λ(1)
n

{
F (1)(θ(1)

n , θ(2)
n ) + M

(1)
n+1

}
θ
(2)
n+1 = θ(2)

n + λ(2)
n

{
F (2)(θ(1)

n , θ(2)
n ) + M

(2)
n+1

}
where, for each i, F (i), θ

(i)
n and λ

(i)
n satisfy the generic assumptions G1–

G3 and
∑

n≥0 λ
(i)
n M

(i)
n+1 < ∞ almost surely. Further,

λ
(1)
n

λ
(2)
n

→ 0 as n →∞.

Suppose that for each θ(1) the ODE

Ẏ = F (2)(θ(1), Y ) (4)

has a unique globally asymptotically stable equilibrium point ξ(θ(1)) such
that ξ is Lipschitz. Then, almost surely,

‖θ(2)
n − ξ(θ(1)

n )‖ → 0 as n →∞

and a suitable continuous time interpolation of the process {θ(1)
n }n≥0 is an

asymptotic pseudotrajectory of the flow defined by the ODE

Ẋ = F (1)(X, ξ(X)). (5)

This theorem says that if the ‘fast’ process, {θ(2)
n }n≥0, converges to

a unique limit point for any particular fixed value, θ(1), of the ‘slow’
process, we can analyse the asymptotic behaviour of the algorithm as if
the fast process is always fully ‘calibrated’ to the current value of the slow
process. The “suitable continuous time interpolation” is given in the proof
of the generalisation of this result in Section 3, but for application of this
theorem it suffices to note that Proposition 3 tells us that the limit set of
the stochastic approximation process θ

(1)
n is contained within any global

attractor of the flow defined by (5).
Theorem 6 becomes very useful when we consider learning in games

— provided the strategies change on a slower timescale than the timescale
on which action values are learned then we can examine the asymptotic
behaviour of the algorithm as if the action estimates are accurate. This is
the basic technique which would, if required, allow us to approximate any
of the standard dynamical systems of game theory which use estimates of
action values. Our algorithm is as follows:

Two-timescales algorithm

For each player i = 1, . . . , N ,

πi
n+1 = (1− λn)πi

n + λnβi(Qi
n)

(6)
Qi

n+1(a
i) = Qi

n(ai) + µnI{ai
n=ai}

{
Ri

n −Qi
n(ai)

}
.
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Here Ri
n is the reward obtained by player i at step n, and βi(Qi

n)
is the smooth best response (see equation (1)) given the value estimates
Qi

n. The sequences {λn}n≥0 and {µn}n≥0 are each chosen to satisfy the
condition G3, and the additional condition

λn

µn
→ 0 as n →∞.

Defining

F (1)(π, Q) = E((Qn+1 −Qn)/µn |πn = π, Qn = Q),

F (2)(π, Q) = E((πn+1 − πn)/λn |πn = π, Qn = Q)

= β(Qn)− πn,

we apply Theorem 6. The implicitly defined M
(i)
n of that theorem are mar-

tingale difference sequences, and so the condition
∑

n≥0 λ
(i)
n M

(i)
n+1 < ∞

follows immediately. We have already observed that the Qi
n(ai) processes

will converge to the true values of ri(ai, π−i) if the strategies π−i are fixed;
indeed the ODE corresponding to (4) is simply

Q̇i(ai) = πi(ai)(ri(ai, π−i)−Qi(ai)),

which clearly has a globally asymptotically stable fixed point for fixed π
so long as no strategy ai has zero probability of being played. The other
conditions of Theorem 6 are clearly met, and so we get the following:

Theorem 7 For the two-timescales algorithm (6),

‖Qi
n(ai)− ri(ai, π−i

n )‖ → 0 as n →∞ a.s.

and a suitable interpolation of the πi
n processes will almost surely be an

asymptotic pseudotrajectory of the flow defined by the smooth best response
dynamics

π̇i = βi(π−i)− πi.

So the asymptotic behaviour of the two-timescales algorithm (6) is
characterised by the same dynamical system as characterises smooth fic-
titious play. Hofbauer and Hopkins [12] have studied these dynamics; they
give a Lyapunov function for two-player zero-sum games, and also for two-
player partnership games, hence showing that the set of Nash distributions
is a global attractor in each case. Indeed, the Lyapunov function they give
for partnership games is easily extended to N -player partnership games
(in this case the function is r(π) + τ

∑N
i=1 vi(πi)). So the smooth best

response dynamics are also globally convergent for general partnership
games. Hence we have shown the following:

Theorem 8 The two-timescales algorithm (6) applied in either

1. a two-player zero-sum game, or

2. an N-player partnership game

will converge with probability 1 to a Nash distribution.

On the other hand, Benäım and Hirsch [3] show that for the 3-player
matching pennies game [15] and certain values of the smoothing parame-
ter τ the unique equilibrium is linearly unstable, and there exists a peri-
odic orbit which is an attractor. Similarly, Cowan [9] shows that for the
Shapley game [24] the smooth best response dynamics with Boltzmann
smoothing admit a Hopf bifurcation as the parameter τ goes to zero, so
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that for small values of τ a limit cycle is again asymptotically stable and
the unique equilibrium is unstable. It seems reasonable that an analogous
result to Pemantle’s (Theorem 5 above) should hold in this case, since
there is noise present in the system. However the noise is only present on
the fast timescale, so is of vanishing size with respect to the slow process
where the instability of the equilibrium exists, and so the probabilistic
estimates used by Pemantle are not valid in this case. The presence of
an attracting orbit however means that by an extension of Proposition 4
(condition (24) of [2] is easily verified) the probability of convergence to
the equilibrium is less then 1.

Despite these non-convergence results, the following is true:

Theorem 9 If the two-timescales algorithm (6) converges to a fixed point

(Qn, πn) → (Q, π) as n →∞

then Qi(ai) = ri(ai, π−i) and π is a Nash distribution.

Proof It is a basic result of stochastic approximation theory that if
convergence occurs then the limit point must be a zero of the associated
ODE. It follows immediately that Qi(ai) = ri(ai, π−i), and βi(Qi) = πi.
Therefore πi = βi(π−i).

3 Borkar’s result extended to multiple
timescales

The non-convergence of the two-timescales algorithm (6) in certain games
motivates a further extension. Littman and Stone’s work [19] suggests
the consideration of players that learn at different rates. To consider this
possibility we must extend Borkar’s result [6] beyond two timescales.

Consider N interdependent stochastic approximation processes θ
(1)
n ,

. . . , θ
(N)
n , which are updated according to the rules

θ
(i)
n+1 = θ(i)

n + λ(i)
n

{
F (i)

(
θ(1)

n , . . . , θ(N)
n

)
+ M

(i)
n+1

}
, (7)

where, for each i, F (i), θ
(i)
n and λ

(i)
n satisfy the generic assumptions G1–

G3 and
∑

n≥0 λ
(i)
n M

(i)
n+1 < ∞ almost surely. In addition we assume that

λ
(i)
n

λ
(j)
n

→ 0 as n →∞ whenever i < j.

This final assumption is what makes the algorithm multiple-timescale.
Write θn = (θ

(1)
n , . . . , θ

(N)
n ); in the sequel it will also be convenient to

write θ
(<i)
n for the vector (θ(1), . . . , θ(i−1)).

As before, we define a timescale on which to interpolate the approx-
imation processes. However we now follow Borkar [6] in establishing a
different timescale corresponding to each process. For i, j ∈ 1, . . . , N let

t(j)n =

n−1∑
k=0

λ
(j)
k ,

let Θ(i,j)(t) be the interpolation of the process θ
(i)
n on the jth timescale,

i.e.

Θ(i,j)(t(j)n + s) = θ(i)
n +

s

t
(j)
n+1 − t

(j)
n

(θ
(i)
n+1 − θ(i)

n ) for 0 ≤ s ≤ λ(j)
n ,
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and let
m(j)(t) = sup{κ ≥ 0 : t(j)κ ≤ t}.

We start by considering the Nth timescale, and the interpolations on
this timescale Θ(i,N)(t). Rewrite the stochastic approximation processes
(7) in the form

θ
(i)
n+1 = θ(i)

n + λ(N)
n U

(i,N)
n+1 for i < N,

θ
(N)
n+1 = θ(N)

n + λ(N)
n

{
F (N)(θn) + M

(N)
n+1

}
,

where for i < N we have implicitly defined

U
(i,N)
n+1 =

λ
(i)
n

λ
(N)
n

{
F (i)(θn) + M

(i)
n+1

}
.

For any n,

sup

{∥∥∥∥∥
k−1∑
l=n

λ
(N)
l U

(i,N)
l+1

∥∥∥∥∥ : k = n + 1, . . . , m(N)(t(N)
n + T )

}
(8)

≤ sup
k


m(N)(t

(N)
n +T )∑

l=n+1

λ
(N)
l−1

( λ
(i)
k

λ
(N)
k

)
F (i)(θk) +

∥∥∥∥∥
k−1∑
l=n

λ
(i)
l M

(i)
l+1

∥∥∥∥∥
 .

As n → ∞ the second term converges to zero, by assumption. Also
λ

(i)
k /λ

(N)
k → 0 while the F (i)(θk) are bounded and, from the definitions of

t
(N)
n and m(N), it should be clear that

m(N)(t
(N)
n +T )∑

l=n+1

λ
(N)
l−1 ≈ T.

Therefore the limit of the quantity (8) as n →∞ must be zero.

Taking U
(N,N)
n = M

(N)
n we see that the equivalent limit in this case

is also zero, and so we can use Theorem 1 to show that on this timescale
the interpolated processes Θ(·,N)(t) are asymptotic pseudotrajectories for
the flow defined by the differential equations

Ẋ(i) = 0 for i < N (9)

Ẋ(N) = F (N)(X) (10)

At this point we need to make the following assumption:

A(N) There exists a Lipschitz continuous function ξ(N)(θ(<N)) such
that, for any θ(N), solutions of the differential equations (9)–(10) converge
to the point (θ(<N), ξ(N)(θ(<N))) given initial conditions (θ(<N), θ(N)).

It therefore follows from Proposition 3 that the possible limit points of
an asymptotic pseudotrajectory to the flow defined by equations (9)–(10)
are the set of all points

(θ(<N), ξ(N)(θ(<N))),

where θ(<N) can take any value. In other words∥∥∥θn − (θ(<N)
n , ξ(N)(θ(<N)

n ))
∥∥∥→ 0 as n →∞ a.s.
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Now consider the timescale t(N−1), and the interpolations Θ(i,N−1)(t)
for i < N . Rewrite the stochastic approximation processes (7) in the form

θ
(i)
n+1 = θ(i)

n + λ
(N−1)
n+1 U

(i,N−1)
n+1 for i < N − 1

θ
(N−1)
n+1 = θ(N−1)

n

+ λ
(N−1)
n+1

{
F (N−1)(θ(<N)

n , ξ(N)(θ(<N))) + U
(N−1,N−1)
n+1

}
The implicit definition of U

(i,N−1)
n+1 for i < N − 1 is equivalent to that

of U
(i,N)
n+1 , and so we can proceed as before. On the other hand we have

implicitly defined

U
(N−1,N−1)
n+1 = F (N−1)(θn)− F (N−1)(θ(<N)

n , ξ(N)(θ(<N))) + M
(N−1)
n+1 .

However, we have already shown that as n →∞∥∥∥θn − (θ(<N)
n , ξ(N)(θ(<N)

n ))
∥∥∥→ 0,

and we have assumed that F (N−1) is continuous, so∥∥∥F (N−1)(θn)− F (N−1)(θ(<N)
n , ξ(N)(θ(<N)

n ))
∥∥∥→ 0.

Therefore when we take the sums
∑

l λ
(N−1)
l U

(N−1,N−1)
l+1 these terms will

vanish as n →∞, as will the term
∑

l λ
(N−1)
l M

(N−1)
l+1 , and so we see that

on the t(N−1) timescale the interpolated processes Θ(<N,N−1)(t) are an
asymptotic pseudotrajectory of the flow defined by the differential equa-
tions

Ẋ(i) = 0 for i < N − 1 (11)

Ẋ(N−1) = F (N−1)(X(<N), ξ(N)(X(<N))) (12)

We need to make an assumption analogous to A(N) above:

A(N-1) There exists a Lipschitz continuous function ξ(N−1)(θ(<N−1))
such that, for any θ(≥N−1), solutions of the differential equations (11)–
(12) converge to the point (θ(<N−1), ξ(N−1)(θ(<N−1))) given initial condi-
tions (θ(<N−1), θ(≥N−1)).

Defining

Ξ(≥N−1)(θ(<N−1)) = (ξ(N−1)(θ(<N−1)), ξ(N)(θ(<N−1), ξ(N−1)(θ(<N−1)))),

it follows that∥∥∥θn − (θ(<N−1)
n , Ξ(≥N−1)(θ(<N−1)

n ))
∥∥∥→ 0 as n →∞ a.s.

We proceed recursively for each j ≥ 2, noting that the interpolated
processes Θ(≤j,j) are asymptotic pseudotrajectories of the flow defined by

Ẋ(i) = 0 for i < j (13)

Ẋ(j) = F (j)(X(≤j), Ξ(≥j+1)(X(≤j))) (14)

For each j ≥ 2 we need to make the assumption

A(j) There exists a Lipschitz continuous function ξ(j)(θ(<j)) such
that, for any θ(≥j), solutions of the differential equations (13)–(14) con-
verge to the point (θ(<j), ξ(j)(θ(<j))) given initial conditions (θ(<j), θ(≥j)).

12



Then defining

Ξ(≥j)(θ(<j)) = (ξ(j)(θ(<j)), Ξ(≥j+1)(θ(<j), ξ(j)(θ(<j)))),

it follows that for 2 ≤ j ≤ N∥∥∥θn − (θ(<j)
n , Ξ(≥j)(θ(<j)

n ))
∥∥∥→ 0 as n →∞ a.s.

Finally, it follows that on the slowest timescale the interpolated process
Θ(1,1)(t) is an asymptotic pseudotrajectory to the flow defined by

Ẋ(1) = F (1)
(
X(1), Ξ(≥2)(X(1))

)
We have therefore proved the following theorem:

Theorem 10 Consider a multiple-timescales stoschastic approximation
process (7). If assumptions A(2)–A(N) hold then almost surely

‖θ(>1)
n − Ξ(≥2)(θ(1)

n )‖ → 0 as n →∞

and a suitable continuous time interpolation of the process {θ(1)
n }n≥0 is an

asymptotic pseudotrajectory of the flow defined by the ODE

Ẋ = F (1)(X, Ξ(≥2)(X))

4 A multiple-timescales learning algorithm

Theorem 10 allows us to consider a learning algorithm where the players
learn at different rates. In fact we assume that all players update their
strategies on strictly different timescales, and all of these timescales are
slower than the rate at which the Q values are learned. The algorithm is
as follows:

Multiple-timescales algorithm

For each player i = 1, . . . , N ,

πi
n+1 = (1− λi

n)πi
n + λi

nβi(Qi
n),

(15)
Qi

n+1(a
i) = Qi

n(ai) + µnI{ai
n=ai}

{
Ri

n −Qi
n(ai)

}
.

As before, Ri
n is the reward obtained by player i at step n, and βi(Qi

n)
is the smooth best response given the value estimates Qi

n. The sequences
{λi

n}n≥0 and {µn}n≥0 are each chosen to satisfy condition G3, and the
additional conditions

λi
n/µn → 0 as n →∞,

λi
n/λj

n → 0 as n →∞ for i < j.

This last condition says that each player is adapting their strategy on
a different timescale (although all players still learn the Q values at the
same fast timescale).

The first thing to note about this algorithm is that the same argument
as for the two-timescales algorithm will suffice to show the following.

13



Theorem 11 If the multiple-timescales algorithm (15) converges to a
fixed point

(Qn, πn) → (Q, π)

then Qi(ai) = ri(ai, π−i) and π is a Nash distribution.

However to use Theorem 10 we need to check that assumptions A(2)–
A(N) are satisfied. We start by noting that the ODE

π̇N = βN (π1, . . . , πN−1)− πN

for fixed (π1, . . . , πN−1) has a globally attracting point, βN (π<N ), so these
assumptions may fail only for intermediate players that are not the fastest
or slowest (no assumption need be made about the slowest timescale). We
must make the following assumption about the behaviour of the ODEs for
these intermediate timescales:

C For each i = 2, . . . , N − 1 there exists a Lipschitz function bi such
that bi(π1, . . . , πi−1) is the globally asymptotically stable equilibrium point
of the ODE

π̇i = βi
(
π<i, B>i(π≤i)

)
− πi

where we recursively define

B>(N−1)(π≤(N−1)) = βN (π≤(N−1))

B>i(π≤i) = (bi+1(π≤i), B>(i+1)(π≤i, bi+1(π≤i)))

Effectively this says that, for any i, if we fix the strategies for players
1, . . . , i then almost surely

π>i
n → B>i(π≤i).

This convergence assumption is fairly restrictive, although it does not
prevent the application of this algorithm to several different games (see
Sections 5–6 below). It allows us to use Theorem 10 to characterise the
asymptotic behaviour of the algorithm (15).

Theorem 12 For the multiple-timescales algorithm (15) under the con-
vergence assumption C,∥∥∥(π2

n, . . . , πN
n )−B>1(π1

n)
∥∥∥→ 0 as n →∞ a.s.

and a suitable continuous interpolation of the π1
n is an asymptotic pseu-

dotrajectory of the flow defined by the ODE

π̇1 = β1 (B>1(π1)
)
− π1

Proof Since the Qi
n(ai) → ri(ai, π−i) whenever π is fixed, the proof

is immediate from our extension of Borkar’s result to multiple-timescales
and the assumption C.

This result means that to analyse the multiple-timescales algorithm
in a particular game, or class of games, it suffices to show that our as-
sumption C is satisfied and to analyse the behaviour of the slowest player
under the assumption that all other players play the strategy dictated by
the function B>1.

14



Note that we can consider this system as relating to a multiple-time-
scales singular perturbation of the smooth best response dynamics:

π̇1 = β1(π−1)− π1,

π̇2 = ε(2)
(
β2(π−2)− π2) ,

...

π̇N = ε(N)
(
βN (π−N )− πN

)
,

with ε(i+1) = o(ε(i)) as ε(i) → 0. Consideration of this system may indicate
how to relax the convergence assumption C.

5 Two-player games

It is easy to see that for two-player games the assumption C is vacuous,
since there are no intermediate players (each player is either the fastest
or the slowest). Thus it is sufficient to analyse the ODE

π̇1 = β1(β2(π1))− π1 (16)

We have a positive convergence theorem for two major classes of two-
player games: zero-sum games and partnership games.

Theorem 13 For both two-player zero-sum games and two-player part-
nership games the ODE (16) has a globally asymtotically stable attractor
– the set of Nash distributions of the game.

Proof For zero-sum games the function

U = r1(π1, β2(π1)) + τv1(π1)− τv2(β2(π1))

is a Lyapunov function for the ODE (16).
For partnership games the function

V = r(π1, β2(π1)) + τv1(π1) + τv2(β2(π1))

is a Lyapunov function.

This gives rise to the following immediate corollary.

Corollary 14 For both two-player zero-sum games and two-player part-
nership games the multiple-timescales algorithm (15) will converge a.s. to
the set of Nash distributions.

So we have asymptotic convergence results which are comparable to
those for smooth fictitious play, and for our two-timescales algorithm (6).
However a proof of convergence for general N -player partnership games is
not available, since in this framework it is likely that for a fixed strategy
of the slow players there will be several equilibria to which the fast players
may converge, and so our assumption C will not be satisfied.
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6 Some difficult games

There are some games which have consistently confounded attempts to
learn the equilibrium. The two classic examples are the Shapley game
[24], introduced in 1964 to show that classical fictitious play need not
always converge, and the 3-player matching pennies game, a remarkably
simple game introduced by Jordan [15] to show that, even with heavy
prior assumptions focusing on the equilibrium point, a limit cycle could
occur using simple learning. We start by proving convergence of our
algorithm in a generalisation of the latter game, then show convergence
of our algorithm for the Shapley game.

6.1 N-player matching pennies

Our generalisation of Jordan’s game [15] is the N -player matching pennies
game, in which each player can choose to play ‘heads’ (H) or ‘tails’ (T )
and the reward to player i depends only on the actions ai and ai+1, where
i + 1 is calculated modulo N . The reward structure is

ri(a) = I{ai=ai+1} for i = 1, . . . , N − 1,

rN (a) = I{aN 6=a1}.

The cyclical nature of this game allows the easy verification of our as-
sumption C. As long as player 1’s strategy is fixed then player N ’s strategy
will converge to βN (π−N ) since this only depends on π1. Similarly, under
the assumption that player one is fixed and player N has calibrated, it is
clear that player (N−1)’s strategy will converge to βN−1(π−(N−1)), since
this depends only on πN = βN (π−N ) which is fixed. This is repeated,
so that whenever player 1’s strategy is fixed the strategies of the faster
players must converge to the unique best responses. By Theorem 12 it
suffices to consider the ODE

π̇1 = β1(β2(. . . (βN (π1)) . . .)).

We assume that the smooth best responses are monotonic in the pay-
offs i.e. ri(ai) > ri(bi) ⇒ βi(ri)(ai) > βi(ri)(bi). A sufficient condition
for this to be the case is for each smoothing function vi to be invariant
under permutations of the actions. Thus if π1(H) > 1/2 we must have
βN (π1)(H) < 1/2 and so, in turn,

βi(βi+1(. . . (βN (π1)) . . .))(H) < 1/2

for each i = 1, . . . , N . So for π1(H) > 1/2 it is the case that π̇1(H) < 0.
Similarly if π1(H) < 1/2 then π̇1(H) > 0, and so it follows that the Nash
distribution πi(H) = 1/2 is a global attractor.

We have shown that the multiscale algorithm (15) will converge almost
surely to the Nash distribution of the matching pennies game provided
that the players are ordered in the same way for the game as for the
learning rates. In fact it is not difficult to see that this specific ordering
is unnecessary, and any ordering of the players will suffice.

6.2 The Shapley game

This game is a variant of the traditional rock–scissors–paper game. It is
a two-player game with three actions available to each player; the payoff
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matrix is  (0, 0) (1, 0) (0, 1)
(0, 1) (0, 0) (1, 0)
(1, 0) (0, 1) (0, 0)

 .

Thus each player gets a point if their opponent plays an action 1 greater
(modulo 3) and gets no point otherwise. Without loss of generality (due
to the symmetry of the game) we assume that player 1 is the slower, and
since it is a two-player game our assumption C is irrelevant (as observed
previously). So we simply need to analyse the ODE

π̇1 = β1(β2(π1))− π1. (17)

Note π1(3) = 1−π1(1)−π2(2), so that this defines a planar flow. Therefore
we calculate the divergence of the flow in (π1(1), π1(2))-space — if this is
negative then the solutions of the ODE must converge to equilibrium.

For simplicity we assume that both smooth best responses are defined
by the Boltzmann distribution, where we take as our smoothing function

vi(πi) = −
∑
ai

πi(ai) log πi(ai).

Consequently

βi(ri)(ai) =
eri(ai)/τ∑

bi∈Ai eri(bi)/τ
.

For this game, dropping the superscripts on actions, ri(a) = π−i(a+1)
and so for any opponent distribution π−i it follows that

βi(π−i)(a) =
eπ−i(a+1)/τ∑
a′∈A eπ−i(a′)/τ

.

We can assume that π2 = β2(π1), so defining ρ(a) =
(
π1(a)− π1(3)

)
/τ

for a = 1, 2 it is clear that

π2 =
1

1 + eρ(1) + eρ(2)
(eρ(2), 1, eρ(1)). (18)

By the chain rule applied to (17),

Div =

2∑
a=1

∂π̇1(a)

∂π1(a)
=

2∑
a=1

3∑
a′=1

2∑
b=1

∂β1(π2)(a)

∂π2(a′)

∂π2(a′)

∂ρ(b)

∂ρ(b)

∂π1(a)
− 2,

so to calculate the value of this sum we first calculate the component
partial derivatives:

∂β1(π2)(a)

∂π2(a′)
=

eπ2(a′)/τ
(
I{a′=a+1}

∑
b′∈A eπ2(b′)/τ − 1

)
τ
(∑

b′∈A eπ2(b′)/τ
)2 ,

∂π2

∂ρ(1)
=

eρ(1)

(1 + eρ(1) + eρ(2))
2 (−eρ(2), −1, 1 + eρ(2)),

∂π2

∂ρ(2)
=

eρ(2)

(1 + eρ(1) + eρ(2))
2 (1 + eρ(1), −1, −eρ(1) ),

∂ρ(b)

∂π1(a)
= (1 + I{a=b})/τ,

where the last derives from the fact that π1(3) = 1−π1(1)−π1(2) and so

ρ(1) = (2π1(1) + π1(2)− 1)/τ, ρ(2) = (π1(1) + 2π1(2)− 1)/τ.
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Substituting all of these into the expression for the divergence, we get that

τ2

(
3∑

a=1

eπ2(a)/τ

)2 (
1 + eρ(1) + eρ(2)

)2

× (Div + 2)

= eπ2(1)/τeπ2(2)/τ (eρ(1)eρ(2) − 2eρ(1) − 2eρ(2))

+ eπ2(2)/τeπ2(3)/τ (eρ(2) − 2eρ(1) − 2eρ(1)eρ(2))

+ eπ2(1)/τeπ2(3)/τ (eρ(1) − 2eρ(2) − 2eρ(1)eρ(2))

Recalling the expression (18) for π2, this shows that

τ2

(
3∑

a=1

eπ2(a)/τ

)2

× (Div + 2)

=eπ2(1)/τeπ2(2)/τ {π2(1)π2(3)− 2π2(2)π2(3)− 2π2(1)π2(2)
}

+ eπ2(2)/τeπ2(3)/τ {π2(1)π2(2)− 2π2(2)π2(3)− 2π2(1)π2(3)
}

+ eπ2(1)/τeπ2(3)/τ {π2(2)π2(3)− 2π2(1)π2(2)− 2π2(1)π2(3)
}

(19)

This expression is invariant under the permutation of actions (1, 2, 3) →
(3, 1, 2), so without loss of generality we can assume π2(1) ≤ π2(3) and
π2(2) ≤ π2(3). Initially we assume further that π2(1) ≤ π2(2) ≤ π2(3),
so that

π2(1)π2(3)− 2π2(2)π2(3)− 2π2(1)π2(2) < 0,

π2(1)π2(2)− 2π2(2)π2(3)− 2π2(1)π2(3) < 0.

If π2(2)π2(3)− 2π2(1)π2(2)− 2π2(1)π2(3) < 0 we are done. Otherwise

eπ2(1)/τeπ2(3)/τ {π2(2)π2(3)− 2π2(1)π2(2)− 2π2(1)π2(3)
}

≤ eπ2(2)/τeπ2(3)/τ {π2(2)π2(3)− 2π2(1)π2(2)− 2π2(1)π2(3)
}

,

and the expression in (19) is bounded above by

eπ2(1)/τeπ2(2)/τ {π2(1)π2(3)− 2π2(2)π2(3)− 2π2(1)π2(2)
}

+ eπ2(2)/τeπ2(3)/τ {−π2(1)π2(2)− π2(2)π2(3)− 4π2(1)π2(3)
}

,

which is clearly negative. A similar argument works with the assumption
π2(2) ≤ π2(1) ≤ π2(3), and so the expression in (19) is always negative.
This shows that

Div =

2∑
a=1

∂π̇1(a)

∂π1(a)
≤ −2.

Since we have a planar flow with negative divergence the system must
converge to a fixed point; there is a unique fixed point, at the Nash dis-
tribution [9], so this point must be globally attracting. Therefore from
Theorem 12 it follows that the learning algorithm (15) will converge with
probability 1 to the Nash distribution of the Shapley game.

7 Conclusion

Using Borkar’s theory of two-timescales stochastic approximation, we have
demonstrated a model-free multiagent reinforcement learning algorithm
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which will converge with probability 1 in repeated normal form games
whenever the same claim can be made of smooth fictitious play [3]. This
is because the asymptotic behaviour of both algorithms can be shown
to be characterised by the asymptotic behaviour of the flow induced by
the smooth best response dynamics. In particular both algorithms will
converge with probability 1 for two-player zero-sum games and for N -
player partnership games, since for these classes of games the set of Nash
distributions is a global attractor for these dynamics.

However there are simple games for which the smooth best response
dynamics have attractors outwith the set of Nash distributions, with the
unique Nash distribution being linearly unstable. For these games con-
vergence to Nash distribution does not necessarily occur and so an im-
provement can be gained by extending Borkar’s stochastic approximation
results to give an algorithm where all players learn at a different rate.
Although we showed that if the algorithm converges in any game then it
must have converged to a Nash distribution, further theoretical conver-
gence results for this algorithm only apply for games in which our con-
vergence assumption C holds. This assumption is true for all two-player
games and for cyclical games such as the N -player matching pennies game,
but fails when we consider N -player partnership games (since faster play-
ers may have several possible attracting points for fixed strategies of the
slower players).

The multiple-timescales algorithm has been proven to converge to
Nash distribution with probability 1 for two-player zero-sum games and
two-player partnership games, as well as for the Shapley game [24] and the
N -player matching pennies game — these latter two games having caused
problems for all algorithms previously known to the authors. However a
general convergence theorem for two-player games has proved elusive, de-
spite the general applicability of the multiscale algorithm for these games.

In fact it is easy to see that a further extension of our algorithm is
asymptotically equivalent to the original. In this extension we additionally
allow each player to learn their Qi values at a different rate. All that is
required is that no player is ‘reckless’, in that each must learn the values Qi

on a faster timescale than they adjust towards the smooth best response
βi(Qi) to these values. Since each player’s values Qi only directly affect
their own strategy, πi, the assumptions of Theorem 10 continue to hold in
the same cases as when all players learn their values at the same rate, and
the algorithm will behave exactly as before. So a collection of players need
have no communication before interacting, so long as none are reckless and
all have different rates with which to adjust their strategy (achievable, for
instance, by insisting that players choose a decay rate ρi ∈ (0.5, 1] using

an atomless distribution and setting λi
n = n−ρi

).
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