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CONVERGENT NUMERICAL SCHEME FOR SINGULAR
STOCHASTIC CONTROL WITH STATE CONSTRAINTS IN A
PORTFOLIO SELECTION PROBLEM*

AMARJIT BUDHIRAJAT AND KEVIN ROSSt

Abstract. We consider a singular stochastic control problem with state constraints that arises in
problems of optimal consumption and investment under transaction costs. Numerical approximations
for the value function using the Markov chain approximation method of Kushner and Dupuis are
studied. The main result of the paper shows that the value function of the Markov decision problem
(MDP) corresponding to the approximating controlled Markov chain converges to that of the original
stochastic control problem as various parameters in the approximation approach suitable limits. All
our convergence arguments are probabilistic; the main assumption that we make is that the value
function be finite and continuous. In particular, uniqueness of the solutions of the associated HJB
equations is neither needed nor available (in the generality under which the problem is considered).
Specific features of the problem that make the convergence analysis nontrivial include unboundedness
of the state and control space and the cost function; degeneracies in the dynamics; mixed boundary
(Dirichlet—-Neumann) conditions; and presence of both singular and absolutely continuous controls
in the dynamics. Finally, schemes for computing the value function and optimal control policies for
the MDP are presented and illustrated with a numerical study.
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1. Introduction. Singular control is an important and challenging class of prob-
lems in stochastic control theory. Roughly speaking, by singular control we mean that
the control terms in the dynamics of the state process need not be absolutely con-
tinuous with respect to the Lebesgue measure and are only required to have paths
of bounded variation. The Hamilton-Jacobi-Bellman (HJB) equations for such prob-
lems, which are variational inequalities with gradient constraints, are typically quite
hard to work with. Despite the fact that over the past 20 years there has been a signif-
icant development in the theory of weak and viscosity solutions of HJB equations for
such diffusion control problems (cf. [5, 26, 4, 15, 22, 29]), the existence/uniqueness and
regularity theory for this class of PDEs is not well understood. In view of the various
applications in mathematical finance (cf. [11]) and stochastic networks (cf. [12]) that
lead to singular control, it is particularly important to develop methods for numerical
approximations for such control problems.

Over the last 30 years, Kushner, Dupuis, and coworkers (cf. [19] and references
therein) have developed a powerful machinery, the so-called Markov chain approxi-
mation method, for a wide spectrum of computational problems in stochastic control
theory. This probabilistic approach has two main advantages. First, approximation
with a Markov chain allows one to use physical insights derived from the dynamics
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of the controlled diffusion in obtaining a stable approximation scheme. Second, the
Markov chain approximation method does not require the smoothness of the cost or
value function, nor does it rely on the uniqueness properties of the associated HJB
equations. This is a particularly significant advantage in problems where the PDE
theory for the associated HJB equations is hard to tackle.

In this work we study a problem of optimal consumption and portfolio selection
with proportional transaction costs that has been studied by several authors [24, 6,
29, 23, 31]. The basic problem can be described as follows. Consider a single investor
who has two instruments available for investment: a risk-free asset such as a bank
account, which pays a fixed interest rate r > 0, and a risky asset, such as a stock,
whose price evolution is modeled via a geometric Brownian motion with a mean value
of return b > r and constant volatility ¢ > 0. We assume that the investor may
buy or sell stock continuously over time in not necessarily integer valued quantities.
The investor is assumed to consume wealth at some time-dependent rate C(¢), and
without loss of generality we assume that the consumption is deducted from the bank
account. The investor may instantaneously transfer money from the bank account to
stock, and vice versa, by paying a proportional transaction cost; namely, there are
A € (0,00) and p € (0,1) such that the investor pays A times the amount moved from
the bank account to stock as a transaction fee, and similarly, he pays p times the
amount moved from stock to the bank account as a transaction fee. All transaction
fees are charged from the bank account. The basic constraint on the consumption
control C' and the portfolio selection control, denoted (M, N), is that the investor
must be solvent at all times. More precisely, if X (¢) and Y (¢) represent the amount of
investment in the bank account and the stock, respectively, at time ¢, then we require
(X(t),Y(t)) €S for all t > 0, where

S={(x,y) eR*:z+ (1+ Ny >0and z+ (1 - p)y > 0}.

These solvency constraints ensure that at all times the investor has sufficient wealth
to settle any obligations due to selling stock short (the first inequality) or borrow-
ing from the bank account (the second inequality). The goal of the investor is to
maximize the expected total discounted utility of consumption, E fooo e PLE(C(t))dt,
where 8 € (0,00) is the discount factor and the utility function f : [0,00) — [0, 00) is
a continuous function satisfying f(0) = 0. The condition f(0) = 0 can be relaxed if f
is nondecreasing and f(0) > —oo by replacing f with f — f(0).

In the absence of transaction costs, Merton proved in the classical paper [25]
that when the utility function is f(c) = ¢?/p,p < 1,p # 0 or f(c) = logc (note
that the latter utility function does not satisfy the conditions of the current paper)
the investor’s optimal policy is to keep a constant proportion of total wealth in the
risky asset and to consume at a rate proportional to total wealth. (For a simple and
self-contained treatment, see [6]). This “Merton line” target can always be achieved
since transactions can be made continuously and instantaneously without affecting
wealth. However, when transaction costs apply, such a policy results in immediate
bankruptcy. Magill and Constantinides first conjectured in [24] that there must exist a
“no-transaction region” taking the form of a wedge in the wealth space. When wealth
is inside this region, consumption is the only control that can be exercised. Purchase
or sale of stock occurs only when the wealth attempts to exit the no-transaction
region. The formal arguments of [24] were put on a rigorous footing by Davis and
Norman in [6] for the cases f(c) = ¢?/p and f(c) = logc. In their work, under suitable
conditions on model parameters, the free boundary problem associated with optimal
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consumption in the presence of proportional transaction costs is solved explicitly, and
C? regularity of the value function is established. The authors show that the (optimal)
no-transaction region is a wedge; in particular, the optimal policy is to exercise the
minimal amount of trading necessary to keep wealth inside the no-transaction region.
Inside the region, consumption occurs at a finite rate. In [29] Shreve and Soner
consider the same problem as in [6] but with conditions on the model parameters
that are weaker and much more explicit. Once more, regularity properties of the
value function and the associated free boundary are proved. A more general utility
function, which satisfies suitable smoothness, concavity and growth properties, was
considered in [31]. Using viscosity solution methods, the authors sketch a proof for
unique solvability of the associated HJB equation by the value function. A finite
difference approximation scheme for approximating the value function is introduced;
however, convergence of the proposed scheme for the portfolio selection problem is not
proved. The authors do provide results from several numerical studies which identify
near optimal control policies and the (numerical) free boundary.

In the current work, we do not impose any concavity, smoothness, or growth
conditions on the utility function; the key condition (Condition 2.1) that we require is
that the value function is finite and continuous. In particular, we do not claim or use
the fact that the value function is the unique solution of the associated HJB equation.
The main goal of the study is to obtain convergent numerical approximations for the
value function. The basic approach, as in [19], is to introduce a Markov decision
problem (MDP) for an approximating, finite state, discrete time, controlled Markov
chain. The main result of the paper (Theorem 5.12) shows that the value function of
the MDP converges to the value function of the original singular control problem as
various parameters in the approximation approach their limits suitably. In section 6
we use the approximating MDP to obtain computational schemes for obtaining near
optimal control policies. The key result of this section is Lemma 6.1, which allows
us to characterize the value function and optimal control policies via the solution
of suitable dynamic programming equations (see Theorem 6.2). Finally, in section
7 results from a numerical study using the algorithm of section 6 are described. In
particular, Figure 2 shows the numerical no-transaction region and the associated
(numerical) free boundary obtained by an implementation of the algorithm.

The only paper (to the best of our knowledge) that carries out a complete conver-
gence analysis for a numerical scheme for a singular control problem is [20]. Although
several ideas developed in [20] are crucial to the ideas in the current paper, there
are key differences in the model that make our analysis substantially delicate. First,
the above paper considers a queuing problem with “finite buffers” which essentially
means that the state space and control space are bounded. In the current study we
first have to suitably approximate the original unbounded model by one in which the
consumption control and the state space are bounded. This two stage approximation
procedure is carried out in Propositions 2.2 and 2.4. This is the only place where
the assumption on the continuity of the value function (Condition 2.1) is used. Next,
in contrast to [20], in addition to singular control terms, we also have an absolutely
continuous control term (consumption control) that appears in a nonlinear fashion in
the cost (reward) criterion through the utility function f. This requires us to intro-
duce the relaxed formulation for the stochastic control problem in order to carry out
the convergence analysis. Lemma 5.1 ensures that the relaxed formulation does not
change the value function of the control problem. The next substantial difficulty in
our analysis is the state constraint feature of the dynamics. Although in [20] also the
state is constrained to be in a bounded polyhedral region, that can be easily handled
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by introducing the so-called “Skorohod map.” In the current model the directions of
control, which do not point inward into the state space (see Figure 1), do not allow
for a similar reduction. However, one useful feature of the dynamics (see (1)) is that
once the state of the system reaches the boundary of S, the only admissible control
corresponds to moving the state process instantaneously to the origin and keeping it
there at all times. This observation allows us to convert an infinite horizon cost to
an exit time criterion (see (2)—(4)). This reformulation makes some aspects of the
convergence analysis simpler; however, the degeneracies in the state dynamics make
the treatment of convergence properties of exit times quite subtle. To see the basic
difficulty, consider the following simple example. Let &, be a sequence of positive
reals such that &, — 0 as n — oco. Let x, be the solution of the ODE = = x with
initial condition &, and x be the solution of the same ODE with 0 initial condi-
tion. Clearly z,, — « uniformly on compacts; however, if 7, = inf{t|z,(¢t) = 0} and
7 = inf{t|z(¢t) = 0}, then clearly 7,, /~ 7. In other words, convergence of processes
in general need not imply the convergence of the corresponding exit times. The issue
is especially problematic when, as is the case for the controlled dynamics considered
in this paper, the diffusion coefficients in the state dynamics are not uniformly non-
degenerate. This is another key difference between the current model and the problem
studied in [20].

One of the major obstacles in proving the convergence of the value function of a
sequence of approximating discrete MDPs to the value of the original singular control
problem is proving the tightness of the sequence of singular control terms in the
Skorohod DJ[0,00) space. A powerful technique for bypassing this tightness issue,
based on suitable stretching of a time scale, was introduced in [20]. Although such
time transformation ideas go back to the work of Meyer and Zheng [27] (see also Kurtz
[18]), the papers [20, 21] were the first to use such ideas in stochastic control problems.
A similar technique was also recently used in [3]. A key ingredient to this technique is
the uniform moment estimate obtained in Lemma 4.4. In [20] such a moment estimate
follows easily from the form of the cost function where a strictly positive proportional
cost is incurred for exercising the singular control. In the current problem there is
no direct contribution to the (cost) reward function from the singular control term
and, as a result, the proof of this uniform estimate becomes more involved. Roughly
speaking, the main idea of the proof is that a controller cannot make too much use of
a singular control without pushing the process to the boundary of the domain.

The paper is organized as follows. In section 2 we give a precise formulation of
the control problem of interest. We also present here two propositions (Propositions
2.2 and 2.4) which allow approximation of the original control problem by one with
a bounded state space and bounded consumption actions. Section 3 introduces the
discrete MDP that approximates the original singular control problem, and section
4 defines the continuous time interpolations and the time transformation that are
key to the convergence analysis. In section 5 we present the main convergence result
that establishes the convergence of the value function of the MDP to that of the
original singular control problem. Section 6 is devoted to computational methods
for the MDP. A key result here is Lemma 6.1 which allows, via Theorems 6.2 and
6.3, iterative methods for computation of the value function and optimal control
policies for the MDP. In problems with only absolutely continuous controls, estimates
of the form in Lemma 6.1 are straightforward consequences of a contraction property
that follows from the strictly positive discount factor in the cost (cf. Chapter 6 of
[19]). However, for singular control problems, due to the instantaneous nature of the
control, such contraction estimates are typically unavailable. Here, once again, we
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use the special feature of the dynamics, which says that excessive use of the singular
control will rapidly bring the process to the boundary, in obtaining such an estimate.
In section 7 we present results from a numerical study of the algorithm. Finally, the
appendix contains proofs of the more technical results.

The following notation will be used in the paper. Given a Polish space E, Dg =
D([0,00) : E) will denote the space of paths that are right-continuous with left limits
(RCLL) on [0, c0) taking values in E, endowed with the usual Skorohod topology. For
an RCLL path {£(¢)}, the jump at ¢ > 0 will be denoted by 6£(¢). As a convention
we take 6£(0) = £(0). For a sequence of random variables {&,}n>0, we will use the
notation 6¢, for the increment &,4; — &,. For a point € R* and a set G € R,
dist(z, G) will denote the distance of 2 from G. The Borel sigma field for a metric
space E will be denoted by B(FE).

2. Optimal consumption and portfolio selection with transaction costs.
We begin with a precise mathematical formulation of the optimal consumption and
investment problem described in the previous section. Let (2, F,P) be a probability
space on which is given a filtration {F;};>¢ satisfying the usual hypothesis. Let
W be a real-valued {F;}-Brownian motion. We will denote the probability system
(Q,F,P,{F:},W) by ®. The Wiener process represents the source of uncertainty of
the risky asset. The state process, which represents the wealth of the investor, is a
controlled Markov process Z = (X,Y’) given on the above probability system via the
equations

dX (1)
(1) dy (t)

(rX(t) — C(t))dt — (L+ N)dM(t) + (1 — p)dN(t),
BY (£)dt + oY ()dW () + dM(t) — dN(t),

with initial condition X (0—) = z,Y(0—) = y, where z = (z,y) € S . Here C is
an {F;}-progressively measurable process such that for all ¢ € [0,00), C(¢) > 0 a.s.
and IEf(f e "C(s)ds < o0o. Also, M and N are {F;}-adapted, nondecreasing, RCLL
processes satisfying M(0) > 0 and N(0) > 0 a.s. The processes X and Y represent
the amounts invested in the bond and the stock, respectively; M (t), N(t) denote
the cumulative purchases and sales of stock, respectively, over [0,¢]. The process C
represents the consumption of the investor. The processes C', M, and N are the
control processes. Since M and N are not required to be absolutely continuous (with
respect to the Lebesgue measure), they are referred to as singular controls. Denote
by A(®, z) = A(z) the set of “admissible controls,” i.e., all U = (C, M, N) of the form
described above. Let S denote the boundary of S. From the dynamical description
of Z it follows that if z € JS, then the only control that keeps the investor solvent
takes Z to the origin instantly and keeps it there at all times (see Figure 1).

Recall the utility function f in the introduction. Since f(0) = 0, one can refor-
mulate the state constraint control problem on an infinite time horizon described in
the introduction to an exit time control problem, as follows. For z € S and U € A(z),
let 7 = 7(2,U) be defined as

(2) 7 =inf{t € [0,00) : Z(t) ¢ S°},

where Z is the controlled process corresponding to initial condition z and control U.
Define the cost, J(z,U), for using the control U by

3) J(2,U) = E / =Pt F(C(1))dt.

[077—)
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Fic. 1. State space and singular control directions.

The value function of the control problem is then given by

(4) V(z)=sup sup J(z,U),
® UeA(z)

where the outside supremum is over all probability systems ®. The following will be
a standing assumption in this work.

CONDITION 2.1. Forallz €S,V (z) <oo andV : S — Ry is a continuous map.

We refer the reader to [16, 29, 31] for some sufficient conditions needed for the
above assumption to hold.

State and control space truncation. In order to develop numerical methods
for computing V' (z), we will need to first approximate the control problem by an
analogous control problem with a bounded state space and control set. We now
present the convergence result, which says that the value function of the “truncated
control problem” converges to V' as the truncation parameters approach their limits.
We begin by considering the control space truncation.

For p € (0,00), let A,(®,z) = A,(z) be the subset of A(z) consisting of U =
(C, M, N), which satisfy 0 < C(t) < p, for all t > 0 a.s. Define V,(z) by replacing
A(z) with A,(z) in (4). The following is the first convergence result.

ProposITION 2.2. V), converges to V, uniformly on compact subsets of S, as
p — 0.

Proof. We first establish pointwise convergence, i.e., V,(z) — V(z) as p — oc.
Since Vj,(z) < V(2), it suffices to show that, for all z € S,

liprriiorgf Vo(2) > V(2).

Fix € > 0 and choose an “e-optimal control,” i.e., U, € A(z) such that V(z) — e <
J(2,U.). Suppose T, is the associated exit time from S°. Define a control U, =
(Cp, My, N,)) by Cp(t) = Co(t) Ap, My(t) = M(t), Ny(t) = N(t), t > 0. Tt follows
from the fact that C~’p < (. and standard comparison results for solutions of stochastic
differential equations (cf. Proposition 5.2.18 of [17]) that the wealth process under
control ij is never less than the wealth process under control U.. In particular,
denoting by 7, the exit time from S° by the controlled process corresponding to the
control U, we have 7, > 7.. Combining this with the observations that C,(t) T C.(t)
as p — oo a.s. for all t > 0 and f is continuous, we have from Fatou’s lemma

liminf J(z,0,) > liminf E / B (G (8))dt > E / e=PLF(CL(t))dt > V(2)—e.
[0776)

p—00 p— 00 [0775)
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Since € > 0 is arbitrary, the pointwise convergence of V), to V follows. Next we show
that for each p, V, is lower semicontinuous (1.s.c.). Fix z € Sand let S 5 2z, — z as
n — oo. To prove that V}, is L.s.c. it suflices to show that

(5) liminf V,(z,,) > V,(2).
n—0o0

Fix e > 0 and let U, = (C,, M, N.) € Ap(z) be an e-optimal control, i.e., Vp(2) — e <
J(z,U.). Let Z. be the controlled process according to U, and define 7, via (2) with
Z replaced by Z.. Define U,, = (Cp, M, N,,) as C, = C¢, M,(t) = M(t)11<r, +
M1li>7., Nyo(t) = Ne(t)li<r. + Ni1y>,, where MY, N > 0 are chosen so that the
controlled process Z,, corresponding to U, and initial condition z,, satisfies Z,,(7¢) ¢
S°. (Note that, clearly, U, € Ap(2y).) This ensures that 7, = inf{t : Z,,(¢) ¢ S°} is at
most 7.. Note that on the set {7, = 0o}, we have U, (t) = U,(¢) for all t > 0. We claim
that on the set {7, < oo} we have liminf,, . 7, > 7 a.s., which implies 7, — 7 a.s.
as n — oo on the set {7. < oco}. To see the claim, suppose that liminf 7, < 7. — 6
for some ¢ > 0. Then there exists Ny > 1 such that 7, < 7. — §/2 for all n > Np.
Also, from the choice of the control U, we see that, for all 6 > 0 and L € (0, 00),
SUPg<i<(r.—s/2)nL |Zn(t) — Z(t)| — 0 in probability as n — oco. Combining this with
the fact that Z,(7,) ¢ S°, we have that Z(t) ¢ S° for some t < 7. — §/2. However,
this contradicts the definition of 7.. Thus we have shown 7,, — 7. a.s. on the set
{Te < o0}

Next, recalling the choice of U, and that C(t) = C, () for all ¢ > 0 on the set
{7e = 00}, we have

Vp(2) = Vp(zn) < J(2,Ue) — J(2,Uy) + €
==Ly [ IO~ HCU0)H]

< f*(p)E{l{moo}/ @‘Btdt} +e,

[Tn,Te)

where f.(p) = supy<.<, f(c) < co. Since 7, — 7. a.s. on the set {7, < oo}, the first
term on the right in the last line above approaches 0 as n — co. Inequality (5) now
follows from the above display on taking n — oo and then € — 0. Finally, note that
for each z, V(2) —V,(2z) | 0. The result now follows from Dini’s theorem (cf. Theorem
M8 in [1]). O

Next, we consider the truncation of the state space. The reduction will be achieved
by replacing the original dynamical system given by (1) with one which evolves exactly
as before in the interior of some compact domain but is instantaneously reflected back
when the controlled process is about to exit the domain. The reflection mechanism
is made precise via the notion of a Skorohod map. We begin with the following
definition. Fix ¢ € (0, 00).

DEFINITION 2.3. Let ¢ € D = D([0,00) : R?) be such that ¢(0) € (—oo, ] x
(—00,f]. We will denote the space of all such ¢ by Dy. We say a pair (v,n) € D x D
solves the Skorohod problem (SP) for ¢ in (—oo,£] X (—o0, £], with normal reflection,
if the following hold:

(i) $(0) = 6(0).

(i) P(t) = o(t) —n(t), t € (0,00).

(iil) ¥ () € (—o0, €] x (=00, £] for allt > 0.

(iv) n(-) is componentwise nondecreasing.
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) 50 = ooy Lnrmaydni®), i = 1,2, where n(t) = (m(0),m(t))', ¥(t) =
(1 (1), ¥2(1))".

It is well known (cf. [7, 13]) that for every ¢ € Dy, there is a unique solution
(1, m) to the above SP. We will write ¢» = I'(¢) and refer to the map I" : Dy — Dy as
the Skorohod map. The following Lipschitz property (cf. [7]) is quite useful in various
estimates. There exists k € (0, 00), independent of ¢, such that, for all ¢1, ¢2 € Dy,

(6) IT(¢1) = T(d2)l7 < K1 — 2|7, T € (0,00).

We will now introduce the modified constrained dynamics of the controlled Markov
process. Set Sy = SN (—o00, 4] x (—00,£]. Let Zy = (X4, Yz) solve the following system
of equations:

dXy(t) = (rXo(t) — C(t))dt — (1 4+ \)dM(t) + (1 — p)dN(t) — dR; (1),
(7)  dYa(t) = bYy(t)dt + oY, (£)dW (t) + dM(t) — AN (t) — dRa(t),

where Z,(0—) = 2, U = (C,M,N) € A,(2), z = (z,y) € Sg, and R = (R1,Rz) is a
componentwise nondecreasing, RCLL, {F; }-adapted process satisfying

o oo

(8) l{Xg(t)<Z}dR1 (t) =0, 1{ye(t)<g}dR2(t) =0.
0 0

The unique solvability of (7) and (8) follows from the Lipschitz continuity property (6)
of the Skorohod map and the usual Picard iteration method. Define 7y and Jy(z,U)
as in (2) and (3) with Z replaced by Z, in (2) and 7 replaced by 7 in (3). Define V7,
as

(9) Vip(z) =sup sup  J(z,U).
P UEA,(®,2)

The following is the second convergence result of this section.

PROPOSITION 2.4. For allp € (0,00), Vi, converges to V,,, uniformly on compact
subsets of S, as £ — oo.

Proof. Let Z = (X,Y) beasin (1) and 7 as in (2), with C = 0. It is easy to check
that for each T € (0, 00) and compact subset Sg C S, there exists A = A(T') € (0, c0)
such that

sup sup supE  sup (XT(t)+ YT () <A,
® (M,N)z€So 0<t<TAT

where the supremum is taken over all {F(¢)}-adapted, nondecreasing, RCLL processes
M and N such that M (0) > 0, N(0) > 0, and over all systems ®. Thus in particular
we have that

(10) supsup sup supE  sup (X, (1) +Y,F(1) <A,
4 ® UeA,(®,z) 2€S0 0<t<TAT
where Zy = (Xy,Yy) are as defined in (7), and 7¢ is as introduced below (8).

Fix 6§ > 0. Let z € Sy and € > 0 be arbitrary. Let ® and U € A,(z, @) be such
that Vi ,(2) < Juo(2,U) + €. Choose T € (0,00) such that f.(p)e PT/T < e. Then
Vip(z) SE [ e P F(O(0))dt + 2e.

Choose £y = £y(6) such that £y > (Af«(p))/(653). Define

Ay = {w cosup (X)) +Y,@) > Eo}.

0<t<T AT
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Then

T ATy
E e PLE(C(t))dt
0
T ATy

L, e PRCW)d
0

T ATy

(11) =E +E |Lag eﬁtf((}(t))dt] :
0

It follows from Markov’s inequality and (10) that P[A,] < A/fy. Thus the first
integral on the right side of (11) is bounded by (f«(p)/8)P[As,] < 8. Next, for £ > 4y,
on the set A7 , Zo(- NT N1g) = Z(- NT A 7). In particular, T A7 > T A 1. Thus

TNATe TNAT

E |1, e”vwwmﬂ<E[ cPIC@)dt| < Vy(2).
0

0

Combining the above bounds, we have V; ,(z) < V,(2)+6+2¢. Since € > 0 is arbitrary,
we have that, for all £ > ¢y and z € Sg, Vi ,(2) < V,(2) + 6. It is casily seen that the
roles of V,, and Vp,, can be interchanged in the above argument. Thus we have that,
given 6 > 0, there exists an £y such that |Vp ,(2) — V,(2)| < 8§ if £ > 4y, for all z € Sy.
Since Sy is an arbitrary compact subset of S, the result follows. ]

COROLLARY 2.5. For all z € S, lim,_. limy_,o Vo p(2) = V (2).

3. An approximating Markov decision problem. In this section we will
present the Markov decision problem whose value function approximates V;,. Since
throughout this section ¢,p will be fixed, we will drop them from the notation:
Ve ps Te, Jo, Ap(2) and Zp = (X,,Y;). We will introduce a discrete time, discrete state
controlled Markov chain to approximate the continuous time process given by (7).

Fix h > 0 and define the two-dimensional h-grid, L" = {(jh,kh) : —co < j, k <
+oo}. The symbol h denotes the approximation parameter, and as h approaches
0, a suitable interpolation of the controlled Markov chain, to be introduced below,
“approaches” a controlled diffusion process of the form in (7). We will assume for
simplicity that ¢ is an integer multiple of h.

A natural definition of the state space for the approximating chain is SQ =S/ N
L". However, due to reflection terms in the dynamics of the controlled process, it
is convenient to consider a slightly “enlarged” state space, namely, SZJF = Seyn N
L". The “solvency boundary” and reflecting boundary of the space Sz“" are defined,
respectively, as

)eSIt a4 (L+ Ay < h(L+A), ora+ (1 — p)y < h}
)ESIT o =0+h, ory={(+h}.

(

o {(z,y
O ={(z,y

Let {Z,’L‘,n =0,1,2,...} be a discrete time controlled Markov chain with state
space S;H', with Z!" = (X Y*). The transition probabilities will be defined so
that the chain’s evolution law well approximates the local behavior of the controlled
diffusion (7). For each n, the increments of the chain 6Z" will approximate exactly
one of the following dynamical descriptions:

“Controlled diffusion step”: (rX; — Cy,bYy)'dt + (0,0)' dW;.
“Purchase control step”: (—(1+ \), 1) dM,.

“Sales control step”: (1 — u, —1)'dNy.

“Reflection step”: dR;.
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Each of these steps is described precisely in what follows. We also introduce a family of
“interpolation intervals” {A" h > 0} used in defining the approximating cost function
and in the convergence arguments. For each pair (z,¢) € SZJF x [0, p] we first define
a family A"(z, ¢). For the controlled diffusion steps, if the state of the chain is z and
the exercised consumption control is ¢, A" will be taken to be A”(z, ¢); whereas for
singular control steps and reflection steps, A" will be taken to be 0. This reflects
the fact that for the controlled diffusion (7), reflection and singular control terms can
change the state instantaneously. Suitable conditions on Ah(z, ¢) needed to obtain
convergence of the continuous time interpolated processes to corresponding controlled
diffusions are introduced below.

Controlled diffusion steps and local consistency. By a controlled diffusion
step we mean that the Markov chain evolves according to a transition law which is
“locally consistent” in the sense of [19], with a (controlled) diffusion given as

dX(t) = (rX(t) — C(t))dt, dY (t) = bY (t)dt + oY (t)dW (t).

Formally, given h > 0, we choose for each ¢ € [0,p] and z € S?Jr \ 0" a probabil-
ity measure q,(lo)(z, ¢,d?) on L", along with an interpolation interval Ah(z, ¢), which

satisfies the following local consistency conditions for some p > 0:

(12) mo(zie) = (2= g\ (z,¢,dz) = (””b; C) Az ¢) + O(h* A (2, ¢)),
oo(z,¢) = . (Z—2z—mo(z,0)(Z — 2z —mop(z, c))’q,(lo)(z, ¢,dz)
(13) _ (8 |022> Az, ) + O(hP AP (2, ¢)).

In the above displays, Z = (#,§), and throughout, by the symbol O(k) we will mean
an expression which is bounded above by «|k|, where « is a constant depending only
on the coefficients of the model and the truncation parameters ¢, p. In addition we
assume that there exists ¢ € (0,00) such that q,(LO)(z,c7 Ben(z)) =1 for all ¢ € [0,p]
and h > 0, where B¢y (2) is a ball of radius (h centered at z. The interpolation
intervals are required to satisfy

(14) Al = sup A"(z,¢) — 0 as h — 0, inf A"(z,¢) > 0 for each h > 0,
z,c z,c
where the sup and inf in the above displays are taken over all (z,¢) € SQ“L x [0, p]. For

the sake of specificity we make the following choice for q;(LO). Let Q(z,y) = Q"(z,y) =
hrlz| + hp + hbly| + o*y*. Define for all (z,y) € S}+\ 9"

© ERUCASC gy 2 P the
qp ((:v,y),c, (m + huy)) = Q(a:,y)’ ay, ((x,y),q (CL‘ h7y)) = Q(x,y) )
.hb++122 .hb7+l22
Qf(10)<(xay)7ca (‘T7 Yy + h)) = Wa q}(LO)((xay)a c, (xay - h)) = W
(0) . hip—o
Qh ((xay)vca (xay)) - Q(x,y) 9
- h?
(15) Al(z,c) =

Qz,y)
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It is easy to check that q,(lo), A" defined above satisfy (12), (13), and (14).

Singular control steps. The singular control terms in the controlled diffusion
are the nondecreasing RCLL processes M and N. The process M pushes the state
process in the direction v; = (—(1 + A), 1), whereas N pushes the state process in
the direction vy = ((1—p), —1)’. For the approximating chain we will assume that at
most one among the sales control and purchase control are exercised at any given time
instant and that the magnitude of the corresponding displacement is O(h). In order
to capture the “singular” behavior of the limit diffusion—mnamely, the feature that the
state process can instantaneously be displaced by large amounts—we will take the
interpolation interval for all singular control steps in the approximating chain to be
0.

In order to obtain weak convergence of the interpolated chain to the controlled
diffusion, we need to ensure that the control directions match asymptotically those
for the physical problem. More precisely, given h > 0 we define for each z € SZ+ two

probability measures q}(f)(z7 d?),i=1,2,on L" as follows. For states (z,y) € SZ+ \ 0",

(16) a;”((2,9). (= h,y)) = /(A + 1), 4 (2,9), (& = hoy + h)) = L/ (A + 1);

(17) 0 (@.9). (@.y =) = w.q)? (@), (@ +hyy =) =1 - .

It is easy to check that q,(ll) and q,(lz) introduced above satisfy the following consistency
conditions:

(18) mi(z) = L (2 — 2)g\" (2, d2) = hy,
(19) oi(2) = L (2 — 2= mi(2))(Z — 2 — mi(2)) ¢ (2,d3) = O(h?).

Reflection steps. We will define a transition kernel that with probability 1
moves a state in 07 to some state in S}. Once more, since reflection in the diffusion
control problem occurs instantaneously, we take the interpolation interval at reflection
steps to be 0. Since the directions of reflection in the diffusion control problem are
normal, a natural choice of the transition kernel for reflection step is as follows for
z € o

(20)
a2 ((+hy), (L) =1, ¢ (@, 0+h),(x,0) =1, ¢\>((€+hL+h), (1) =1

For z ¢ 0", qg?’)(z, -) can be defined arbitrarily. It will be seen from the definition of
admissible controls given below that for such states, the definition of q}(l?’) is immaterial.

The controlled Markov chain. As described above, the control at each step
is first specified by the choice of an action: controlled diffusion, singular control, or
reflection. Therefore, we define a sequence of control actions {I" n = 0,1,2,...}
with I" = 0,1,2,3 if the nth step in the chain is a controlled diffusion step, pur-
chase control step, sales control step, or reflection step, respectively. In the case of
a controlled diffusion step, the magnitude of the consumption control must also be
specified. Consequently, the space of controls is given by & = {0,1,2,3} x [0, p].

The probability measures associated with each of the control actions will now be
combined into a single probability measure for use in defining the controlled Markov
chain. For each z € S/t \ 9",u € U (u = (i,c)), we define a probability measure
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pn(z,u,dz) on L" by

(21) pr(zu,dZ) = ¢\ (2, ¢,d2) Lpicoy + 4 (2, d2) L jic 1 2.3} -

The definition of the transition function for z € 9" is not important since in the
analysis of the control problem the chain will be stopped the first time it hits 9". For
the sake of specificity we set py(z,u,z) = 1 for all z € 9" and u € U.
We are now ready to specify the controlled Markov chains. Given a sequence
Uh = {UFn = 0,1,2,...} (where UP = (I C")) of U-valued random variables
we construct a controlled Markov chain {Z",n = 0,1,2,...} with initial condition
zn = (zh,yn) € SZJF and state space SZJF, as follows:
(22) Z(SL = Zh; P[Z:LLJA € E|f’l’}LL] = ph<Z7}zL’ U’I’}LL7E)7 n=>0, Ec B(SZLJr)y
where Fl' = o{Zb ..., Z" UL, ... U!}. The following definition of admissible con-
trols ensures that Z" € SZ+ for all n, and so the definition in (22) is meaningful.
DEFINITION 3.1. The control sequence UM = {U" n = 0,1,2,...} is said to be
admissible for the initial condition zy,, and {Z"} ({Z!, U"Y) is called the corresponding
controlled Markov chain (respectively, controlled pair) if
L. Ul iso{Zl,...,Zh Uk ... U | }-adapted.
2. P[Ih =3|Z" € S} =0 and P[I} = 3|Z" € 91\ 0" = 1 for all n.
3. Condition (22) holds.
The class of all admissible control sequences for initial state zp will be denoted by
Ah(zh).

We also define for each z € S;”“ and u = (i,¢) € U the interpolation intervals
(23) Az, u) = AM(z, c)lii—o}-

For an admissible pair {Z/ U}, we denote the associated sequence of interpolation
intervals A"(ZP UM) by {AP n=0,1,2,...}. Define, t} =0 and I = Z;:Ol Al for
n>1.

MDP for the chain. Given an admissible pair {Z", U} let n;, = inf{n : Z" €
O"}. The cost function for the controlled Markov chain is defined as

] h 1-— e_ﬂA:IL
(24) T (zn, UM =E Y e f(Ch) —5 |

n=0
Note that we have used the factor (1 — e*BAz)/ﬁ rather than the more intuitive
(and asymptotically equivalent) A”?. This somewhat simplifies the convergence proofs
without affecting the limiting results. The value function of the MDP is defined as

(25) Vi(z) = sup  J(z, UM).
Uhe Al (zp)

4. Continuous time interpolation and time rescaling. One of the main
goals of the study is to show that the value function of the MDP defined in (25)
converges, as h — 0, to the value function of the limit diffusion control problem. This
convergence result allows for the computation of near optimal policies for the diffusion
control problem introduced below (6) by numerically solving the above MDP. We next
introduce the continuous time interpolation and time rescaling techniques that will
be used in the proof of our main convergence result.
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The continuous time interpolations of various processes will be constructed to be
piecewise constant on the time intervals [¢?, " +1), n > 0. For use in this construction
we define n"(¢) = max{n : t" <t}, ¢t > 0. Note that n”(¢) is an {F/}-stopping time.
Setting F"(t) = fﬁh@) we obtain a continuous time filtration {F"(¢),t > 0}. Define
Uh(t) =U"

nh(t
controlled diffusion steps as follows. First, let B = 0 and S} = 0 and define for

n>1,

),t > 0. Also, define the continuous time processes associated with the

nAny—1 nAnp—1
(26) Bh= E[SZP\F 1 pmoy.  SE = (624 — BIZLIF) 1 1p—0y-
k=0 k=0

Define the continuous time process B" by setting B"(0) = 0 and B"(t) = th(t) for
t > 0. The process S” is defined in a similar manner. We define the interpolations

associated with the purchase control and sales control as follows. Let Mél =0, Nél =0,
Effo =0,%=1,2, and define for n > 1,

nAnE—1 nAnp—1 nAnE—1
M) = Moy, Ni= Mooy, Bl = (621 — hvi)Lpn_sy-

k=0 k=0 k=0

The continuous time processes M" and N" are defined as M"(0) = 0, N"(0) = 0 and
M (t) = M:;h(t),Nh(t) = Nf;h(t) for t > 0. The processes E' and E} are defined
analogously. The continuous time process associated with reflection is defined as

follows. If n"(t) = 0, define R"(t) = 0; otherwise let

M (t)—1
(27) RM(t) = — SZ1 p—sy-
k=0

We define the continuous time interpolation Z” of the controlled Markov chain Z"
introduced in Definition 3.1 by Z"(¢) = Zﬁh(t), t > 0. The following representation

for Z"(t) is easily verified:

(28)
ZMt) = 2z + B (t) + S"(t) + vy M (t) + vo N (t) + EN(t) + EN(t) — R"(t), t > 0.

Also, it follows from condition (12) that on the set {I" = 0,7, > n},

TX,}; — C’fl‘

h|hy _
Emézzszh]'_ ( b}c?

) AM(ZI0,Chy + O(hP A (28, 0,0M)) as.
This fact, together with the piecewise constant nature of the processes, yields

(29) B(t) = OMT (th(s)_Ch(s)

DY (s) > ds + 6 (t),

where 7" =t and 67 is an {F"(t)}-adapted process which, in view of (14), satisfies
forallt>0and m > 1,

sup E|6%(s)|™ — 0 as h — 0.
0<s<t
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A similar calculation gives the following representation of the cost function (24):

(30) Jh (2, UM) = E e BLE(CM (1)) dt.
[0,7"]

Time rescaling. A common approach for proving the convergence of V" to V
as h — 0 is to begin by showing that the collection {(Z"(-),7"),h > 0} is tight and
then characterize the subsequential weak limits suitably. However, for problems with
singular controls, showing the tightness of the above family becomes problematic since,
in general, the processes {(M"(-), N*(-)),h > 0} may fail to be tight. A powerful
method for handling this tightness issue was introduced by Martins and Kushner [21].
The basic idea is to suitably stretch out the time scale so that the various processes
involved in the convergence analysis, in the new time scale, are tight; carry out the
weak convergence analysis with the rescaled processes; and finally, revert back to the
original time scale to argue the convergence of V" to V.

We now introduce the time rescaling that will be used in our study. The rescaled
time increments, {AZ, n=20,1,2,...}, are defined as A,’i = Azl{l,’;:O} +hlineq o)y
Define i = 0 and i* = """ Al for n > 1.

DEFINITION 4.1. The rescaled time process Th(t) is the unique continuous non-
decreasing process satisfying the following: (1) T"(0) = 0; (2) the deriative of T"(t)
is 1 for t € (th,#h. ) if I" = 0; (3) the derivative of Th(t) fort € (th th ., }) is 0 if
I"=1,2,3.

It is easy to check that T"(f!) = t* and that T(f", ) — T"(f") = Al. Let
A (t) = max{n : t# <}, t > 0. Using the observation that every reflection step must
be followed by either a singular control step or a diffusion control step, it follows that
A" (t) is a bounded {F"}-stopping time, with bound

t t
31 Aty <2 -4 ——r———— <o
(31 t) < h " inf, .AM(2,0,c)

Define the continuous time filtration {F"(t),¢ > 0} by setting F"(t) = Fan(t)-

The rescaled processes (denoted with a*) are defined in a manner similar to
the processes defined below (26) with appropriate adjustments to the time variable.
For example, we define B"(0) = 0 and B"(t) = th(t) if A"(t) > 0. We define the
processes U™ (t), S"(t), M"(t), N"(t), E}(t), B, R(t), Z"(t) analogously (that is, by
replacing n*(t) with 2"(¢) in the definitions below (26)). Then we have the following
rescaled version of (28):

(32)  ZM(t) = zn + B (t) + 8" (t) + v M (t) + va NP (t) + EP(t) + EF — RM(t).

Remark 4.2. From the definition of T"(t) if follows that a’(t) = n(T"(t)).
This equality yields a straightforward relationship between the original interpolated
processes and the rescaled processes. For example, B"(t) = B"(T"(t)). Similar
equations hold between U"(t), S"(t), M"(t), N"(t), Elt), EY}, R"t), Z"(t), and
their corresponding rescaled versions.

Using the fact that Th(ffH_l) — T7(i") = A", which is 0 for singular control and
reflection steps, a calculation similar to that which produced (29) yields

- AT <rf<h(s) — Ch(s)
0

(33) B(t) = DY (s) ) dT" (s) + 61(t),
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where 71 = inf{t : Z"(t) € 8"} and &" is an {F"(t)}-adapted process satisfying, for
allm > 1,

(34) E sup |87 (s)|™ — 0 as h — 0.

0<s<t

We now state several lemmas related to the time rescaling. The following “change
of variables” formula (cf. Theorem IV.3.45 in [28]) will be used several times in our
analysis.

LEMMA 4.3. Let G : [0,00) — [0,00) be a continuous and nondecreasing function.
Suppose that G(t) — oo as t — oo. Define the inverse G : [0,00) — [0,00) as G(t) =
inf{s : G(s) > t}. Then for all bounded and measurable functions g : [0,00) — [0, 00),

(35) g(s)dG(s) = 9(G(s))ds.
[0,G()] (0.1

The following lemma is at the heart of the time transformation idea. It ensures
that the weak limits of 7" (t) increase to co as t — oo and thus makes reverting back
to the original time scale, in the limit, possible (see Theorem 5.6). The proof of the
lemma is contained in the appendix.

LEMMA 4.4. Let {U! n = 0,1,2,...}p>0 be a family of admissible control se-
quences. Then for allt >0,

(36) sup E|M"(t) + N"(t)| < oc.
h

An important consequence of the above lemma is the following.

LEMMA 4.5. There exists an ho € (0,00) such that for all h < hg, T"(t) — oo
with probability 1 as t — oo.

Proof. Since Af — 0 as h — 0, we can find an hg such that Af} < 1for all h < hg.
We will argue via contradiction. Suppose h < hg and P[sup,~ 7" (t) < co] > 0. Then
there exist € > 0 and Ty > 0 such that B

(37) P supT™(t) < T — 1| > e.
>0

Using Lemma 4.4 we can find a K large enough so that

EM"(Ty) ¢ EN™(T,) €
PIM"(Ty) > K] < ——"% « = PIN"(T,) > K| < ——% « —,
[M*(Tp) > K] < % <47[(o)_ ] < % <1
We will now show that

(38) P[Th(T0+2K)<TO—1}§§.

This will lead to a contradiction in view of (37) and hence prove the lemma. Note
that
P[T"(Ty 4 2K) < Ty — 1]
< P[T™(Ty + M"(Ty) + N™M(Tp)) < Ty — 1, M"(Ty) < K, N"(Tp)) < K]
+P[M"(Ty) > K]+ P[N"(Tp) > K]
(39) < PIPM(Ty+ M"(To) + N"(T) < To— 1]+ S + -
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h
Furthermore, for each fixed ¢, t+ M"(¢)+ N"(t) > Z:g)_l (AZl{I}::O} +hln_y9y)

Since 7" is nondecreasing and T" (i) = ¢/,

nl(t)—1
T" (t+ M () + N"(t)) > T" <A§;1{,g=0} + h1{1£=172})
k=0
nh(t)—1
=T"(Ehn(sy) = thngey = ARlyp_gy >t — AL
k=0

The last inequality above is a consequence of the inequalities Z’:L(Ot)_l AZI (=0} <
t< Zl(ot) AZl{I;;:O}. Recalling that A" < 1, we see that T"(t + M"(t) + N"(t)) >
t — 1 for all ¢ > 0. Using this inequality in (39) proves (38) and hence we have the
result. 0

Let T"(t) = inf{s : T"(s) > t}. Observe that T"(T"(t)) = t and that, due to
Lemma 4.5, T"(t) < oo a.s. for all t > 0. Define 7" = T"(h).

LEMMA 4.6. For zj, € Si™ and {UP} € AM(z),

J" (2, UM = E e BT £(Ch (1)) dTh ().

[0,7]
Proof. Note that
Ho=inf{t: Z"t) € 0"} = inf{t: Z"(T"(t)) € 3"} = nf{t:T"(t) > 7"}

If 7" = oo, then clearly 7f* = co. Suppose 7" < 00. Then the above display shows
that 7 = T" (7" —). Also, clearly T" is constant over the interval (T"(r"—), T"(7")].
The result now follows from (30) and Lemma 4.3. a0

5. Main convergence result. In this section we show that V"(z;,) converges
to V(z) whenever z, — z. The basic approach will be as follows. First, we establish
tightness of the continuous time (rescaled) processes defined in the previous section
and characterize their subsequential limits. Then we define a time transformation for
the limit processes to revert back to the original scale. We will show that the time
transformed versions of the limit processes have the same laws as those of the various
processes in the diffusion control problem. Using this characterization result we will
show that, given a sequence of admissible controls {U" h > 0}, the limsup of the
corresponding cost functions is bounded above by the cost for an admissible control
for the diffusion control problem. This will establish that limsup;,_o V" (z1) < V(2)
whenever z;, — z. Finally, we prove convergence of the value functions by proving the
reverse inequality. The main idea of this proof is to select a near optimal control for
the limit diffusion control problem and to construct from this an admissible control
for the controlled Markov chain which is asymptotically near optimal.

We begin by introducing the following “relaxed control” formulation which arises
naturally in the weak convergence arguments for convergence of the cost functions.

Relaxed control formulation. Let M denote the space of all Borel measures
¥ on [0,p] X [0,00) such that if I(da,dt) = 9¢(da)v(dt), then (i) 9J; is a probability
measure on [0, p] for v-almost every ¢, and (ii) v(a,b] < b—a forall 0 < a <b < 0.
Let M be the subset of M consisting of ¢ that satisfy, for all ¢ > 0, 9([0, p] x [0, ¢]) = ¢.
Given a probability system ® and initial condition z € Sy, let A,(®, 2) be the set of
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all processes U = (m, M, N), where M and N are as introduced below (1), m € M
a.s., and m(A x [0,¢]) is {F;}-adapted for all ¢ € [0,00), A € B[0,p]. Set C(t) =
f[O,p] amy(da), where my, a probability measure on [0, p|, is defined by the relation
m(da,dt) = my(da)dt.

Let Z be defined via (7) with (C, M, N) as above and T be given by (2). Define
for U € A,(®, 2),

J(z,U)=E e Pt f(a)m(da, dt),
[0,p]x[0,7)

and let

V(z) =sup sup J(z,0).
® UcA(®,2)

The following lemma establishes the equivalence between the relaxed control formu-
lation and the precise control formulation. The proof is contained in the appendix.

LEMMA 5.1. Forall z €S, V(2) = V(2).

The space M can be metrized using the Prohorov metric in the usual way (see
pages 263-264 of [19]). Furthermore, with this metric, Mis a compact space, and
a sequence ¥, € M converges to ¢ if and only if for all continuous functions ¥ on
[0, p] x [0, 00) with compact support,

(40) Y(a, t)my (da, dt) — (o, t)m(da, dt).
[0,p] x[0,00) [0,p] X [0,00)

We now define M-valued random variables 1/ by the relation

WA x [0,8]) = 14(C"(s))dT™(s), A€ B([0,p]),t € [0,00).
[0,¢]

Noting that the right side above is equal to f[o q (f40¢m S)(da)) ['"(s), where 6, is

the probability measure concentrated at x, we can erte mh(da, dt ) as i (d ) h(dt),
where 7if and 2" are given by m{'(4) = 6en(,y(4), ¥"(a,b] = T"(b) — T"(a) for
A€ B([0,p]) and 0 < a < b < 0.

Convergence of the time rescaled processes. Recall the definitions and
notation, found in section 4, relating to the continuous time interpolated processes
and the corresponding rescaled versions. We begin by showing that the processes E{L
and EQL converge weakly to the 0 process as h — 0.

LEMMA 5.2. Let E’Zh,z = 1,2, be as defined above (27). Then Ef converges in
probability to 0 in D([0,00) : R?).

Proof. The local consistency condition (18) and property (22) imply that El n
is an {F!}-martingale. As 7"(t) is a bounded stopping time (cf. (31)) and the

increments of El', are bounded, it follows from the optional sampling theorem that

the continuous time process El'(t) is an {F"(t)}-martingale, the trace of the quadratic
A~ ~h

variation of which is given by Tr(E!)(t) = Z:(Ot)/\nh ! E[|62 — hvi\Ql{IiL:iﬂ}'ﬁL_l].

Finally, applying Doob’s inequality, (19), and the observation that the maximum

number of steps of either singular control in the first A/ (t) steps is ¢/h, we have for

i = 1,2, E[sup,, |El(s)|]> < 4ETr(EM)(t) < O(h?)(t/h) = O(h). The result now

follows. o
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Define the process A" by A" (t) = o C"(s)dT"(s). Let R denote the one point
compactification of R. The following proposition gives the tightness of the various
time rescaled processes. The proof is similar to that of Theorem 5.3 of [20] and is
therefore omitted.

PROPOSITION 5.3. Let H" = (Zh T Ah,Mh,Nh,éh,Bh,Sh). Then the family
{(H", 7], 7"), h > 0} is tight in D([0,00) : E) x R x M, where E = Si™ x RS x R*,

We now turn our attention to characterizing subsequential limit points of the fam-
ily {(H",#],m"),h > 0}. Suppose that the initial condition sequence {z,} converges
tosome z € S;. Slightly abusing notation, let i index a weakly convergent subsequence
of (H" # ") with weak limit, (H,#,7), where H = (Z,T,A,M,N,R,B,S),
given on some probability space (Q F,P). Let F*(t) = o(H(s ), (A X [O,s))|A €
B([0,p]),0 < s < t), and let F(t) = F*(t+) VN, where A" denotes the collection of
all P-null sets.

THEOREM 5.4. The limit point (f[, 71,Mm) has the following properties.

1. T is nondecreasing and Lipschitz continuous with Lipschitz coefficient 1.
2. There exists an {F(t)}-progressively measurable process C' with C(t) € [0, p]
for allt > 0, such that

(41) Bi= " (TX(;%(—S)C(S)) dT(s).

3. 51(t) = 0, for all t > 0, and Sy is a continuous {F(t)}-martingale with
quadratic variation (Sy), = fot loY (s)[2dT(s),t > 0.

4. 1[4 and N are nondecreasing and continuous.

5. R is a vector of nondecreasing continuous processes which satisfy

o0 oo

(42) C lxpeg B 0=0, L dRa(t) =0

6. Z is a continuous process satisfying P[Z(t) € S¢] =1 for all t > 0 and
(43) Z(t) =z + B(t) + S(t) + vi M (t) + va N (t) — R(t).

7. Writing m(de, dt) as iy (da)p(dt) we have v(a,b] = T(b) — T(a), 0 < a <
b < oo.
8. C(t) = f[o,p} am(da) for D-almost every t € [0,00).

Proof. By appealing to the Skorohod representation theorem and by relabeling the
convergent subsequence, we can assume without loss of generality that H" - H as.
The fact that the process T is nondecreasing and Lipschitz continuous with Lipschitz
coefficient 1 follows easily from similar properties for 7". Since |A"(t) — Al(s)| <
p|T"(t)—T"(s)| it follows that A is absolutely continuous with respect to T'. Therefore
there exists a [O pl- valued process C, progressively measurable with respect to { F*(t)}
such that A(t fo . This fact, together with (Z",7") — (Z,T) a.s. and
an apphcatlon of the domlnated convergence theorem, yields 2. We next show that
S has continuous paths. First, note that by local consistency ((12), (13)) there exists
¢ € (0,00) such that for all w > 0, h >0 j(gh ) = Sup;e, |5 (t) — S"(t—)| < 2¢h.
Thus for h small enough, j(S") fo ,u) A 1)du < 2Ch. Therefore, by
Theorem 3.10.2 in [9] the limiting process S has continuous paths. One can check
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that the quadratic variation of S”, which is an {F"(¢)}-martingale, is given by

(4 Eh0=(g 1) eV R ) + i

where due to (14) and using (31) the process &} satisfies for all m > 1,

E sup |64 (s)|™ — 0 as b — 0.

s<t

From (44) it follows that S)(t) = 0 for all t > 0. From (44) and the Burkholder-Gundy
inequalities we also have

EIS3(1)|* <a T° +E sup |83 (u)|?

0<u<t

Thus the family {(SZ(t))2,h > 0} is uniformly integrable. A standard argument
(cf. pages 1457-1458 in [20]) shows that Sy is an {F;}- martingale with quadratic
variation as given in 3. Part 4 is immediate on noting that M" N" are nondecreasmg,
and since the maximum number of purchase or sales steps over (n"(t),n(t + s)) is

|M"(t 4+ s) — M"(t)]| < s+h, |[N"(t+s)—N"t)| <s+h.

From Definition 3.1(3) it follows that (42) holds with (X,Y, R) replaced by (X",
Y" RM). Also clearly Z" € (—o00,f] x (—00,/]. Parts 5 and 6 are now immedi-
ate consequences of (32) and continuity properties of the Skorohod map (see (6)).
Next, write 1m(da, dt) as 1 (da)d(dt). Since m"([0,p], (a,b]) = T"(b) — T"(a) for
0 <a <b< oo, taking limits yields ©(a,b] = ( ) — T'(a). This proves part 7. Part

8 is immediate from the representation f Ch(s)dT"(s) = f(a b)x[0.5] @ mh(da, ds),
0 < a < b < oo and the fact that (see the proof of part 2) f (s)dT™(s) converges

to f(a)b] C(s)dT(s). O

Time inversion. We now define an inverse time transformation that will revert
the limit processes back to the original time scale. We will see that the time inverted
processes lead to an admissible control pair for the diffusion control problem in (7)—(9).
The key step in returning to the original time scale is the following result analogous
to Lemma 4.5.

LEMMA 5.5. T(t) — oo with probability 1 as t — oc.

Proof. We will argue via contradiction. Suppose P[sup;~g T(t) < 00] > 0. Then
there exist € > 0 and T, > 0 such that B

(45) P supT(t) <Th—1 >e
t>0

As in the proof of Lemma 4.5 we can find a K € (0, 00) such that liminfy, .o P[T"(To+
2K) < Ty — 1] < €/2. The weak convergence T" = T now implies P[T(Tj 4 2K) <
To — 1] < ¢/2. This contradicts (45), and hence the result follows. O

Let T be the inverse of 7', defined as T(t) = inf{s : T(s) > t}. From Lemma 5.5 it
follows that T'(t) < oo a.s. for all ¢ > 0. Since T'(t) is nondecreasing and continuous,
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it follows that T'(t) is nondecreasing and right-continuous. Also note the following
properties for all ¢ > 0:

T@t)>t, T(T@t) =t T(I({)>
(46) T(t)locast]oo, T(t)<ooas., T(s)e [0 t] < s €[0,T(1)].

Let H be as in Theorem 5.4. Define H(t) = H(T(t)). ‘We will use similar notation
for the various components of H; for example, Z(t) = Z(T(t)), etc. Let 7 = T(7).
Then by (43), for t > 0,

(47) Z(t) = 2+ B(t) + 5(t) + v1 M () + va N (t) — R(1).

Before characterizing the various terms in (47) we note that for ¢ > 0, {T'(s) <
t} = {T'(t) > s} € F(t) since T(t) is F(t)-measurable. Therefore, since .7:(t) i
right-continuous, T(s) is an {F(t) }-stopping time for each s > 0. Let .7-'0( )= F(T(t)
and note that H() = fI( (t)) and m(A x [0,t]) = m(A x [0,T(t)]) are Fo(t)-
measurable. Define F(t) = o(H(s),m(A x [0,s]) : A € B([0,p]),0 < s < ¢). Then
F(t) C Fo(t).

THEOREM 5.6. The processes in (47) have the following properties.

tAT C
L B(t) = [y (S ds.

2. 51 =0 and Sz is a continuous {Fo(t)}-martingale with quadratic variation

Z o

tAT1

(48) (S2)(t) = . loY (s)|?ds.

There exists an enlargement of the probability space (Q, F,P) and of the fil-
tration {Fo(t)} that supports a Wiener process W, which is a martingale with
respect to the enlarged filtration and such that

(49) 0= " oY (s)dw (s).

3. The process C is {Fo(t)}-progressively measurable with C(t) € [0,p] a.s. for
all t > 0. In addition, M(0),N(0) > 0 and the processes M and N are
right-continuous, nondecreasing, and {Fo(t)}-adapted. Hence defining & =
(Q,F,PAFo(t)}, W) we have U = (C, M,N) € Ap(®, z).

4. For allt >0, Z(t) € (—00,f] X (—00,f] a.s., R is a vector of nondecreasing
right-continuous processes, and the representation (7) holds with (X, Ys, Zy)
there replaced by (X,Y, Z).

Remark 5.7. Note that Theorem 5.6 does not prove that (Z, R) is a solution to
the Skorohod problem introduced in Definition 2.3, since in general (8) may fail to
hold for the process R. However, note that if (Z*, R*) is the solution of (7) and (8)
with U = (C, M, N) as in part 3 of Theorem 5.6, then by classical comparison results
for (reflected) stochastic differential equations one can show that Z*(t) > Z(t) for all
t a.s., and so 7* > 7 where 7 is as in (2) and 7* is defined by the right side of (2)
with Z replaced by Z*. This in particular shows that

(50) e Pt f(a)dmy(da)dt < e Pt f(a)dmy(do)dt.
[0,p]x[0,7] [0.p]x[0,7]
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Proof of Theorem 5.6. Part 1 is an immediate consequence of Theorem 5.4(2) and
Lemma 4.3 on noting that

(51) 1[T(717),T(T1)]dT(S) =0 a.s.

Clearly, S1(t) = S1(T'(t)) = 0 a.s. From Theorem 5.4 we have that {S5(t), F(t)} is
a continuous martingale. Thus for all n > 1, E[Sy(T'(t) A n)|F(T(s))] = Sa(T(s) A
n) a.s. Also as Sy has continuous paths and T(f) < oo a.s., we have as n — oo
for all t > 0, So(T(t) An) — Sy(T(t)) = S(t) a.s. Furthermore, from Theorem
5.4, part 3, there exists o € (0,00) such that E|So(T(t) A n)> < at for all t >
0,n € N. Hence, for each fixed ¢, the family {Sy(T(t) A n),n > 1} is uniformly
integrable and therefore So(T'(t) An) — Sy(T'(t)) in L'. Taking limits as n — oo, it
follows that E[So(T(2))|F(T(s))] = Sa2(T(s)), that is, E[Sa(t)|Fo(s)] = Sa(s). This
proves that {Sa(t), Fo(t)} is a martingale. Although T in general may fail to be
continuous, Sy(-) = Sy(T(-)) has continuous paths a.s. This is a consequence of the
fact that {S(-)}n>o is tight in D([0,00)), and an argument similar to that for {S¥}
in the proof of Theorem 5.4 shows that any weak limit point, So, of {S¥} must have
continuous paths a.s. Also, since S}(-) = S¥(T"(-)), we must have that if (S, Sy, T) is
a limit point of the tight sequence (S%, 5, T"), then Sy(t) = Sy(T(t)), and thus from
(46), S(t) = So(T(t)) = Sa(t). Thus we have shown that S, is a continuous Fo(t)-
martingale. We next consider its quadratic variation. By the Burkholder-Davis—
Gundy inequalities (cf. Theorem 3.3.28 in [17]) there exists a constant « independent
of n such that

E[|S2(T(t) An)!] <E sup  |Sa(s An)] < a(a?t?).
0<s<T(t)

Thus the families {S3(T(t) A n),n > 1} and {(Sy)(T(t) An),n > 1} are uniformly
integrable for each fixed ¢ > 0. Since S (respectively, (S2)) has continuous paths and
T(t) < oo as. S2(T(t) An) — SZ(T(t)) (respectively, (So)(T(t) An) — (S2)(T(t)))
a.s. as n — oo. By the uniform integrability, this convergence also holds in the L!
sense. Thus

(52)
E[S3(T(t) A n) — (S2)(T(8) An)|F(T(s))] — E[SS(T(1)) — (S2)(T(£))|F(T(s))):

The above relation and the fact that S’% - (S’g) is an Fj-martingale now show that
E[S3(t) — (S)(T(t))|Fo(s)] = S3(s) — (S)(T(s)). Thus the quadratic variation of S is
given by (S5)(t) = (S2)(T(t)). The representation (48) now follows on using Theorem
5.4, Lemma 4.3, and (51). By the martingale representation theorem (e.g., Theorem
3.4.2 in [17]) it now follows that there exists a one-dimensional Brownian motion W,
possibly defined on an enlarged probability space, that is, a martingale with respect
to an enlargement of the filtration {Fo(¢)} and is such that (49) holds.

The {Fo(t)}-progressive measurability (respectively, adaptedness) of C' (respec-
tively, M and N) follows from the { F(t)}-progressive measurability of C' (respectively,
adaptedness of M and N). Also, since C' takes values in [0, p|, the same is true of C.
Right continuity of M and N is a consequence of the fact that M and N are con-
tinuous and T is right continuous. This proves 3. Part 4 is once more an immediate
consequence of Theorem 5.4 (part (5)) and Lemma 4.3. |
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Until now the parameters ¢, p have been fixed and thus excluded from the notation.
It is convenient to include these parameters in the notation for the remainder of this
section.

Convergence of the value functions. Let z € Sy and let {z;,h > 0} be a
sequence with z;, € S? such that zj, — z as h — 0. Recall the definitions of V; ,(2) in
(9) and V"(z3,) in (25). Our main goal in this section is to show that V"(2;) — Vi, (2)
as h — 0. We begin with the following proposition.

PROPOSITION 5.8. Let {2}, 2 be as above. Then limsup,_o V" (23) <V, (2).

Proof. Fix for each h > 0 an admissible control sequence for the initial condition
zn, UM = {UM n > 1} € A"(21,). Recall the definition of J"(z;,, U") in (24). In order
to prove the proposition it suffices to show that

(53) limsup J* (25, U") < Ve(2).

Using Lemma 4.6 and boundedness of f, we can find, for each € € (0,00), a ¢ = c(e) €
(0, 00) such that

(54) Iz, UM < E e BT"® f ()" (da, dt) + <.
[0, Ac]x[0,p] 2

Let (H" #',1m") be as in Proposition 5.3 and (H,71,7) be one of its weak limit
points. Once more, as in the proof of Theorem 5.4 we can assume, by relabeling and
appealing to the Skorohod representation theorem, that (ﬁh,%f,mh) — (ﬁ,ﬁ,m)
a.s. Taking limits as h — 0 in (54), we have

limsup J"(z,, U") < E e"BT(t)f(a)m(da, dt) + <
h—0 [0,5] X [0,71Ac] 2
As € > 0 and ¢ = c(e) are arbitrary,
(55) limsup J"(z,,U") < e_BT(t)f(oz)m(da, dt).
h—0 [0,p] x[0,71]
Let, as before, 7 = inf{t > 0 : Z(t) ¢ S°}. Recall that 7, > 7. Then clearly

E 1{r—00) e PO f(ayin(dor, di)
[0,p]x[0,71]

(56) —E lgrmoo e~ PTM f(a)m(da, dt) .
0,71 [0,7]

Now suppose that 7 < co. Let 7" denote the ﬁrstA point of increase of T in [7,71].
More precisely, let 7* = inf{t € [7,00) : T'(t + ) > T'(¢t) for all § > 0} A 7. Note that

E lfpcoy €70 fla)ding(de) dT(t)

(7,71] [0,p]
(57) —E Tgrcoo} [ ]e—5T@> [ ]j(a)dﬁu(da) ar(t) .
T*, 71 0,p

We now show that the above quantity is equal to 0. Consider the evolution of the
process Z over the interval [7, 7*]. By definition, Z(7) ¢ S°. Since T is constant over
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this time interval, we see from Theorem 5.4(2),(3) that B; and S are both constant
over this interval, and since neither v; nor ve can push the process into the interior
of S, we see that Z(7*) ¢ S°. Define s* = T(7*). Since 7* is a point of increase of
T we have T(s*) = T(T(r*)) = 7*. Thus Z(s*) = Z(r*) ¢ S°, where Z is defined
by (47). Consider first the case Z(s*) = 0; then from (48), (S3) is strictly increasing
at s*. From this it follows that for all 6 > 0 there exists ss € [s*,s* + 6] such that
dist(Z(ss),S) > 0, i.e., dist(Z(T(ss)),S) > 0. Now since S" — S and Z" — Z
as h — 0 we have dist(Z"(T(ss)),S") > 0 for all h small enough. Therefore, by
definition of 7 we must have 7 < T(ss) for all h small enough. This implies
71 < T(ss). Now, taking § — 0 and using the right continuity of 7" at s* it follows
that 71 < T(s*) = 7*. Hence the quantity in (57) is equal to 0.

Finally, consider the case when Z(s*) = 0 (and 7 < o00). Let s** = inf{s >
s*|Z(s*) = 0}. From the dynamics of Z (see (47)) it follows that for every 6 >
0, there exists ss € [s**, ™ + §] such that dist(Z(ss),S) > 0. Arguing as before,
we have 71 < T'(s**). Define m;(da) = mp(da) for t > 0. Since C(t) = 0 for
t € [s*,8**] we get that m; = & for ¢ in this interval. Thus since f(0) = 0, we
have f[o,p] f(a)dmy(da) = 0 for all t € [s*,s**]. Combining this with the fact that

[7*,71] C [T'(s*),T(s**)] we now see that the expression in (57) is 0. Thus

E 1{sco0) e PTW f(a)m(da, dt)
[0,p] x[0,71]

(58) —E lgrcoo e PTW f(a)in(da, dt) .
0,71 [0.7]

Combining (55), (56), and (58) we now get

limsup J"(z,, U") < E e=AT® fle)dimg(de) dT(t).
h—0 [0,7] [0,p]

We next consider the time inversion. Recall that 7 = inf{t : Z(¢) ¢ S°}. Note that
7 > T'(7). Using this inequality and Lemma 4.3 we have

E e BT() f(@)dimg(do) dT(t) <E e Pt f(a)dmy(da) dt.
[0,7] [0,p] [0,7] 0,p]

Inequality (53) now follows from the above inequality and Remark 5.7. ]
We now proceed to the proof of the reverse inequality

(59) liminf V" (25) > Vi (2).

We begin with the following lemma which allows us to restrict our attention to controls
that have several simplifying features. The proof is contained in the appendix. Recall
the definition of an admissible control above Proposition 2.2 and the corresponding
cost defined above (9).

LEMMA 5.9. Let ® be a probability system and U € A,(®,z) be a control with
corresponding cost function Jo(z,U). Then for any § > 0 there exists Us € Ap(P, z)
such that |Jo(z,U) — Jo(z,Us)| < 6 and Us satisfies the following:

1. There exists T € (0,00) such that Ms(t) = Ms(T),Ns(t) = Ns(T'), and
Cs(t) =0 forallt >T.
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2. There exists L € (0,00) such that

sup sup(Ms(t A T,w) + Ns(t A 1,w)) < L.
0<t<oo w

3. There exist n,0 € (0,00) and K € N such that C(t), M(t), N(t) take values
in the finite set {kn : k = 0,1,2,...,K}. Furthermore, C,M, and N are
piecewise constant with possible time points of change being {0, 6,20, 36,...}.

4. There exists a v € (0,00) such that 0 is an integer multiple of v and the
chosen control U = (C, M, N) satisfies the following equality for m > 1:

P[(C(m8), M (mB),6N(mb)) = kn|U(s),s < mO; W(s),s < mb]
— P[(C(m8), M(1m0), 8N (1m0)) = kn|U(n0), 1 < m; W (1), by < m),
(60)

where k = (k1,ka, ks) and ki, ko, ks are integers, at most one of which is
nonzero.

5. Denoting for m > 1, ¥(m) = {C(nf),5M (nd),6N(nf),n < m}, W(m) =
{W (ly),ly <mb}, and k = (ki1, ka, k3), rewrite the above probability as

P[C(mO) = k1n, 6M (mB) = kon, SN (m0) = ksn|¥(m), W(m)]
(61) = @ k(T (M), 2, W(m)).

Denote PIU(0) = (k1n, kan, ksn)] by qok(z). For each m > 0, the function
dm,k can be chosen so that the function (z,w) — ¢m (¥, z,w) is continuous
for every 1.

Construction of asymptotically near optimal admissible controls for
the MDP. Fix a probability system ®, z € Sy, and a sequence {z,} such that
zp, € SP and 2z, — z as h — 0. Let € > 0 be arbitrary. Let U € A,(®,z) be
such that U satisfies properties 1-5 of Lemma 5.9 and Vp,(2) — € < Jy(2,U). For
each h > 0, we construct from U an admissible control sequence {U",n > 0} for
the MDP in Definition 3.1 with initial condition zj, such that the cost for U" asymp-
totically agrees with the cost of U. We outline below the main steps in the con-
struction of such a control sequence. Let K = {(k1,ko,k3) : k; = 0,1,...,K;i =
1,2, 3 such that at most one of kq, ks, k3 is positive}.

Step 1. We begin by taking a random draw, denoted by k = (k1, ke, k3), from the
probability distribution {qo x(z1),k € K}. Set Ul = kn, Zl = 2z, and W'(1) = Up.
Also set ng = 0. Note that at most one of ko and k3 will be nonzero. If both k9 and
k3 are 0, set n; = 0, skip Step 2 below and go to Step 3. Otherwise proceed to Step
2.

Step 2(A). Recall the kernel p;, defined in (21). If ko > 0, let U = (1,0) and
take a random draw, denoted by Z!, from py(Z§, U}, dz). We express this as “the
chain takes a purchase control step.” If Z" € 9", we set Ul = (3,0) and draw Z} from
pn(Zh, U, dZ); i.e., the chain takes a reflection step. Otherwise set U = (1,0) and
draw Z% from pp(Z},UP,dZ). Define (U, Z"), n = 1,2,..., recursively by taking
either a purchase control step or, if needed, a reflection step, until a total of [kan/h]
purchase control steps have been taken. Denote by n; the index of the state after the
last purchase control has been exercised.

Step 2(B). If k3 > 0, let U = (2,0) (that is, the chain takes a sales control
step) and proceed as in Step 2(A) above, alternating sales control steps and reflection
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steps (when needed) until [x3n/h] sales control steps have been taken. Again, let ny
denote the index of the state after the last sales control has been exercised.

Step 3. If Z! € 0!, set U} = (3,0), and the chain takes a reflection step.
Otherwise set U = (0,r1n) and draw Z! ,, from p,(Z! Ul ,dZ); i.e., the chain
takes a diffusion step with ¢ = w;n. Let t! be as defined below (23). Define
Uk, Z! i ,n=n1,n1 +1,n +2,...,71 — 1 recursively, where n; = inf{n : t > 6},
as follows. If Z € 9, set U" = (3,0); otherwise set it to be (0,x17m). Draw Z!,,
from py(Zh, U, dz)

Step 4. Next we define the “pre-Wiener process” that is needed to obtain the
control at the next step. Let {v,,n > 1} be an independent, identically distributed
(i.i.d.) sequence of N(0,1) random variables, independent of (U, Zh+1)Zl o' Define
S} for n < iy — 1 as in (26); here we consider only the second component S} ,. Set

Sk =0, and for g < n <Ay — 1,

Sty — St
h - n+1,2 ,
Su ==y Moy T Ve ARLgvii=o)

Next define W) =0 and W} =Wk + 7~ 'SP Now define for 0 < ¢ < 0,
(62) Wh(t) = Wy = Wi

n

Finally, define W"(1) = {W"(lv),1 € No, Iy < 6}.

Step 5. Suppose we have, forj = 1,...,m, defined 71; = inf{n : th > jo};
(Zh 4, UR), n=0,1,...,7; —1; ¥"(j); and W"(j). Consider now the case j = m+1.
Take a random draw, denoted once more by k = (K1, k2, K3), from {Gm (TP (m), zp,
Wh( ), k€ K}. Set U = knp and W"(m 4 1) = (U}, ..., U"). Follow Step 2 with
U0 replaced by Uﬁl and the starting index of U" replaced Wlth um. Denote by 1,41
the index of the state obtained after the last singular control step in Step 2. Follow
Step 3 with n; replaced by ny41. Let figy1 = inf{n : t# > (m + 1)0}. This defines
(Zh 4, UM),i=0,1,...,fippy1 — 1. Define W"(t) — W"(mb), for t € [mf, (m + 1)9),
by the right side of (62) as in Step 4 with g, 711 replaced by 7y, fipt1, respectively.
Now set W (m + 1) = {W"(lv),l € N,ly < (m + 1)6}.

Noting that 7, is strictly increasing in m, we obtain the controlled chain {(Z”, U"),
n=0,1,2,...} via the recursion:

({(Z] 1. U Vi W (m), Wh(m)) — (2, U Yo ™ 0 (me 1), W (m+1)).

The main step in the proof of (59) is showing that if interpolated processes (2", U")
using the above control sequence are defined as below (25) and W" is defined by (62),
then as h — 0,

(63) (Z", U™, W") converges weakly in D([0,00) : R%) to (Z,U, W),

where W is a standard Brownian motion and Z is defined by (7) with the initial
condition Z(0—) = z. This convergence is established by proving convergence over
the period [j6, (j + 1)0) for each j in a recursive manner. Note that given the initial
condition Z(j0—) = z and the control value U(j#) = kn, the dynamics of Z for
t €[50, (j + 1)0) are particularly simple and are given as
t
X(t)=2+ (1 —prsn— 1+ Nren+  (rX(s) — k1n)ds,
30
t t
(64) Y(t)=y+ren—rgn+  bY(s)ds+ oY (s)dW(s).
36 36
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The following lemma provides the convergence of (Z",U", W") over one fixed period
[70, (j + 1)0) given the initial data at j0. The proof follows via straightforward weak
convergence arguments and thus is omitted.

LEMMA 5.10. Fiz z € S; and let k = (k1,k2,k3) € K. Let (Z(t), W(t)) given
on some probability system ® be defined for t € [0,0] by (7) with Z(0—) = z and
(C(t),M(t), N(t)) = kn fort € [0,0]. Consider a sequence {z,} such that z, € S"
and z;, — z as h — 0. Define iy and the sequence {U", Z" 21:0 via Steps 2 and 3
and {S", WIIM by Step 4. Let {61} be a sequence of nonnegative reals such that
6n — 0 as h — 0. Define, for t € [0,0], the interpolated process (Z", Wh U" EM)
as before (see (62) and below (26)) with the change that AM(Zl, UL) is replaced with
on + AM(ZE UL, Denote the laws of (Z",W" U™) and (Z,W,U) on D([0,0] : R?)
by HZ"S" and II¥, respectively. Then Hl;’b’éh — II* as h — 0.

In the following proposition we show that the cost, J"(z;,, U"), corresponding to
the above constructed control sequence, converges to Jy(z,U) as h — 0. The desired
inequality in (59) then follows since V" (2;,) > J" (2, U"), Jo(2,U) > V; ,(2) — € ,and
€ > 0 is arbitrary.

PROPOSITION 5.11. Let € > 0 be arbitrary and fix z € Sy. Let ® be a probability
system and U = U(e) € A,(®,z) be such that U satisfies properties 1-5 of Lemma
5.9 and Vip(2) — € < Jo(2,U). Let, for each h > 0, {U!} be an admissible control
sequence as constructed via Steps 1-5 above. Then J"(z,,U") — Jy(2,U) as h — 0,
and consequently (59) holds.

Proof. For t > 0, let n"(t), Z"(t), M"(t), N"(t),C"(t) be as defined below (25).
Define U" = (M", N",C") and let W" be as in (62). We begin by establishing (63).
Define for j € Ny and ¢ € [0, 6),

UMt) = UMt +46), Z(t) = Z"(t + j6), W] (t) = W"(t + jo) — W"(j6),
and set (Uf(ﬂ),Z;‘(@),Wf(@)) = (U;‘(é)*),ZJ’?(Gf),th(t?f)). Define processes Uj,
Zi, Wj, 7 € Ng, in a similar manner. Recall the sequence {UJ}.’} constructed above
Lemma 5.10 and let ¢! = (UF, UMW, Z0), ¢; = (U;,U;, Wy, Z;), where U; =
(C(50),6M(j0),6N(40)), j € Ng. Due to the piecewise constant feature of the control
U, in order to prove (63), it suffices to show that

(65)  for allm € Ny, Tj = {CJ'-’};-‘:O converges weakly to T = {(;}/_gash — 0.

We will prove (65) via induction (on n). The case n = 0 is immediate from Lemma
5.10 and continuity of the kernel g ; on noting that for k € K and E € B(D([0, 6], R%),

PO} = kn, (U, Wi, Z) € E) = qo,(2n)11° (E),
P(Uy = kn, (Ug, W, Zo) € E) = qo1(2)I1*(E).

Suppose now that (65) holds for n = 0,...,m and consider the case n = m + 1.

Denote the law of T2 Y, by w” and w, respectively. By the induction hypothesis,

h

@', — @, as h — 0. Furthermore, @”, | ; can be expanded in terms of !, as follows:

~%,m *,m ky6n (vm
(66) dwpt i1 (Un1) = Gk (2, @07 WS, Hom)(

kex

§m+1)dwﬁb(vm)v

where vy, = {1705 ¢ = (U5, uz, wy, 25); @5 = kn, k € K; (uj,w;,25) € D([0,0] : RY);
a*™ = {u;}1 gy w™ = {w;(ly),l € NIy < 0} ; and 6y, is a measurable map from
the state space of T, to [0, 1] satisfying 0 < 6, (v,,) < Al
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From the continuity properties of the kernel {¢,,+1x} and the weak convergence
of w,, to w, we have for all continuous and bounded functions Fj, F> defined on
suitable spaces, as h — 0,

Fi(vm) qmﬂ,k(z,a*’m,w*’m)( F2<<m+1>dn’€<<m+1>) dol (vn)
ke

67) —  Fi(vm) qu,k(z,a*’m,w*vM( F2<<m+1>dn’“<<m+l>) 45 (V).
kek

Next, from Lemma 5.10, for all sequences {6y} converging to 0 and compact sets E
(of Euclidean space of appropriate dimension), as h — 0,

sup Fo (Gt 1)@t g (2, @™ 0™ ™) TP (Gt

ke, a*menKm+l wsmeE

(68) = Fa(Cma)@mr1k(zh, @, w ™) dITF (i) | — 0.

The weak convergence of w?, | to @41 now follows on combining (66), (67), and
(68). This proves (63).

We now address convergence of the cost functions. First, let T' be as in Lemma
5.9. Recall n" = inf{n > 0: Z" € 9"} and 7" = tf;h. Note that 7" = inf{t > 0 :
Zh(t) € 0"} due to the piecewise constant nature of Z"(t).

Let 7 = inf{t > 0 : Z(t) ¢ S°}. It can be shown in a manner similar to that
used in the proof of Lemma 5.1 that 7" — 7 as h — 0 on the set {7 = cc}. Also,
on the set {7 < oo} for every § > 0 there exists ¢ € [r,7 + 6) and € > 0 such that
dist(Z(t),S) > e. Furthermore, |Z"(t) — Z(t)| uniformly on [0,7] and 9" — 8S as
h — 0. Together these three facts imply 7" AT — 7 AT as h — 0. Therefore, since
(zn, Z", UM W 1) — (2, Z,U, W, 7), by the dominated convergence theorem,

J"(zn, UM) = E o e P F(CM(t))dt — E _— e P f(C(t))dt = Ji(z,U). O
,TAN ,TA

Combining Corollary 2.5 and Propositions 5.8 and 5.11 we have the following
theorem.

THEOREM 5.12. Let z € S and let {zn, h > 0} be a sequence with z;, € SI such that
zn — 2z as h — 0. Then lim,_ o0 limy—o0 limy—o V(2") = limy,— o0 limy— 00 Vi p(2) =
V(z).

6. Computational methods for the MDP. The convergence results in the
previous section ensure that for small values of h, the MDP defined in section 3
provides a good approximation to the diffusion control problem defined in section 2.
In this section we outline the numerical methods for solving the MDP. Specifically,
we provide the algorithm through which we compute the value function (25) and the
associated optimal control for each initial state z, € Si}. In practice, we fix a value
of h and use the associated MDP to provide approximations to the diffusion control
problem. Thus, for the remainder of the section, we will take h as a fixed value and
suppress it in the notation.

Specifying the controlled Markov chain. In section 3, we specified a choice of
transition probabilities and interpolation intervals which satisfy the local consistency
criteria; see (15)—(17) and (20). Many variations of this choice are possible; when
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specifying the particular controlled Markov chain, consideration must be given to
the numerical implementation. For example, note that neither the denominators of
the probabilities nor the interpolation intervals in (15) depend on the value of c.
This was accomplished by allowing the self-transition (z,y) to (x,y). Also, we have
separated the pure diffusion effects from the effects of the consumption control. That
is, as consumption always decreases wealth, we associate it with only the transition
from (z,y) to (x — h,y). Recall that A(z,u) = 0 for all z if u = (3,¢); that is,
the interpolation interval is 0 if reflection occurs. Hence, using (24), a reflection
step incurs no cost and thus V(¢ + h,y) = V(¢,y),V(z, 0 + h) = V(z,f). Tt is
a consequence of Definition 3.1 that P[I,, = 3|Z, € dx \ 9"] = 1 for all n; that is,
reflection is the only admissible action for states in the reflecting boundary. Therefore,
by adjusting the transition probabilities associated with the diffusion and singular
controls, it is possible to eliminate states in the reflecting boundary without affecting
the cost function. This modification helps in speeding up the convergence of the
numerical scheme.

In what follows, we will assume that the reflecting boundary states have been elim-
inated and the appropriate adjustments to the transition probabilities made. Thus,
the state space of the controlled Markov chain used in the numerical schemes is given
by Supp = Sjﬁ \ Or, and the control space is Uypp = {0,1,2} x [0, p)].

Dynamic programming equation. Let U = {U,,n = 0,1,2,...} be an ad-
missible control sequence (see Definition 3.1) for the MDP with state space Sypep,
control space Uypp, and initial state z. For the numerical methods it is convenient to
work with the cost function

n—1
(69) J(z,U)=E e P f(Ch)A(Zn,Cpn)1(1, 0},

n=0

which is asymptotically equivalent to (24). Recall that the value function is given as
V(z) = supyea) J (2, U).

We now present the dynamic programming equation that characterizes the value
function. We begin by introducing the class of feedback controls. A feedback control
is a measurable function u : Sypp — Uypp. We write u = (i,c), where i and c are
the two coordinates of the function u. Using such a function one can construct an
admissible control pair (Z,,,U,,) recursively by setting Zy = 2o, U, = u(Z,),n > 0,
and

Pl Z+1 €| Z0,..., Zn,Up, ..., Up] =0(Zp, Up, ).

With an abuse of terminology we will refer to this sequence {U,,} as a feedback control
as well. Note that U,, = (I,,,Cy) = (i(Z,),c(Zy)).

IfU ={U,,n=0,1,2,...} is a feedback control, then one can easily check that
the pair (Z,,U,) is a Markov chain, from which it follows that for all z € Sypp,

(70) J(z,U) = r(z,u(z2),2)J(2,U) + f(c(z))Ah(z,u(z)),

Z€SmpP

where r(z,u(z),2) = e PAEUE)p(2 u(z),2). Observing that J(z,U) = 0 for all
z € 0", the summation above can be taken over Z € S* = Sypp \ 0"

We can write the above equality in matrix form as follows. Let |S*| = s and fix
an ordering of all the states in S*, i.e., S* = {z1,...,25}. Let F(u) be an s x 1 vector
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whose ith entry is f(c(z))A(zi,u(z;)),i = 1,...,s. Let R(u) be the s x s matrix with
the (4, j)th entry as r(z;,u(z), z;). Finally, let J(u) be the s x 1 vector with the ith
entry being J(z;,U). Then using these matrices, (70) can be written as

(71) J(u) = R(u)J(u) + F(u).

Next, for v € Unpr let R(u) be the s x s matrix with (¢, j)th entry r(z;,u, z;). From
standard arguments (cf. section 5.8 in [19]) it follows that the value function V satisfies
the following dynamic programming equation:

(72) V= sup R(u)V+ F(u),

u€UMDP
where in the above equation V' is interpreted as an s x 1 vector whose ith entry is
V(z;), and the supremum on the right-hand side above is taken row by row.

The following contraction property is central in the characterization of the value
function via the dynamic programming equation in (72). The proof of the following
lemma relies on the fact that the cost is of the discounted form with a strictly positive
discount factor at all diffusion control steps, and although the discount is zero for
singular control steps, such steps tend to push the process towards the boundary of
the domain and thus cannot occur “too often.”

LEMMA 6.1. For all feedback controls u, R™(u) — 0 as n — oo.

Proof. Let u be a feedback control and denote R"(u) by simply R™ with entries
1,7 =1,...,s. It suffices to show ‘;:lrfj —0asn— oo, foreachi=1,...,s.
Let (Z,,U,) be the controlled Markov chain associated with feedback control u
and a transition kernel as defined in section 3 with the modifications discussed in
this section, and let Ay = A(Zg,U) be the associated interpolation intervals. Let
n = inf{n: Z, € 9"}. A simple calculation yields for all i = 1,...s:

n
Tiis

s s
n _m. | .—8 Rlo Ak
Tij = El e k=0 1{Z7L:Zj} s
Jj=1 Jj=1

where E; denotes the expectation given that Zy = z;.
Since the states in 9" are not included in S* and p(z,u(z),2) = 1 for z € 9", we
have 1{z7, —..; =0for j=1,...,s when n > n. Thus we have

S S

5 n-1
(73) T‘?j =E; 1{n<n} e B k=0 Akl{Zn:Zj}

j=1 j=1
Fix a € Z.; conditions on a will be specified later. Define
d=#{0c{1,2,...,[n/a]} : Uy, = (0,-) for some m € [(6 — 1)a,0a)}.

Set d’ = [n/a] — d. The integer a is used to group the steps of the chain from 1 to n

together into intervals. The quantity d, (d') counts the number of such intervals with

at least one diffusion step (respectively, no diffusion steps). By (14) there is a 6 > 0

such that A,, > ¢ for all diffusion steps (i.e., all n such that U,, = (0,-)). Also, recall

that A,, = 0 if step n is not a diffusion step. Combining these observations, we have
S

8

_ nflA — n
(74) B [lgape™ B=0% gy | <e PR | 1nanliasagm) |-
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We will utilize the behavior of the singular controls to bound the second term on the
right-hand side of the line above. Let E1, E»,..., E; denote the intervals containing
no diffusion steps, each of size a. Let K4 denote the number of purchase control steps
in Fg; then a — K is the number of sales control steps in E4. Due to the finiteness of
the state space, the maximum number of successive transitions to the left is bounded;
in particular, it is bounded by B = 2(¢/h+1). Similarly, B is a bound on the maximum
number of downward transitions in a row. From (17) we see that each sales control
always pushes the chain downward. Thus the application of too many sales controls
in a row will cause the chain to hit the boundary. However, by (16) a purchase control
potentially pushes the chain upward. Similarly, a purchase control always pushes the
chain to the left, while a sales control has the potential to push the chain to the right.
Thus in order to avoid hitting the boundary, the number of sales controls must be
properly balanced by the number of purchase controls. More precisely, if n < 7, we
must have | Ky — (a—K,)| < B; thatis, (a—B)/2 < Kq < (a+b)/2, d=1,...,d . For
m € Ey define L,, = Y 21— Zm=(—h,0)",Un—=(1,0}- Lhe random variable L, indicates
if the chain moves strictly to the left at step m given that a purchase control is applied.
Since on E, there are no diffusion steps and movement to the left is possible only at
purchase control steps, the number of increments 67y equal to (—h,0)" on Ey is given
by  .em, Lm = La.

Let € be chosen to satisfy 0 < € < p/2. Recall that at a purchase control step the
chain moves to the left with probability ¢ = A/(1 + A). Thus by Cramer’s theorem
(see Theorem 2.1.24 in [8]) there exists a k = k(e) such that

(75) PlLq < Ka(g—€)] <P [L(—‘i —q >e <e Kaim<emnlazB)/2

where the last inequality follows from the bound on K,;. We claim that for each d =
L...,d, {n <n}yn{Ly > qK4/2} = 0. To see the claim suppose that Lq > ¢Kz/2.
Then the number of upward steps (62 = (-, h)’) in Eq, given by K4 — Lg, is at most
(1—q/2)K4. The number of downward steps (6Z; = (-, —h)’) in E4 equals the number
of sales control steps, a — K. Thus using the bounds on K, we have

#{down steps in E4}—#{up steps in E4} > a—K4—(1—q/2)Kyq > aq/4—(1+q/4)B,

which is greater than B for a > B(4 + q)/q. Henceforth fix such an a. On the other
hand, on the set {n < n} we must have |#{down steps in E;} —#{up steps in E4}| <
B; otherwise, the chain would hit the boundary. This leads to a contradiction and
thus the claim holds. Combining this with (75) we have that

_ (2/
E; 1{n<n}1{&'>g[g]}} =E; 1{n<n,df>%[%]} H Wra<qka/2}
d=1
(412
< B Lira<ara/2)
| d=1
<e e 1k
Finally, by (73), (74), and the above, we have j:l T < e~BER) 4 e—n*571[2]. The
result now follows on noting that the term on the right approaches 0 as n — oo. ]

An immediate consequence of the lemma (cf. section 2.3 of [19]) is the following.
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THEOREM 6.2. For any feedback control u, J(u) is the unique solution to the
equation v = R(u)v + F(u). Furthermore, the value function {V(z),z € S*} defined
below (69) is the unique solution of (72). Denoting the argmax for the ith row
mazximization on the right side of (72) by u(z;) and the control sequence corresponding
to the feedback control u by U = {Up,,n =0,1,2,...}, we have that U is an optimal
control, i.e., J(z,U) =V (z) for all z € S*.

From the above theorem it follows that in order to compute the value function
and the optimal control it suffices to solve (72).

Numerical methods. We will use classical iterative methods to find the optimal
control by solving the dynamic programming equation (72). A sketch of the algorithm
is provided here. Details can be found in Chapter 6 of [19].

The following theorem provides the basis for the numerical approximation of the
optimal control. We refer the reader to Theorem 6.2.1 in [19] for a proof.

THEOREM 6.3. Let ug be a feedback control. Define a sequence of feedback controls
{un,,n > 1} and costs {J(u,),n > 1} recursively as follows. Given u,, define

(76) J(u,) = R(u,)J(uy,) + F(u,),

(77) Uy, = argmax, o, o R(u)J(u,) + F(u),

where the arg max on the right-hand side is computed row by row. Then J(u,) — V
as n — 0o.

Given some control, (77) provides a way of “updating” the control in the search for
the optimal control. However, this requires solving (76) to obtain the cost associated
with the given control. Finding an exact solution to this equation can be numerically
intensive since it involves the inversion of an s x s matrix. Thus we use instead an
approximation to the cost function J(u,) in (77). The following theorem provides a
method for obtaining such an approximation. We refer the reader to Theorem 6.2.2
in [19] for the proof.

THEOREM 6.4. Let u be an admissible feedback control. Then for any initial s x 1
vector jo, the sequence defined recursively by

(78) Jns1 = R(u)J, + F(u)

converges to J(u).

The numerical method for finding the optimal control is obtained by combining
Theorems 6.3 and 6.4 as follows.

Policy iteration: Having determined an approximation to J(u,), denoted as
J(uy,), one obtains u,; by solving the minimization problem in (77) by replacing
J(u,) there with J(u,).

Value iteration: Given u,, iterate (78) a large number of times (say, m) with R(u)
there replaced by R(u,,) and initial value Jy replaced by J(u,_1). Set J(u,) = J,,,.

The numerical algorithm alternates between policy iterations and value iterations
until some suitable stopping criterion is met. Several modifications of (78) are often
used to improve numerical efficiency; see section 6.2.4 of [19] for details.

7. Numerical study. We now present the results of a small pilot study using
the method described in section 6. We consider one of the examples in [31]. As in
that reference, we set r = 0.07, b = 0.12, o0 = 0.40, and § = 0.10. We consider the
case A = p = 0.01 and the utility function f(c) = 2y/c. We take £ = 10 as in [31] and
p = 10. The discretization parameter is taken to be h = 0.25. (Note that [31] uses
h =10.025.)
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Fi1c. 2. Numerically computed optimal control.

To implement the numerical algorithm, we choose an initial feedback control
matrix ug given by, for z € S*,

p), x>0,y >0,
0), z>0,y<0,
0), otherwise.

Based on this control, the no-transaction region is the first quadrant of R?, and we
always exercise the maximum amount of possible consumption. For z € S* we take
Jo(2) to be 75% of the value function computed in the absence of transaction costs;
see equation (2.5) in [6].

We ran the algorithm described in the previous section. Figure 2 displays the
first quadrant of the state space and illustrates the optimal control for this region.
We see that the no-transaction region looks roughly like a cone. Consumption states
are represented by the circles, purchase states by the plus signs, and sales states by
the asterisks. The estimated boundaries of the no-transaction region (the solid lines
in the figure) are given by the lines y = 0.5752 — 0.050 (the boundary of the “buy”
region) and y = 1.659x + 0.405 (the boundary of the “sell” region). The estimated
sell boundary of the no-transaction region is similar to that obtained by Tourin and
Zariphopoulou (see Figure 1 in [31]). However, the slope of our buy boundary appears
to be lower than the slope illustrated in Figure 1 of [31]. A possible reason for this
could be the difference in the discretization parameter. We used h = 0.25 to produce
the test results provided here. Within the no-transaction region, consumption remains
at a fairly constant percentage of wealth, 11.5%, which is very close to the constant
percentage of consumption in the case of no-transaction costs (see Theorem 2.1 in
[6]). We also compare the value function computed by the algorithm versus the value
function in the case of no-transaction costs (again, see Theorem 2.1 in [6]). In general,
the optimal value for an initial state computed in the presence of transaction costs
is roughly 97% of the optimal value for the same state in the absence of transaction
costs. However, when the initial wealth is small, this percentage tends to be lower
(roughly 80%—90%).
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8. Appendix. This section contains the proofs of Lemmas 4.4, 5.1, and 5.9. We
refer the reader to the corresponding sections for the relevant notation and definitions.

Proof of Lemma 4.4. Without loss of generality, assume h € (0,1). Define

n® () Ann—1 n" () AR —1
}/;h(t) = 5Z£1{I£‘:z}a n?(t) = 1{[,’;:@'}7 i=1,2.
k=0 k=0

Writing Y;* = (Y, Y/,), it follows from (16) and (17) that

1
EY'5(t) = hmE[n’f(t)]’ EYy (t) = h(1 = p)Eln3 (t)]-
A straightforward calculation shows [B"(t)| < ¢1(1 + t) and E[S"(t)| < c2(1 + 1),
where the constants ¢, ¢y are independent of h and t. From (16), (17) we see that
hnl(t) = M"(t) = Y/ (t) and hn}(t) = N"(t) = YJ5(t). Thus from (28) there is
¢1 € (0,00) such that

(79)  hnf(t) < a(l+1) +[ST(O)] + Yy (1), hng(t) < el +1) +[S3 ()] + Y{'5(D).

Combining the above inequalities we have, for some c3 € (0,00), hE[n(t)] < e3(1 +
t) + h(1 — p)E[R% ()] and RE[n%(t)] < c3(1 +t) + RE[R?(t)]/(1 + A). It follows that
hE[n} (t)] and hE[n%(t)] are “close” to each other. More precisely, there exist constants
a>1,c4 >0, Ly > 0 such that for L > Ly,

(B[] (£)] V Elns (1)) > L = h(E[n] ()] AE[n3(8)]) > oL - cs.
In particular, we have sup, hE[n?(¢)] = oo if and only if sup, hE[nk(t)] = co. Now
suppose sup;, hE[n%(t)] = oo and sup, hE[n%(t)] = co. By Cramer’s theorem (see

Theorem 2.1.24 in [8]), for all § > 0 there exists a constant ¢(§) € (0,00) such that
for all kg € Ng and h > 0,

max { [V = h(1 = pnb(8)] > 6hnf(8), nh(t) = kol,
P(|Y{", — h(1/(1+ X)ni(t)] > 6hnf (), n}(t) = ko]} < c(6)e Mo,
Choose 6 such that p+6 < 1 and 1/(14+ A) — 6 > 0 (which is possible since p € (0,1)
and A € (0,00)). Defineay =1—(1—p—6)(1/(1+A) —6) <1and § = ay/4. Fix

€ € (0,1) and choose K large enough so that

c(6)  _. € co(1+1) €
80 OV _eme®)(EFD) o & ogpg 2T €
(80) 1 _e®° S8 M AK e+ ~8

Since by assumption, sup, hE[n’(t)] = sup,, hE[n%(t)] = oo, there exists h’ < 1 such
that

/ K / K
(81) P nk(t) > ﬁ,ng t)>—= >e
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Then for all £ > 0,

/ / ’ / K
P Yy () — B (1 — p)nd (t)| > 6h'nd (t),n} (t) > T
= PlYY () — B/ (1 — pynb (£)] > 6h'nd (t),n5 (t) = 5]
J=[K/h']+1
- )i O ey _ €
< c(d)e i p— g <3
j:[K/h/]+1

where the last inequality follows from the choice of K in (80). Similarly, ]P’[|Yff;(t) -
%n?/(tﬂ > Sh/nl (t),nl (t) > £] < €. Hence, in view of (81) we have

. ’ ’ K ’ ’ ’
P min{ny (t),n3 (1)} > 7 Yau(t) = B (1= png ()] < 6h'ns (2),

’ h/ ’ ’
Y (t) — mn}f (t) <shnl(t) >

|

Let E denote the event in the equation above. From (79) and (80),

PIR'n} (t) — Y3 (1) > 0K] < P[|SY ()] > 0K — &1 (1+ 1))
E|SY(¢)]
TOK —¢&(1+1)
c2(141) _€
SOK —&(1+t) 8
Similarly, P[A'n} (t) — Y{%(t) > 0K] < &. Thus

€

5 <PIE] < PIEWnf (t) - Y{i(t) < 0K, h'n3 (t) = Y/5(t) < 0K]
+ P'n} (1) — Y (£) > 0K] + P[h'n} () — Y'5(t) > K]

~ € €
<P[E]+ =+ -
<P ]+8+8,

where E is the event in the first term on the right side above. It follows that IE”[E] > e/4

and thus E is nonempty. Now for any w € E, we have from the definition of E that
Bl (1) — /(1 — p— 8)nl (t) < 0K, h'nl () — B (1/(1+ X) — 6)nl (t) < OK.
A straightforward calculation using these inequalities shows that for such w,

o 2 K
AU sy (ES R

However, this contradicts the fact that A'n?'(t) > K on E. Thus we must have
supy, hE[n(t)] < oo, sup, hE[n%(t)] < oo. The result now follows on recalling that
M"(t) = hnf(t) and N"(t) = hnk(t). O

Proof of Lemma 5.1. The inequality V(z) < V(z) is immediate since every exact
control can be expressed as a relaxed control. Consider now the reverse inequality.



SINGULAR CONTROL WITH STATE CONSTRAINTS 2203

Let ® be a probability system and U = (m, M, N) € A(®, z) be such that V(z) <
J(z,U) + €. From the boundedness of the cost function it follows that, without loss
of generality, we can assume that there is a T' € (0, 00) such that M(t) = M(t A T)
and N(t) = Nt AT) for all t € (0,00), and m(da) = 6, for all ¢ > T. Also, T can
be chosen large enough so that f.(p)e™PT /3 < e.

Let Z be defined via (7) with C(t) = f[o’p] amy(da), and 7 as before. Then

(82) J(z,U) <E e Ptf(a)m(de, dt) + e.
[0,p]x[0,TAT)

Also, by modifying m, M, and N if needed, we can assume that
(83) M@)=M(TAT), N(t)=N(T A7), and m(da) =6, for allt > T A T.

Following the proof of Theorem 1.2.1 in [2] one can show that there exists a sequence
of exact controls C,, € A,(®, z) which satisfy

(84) sup e Pt f(a)m(da, dt) — e PLF(Cu(t))dt — 0 a.s., and
0<t<Ti  [0,p]x[0,1] [0,¢]

(85) sup (Cn(s) —C(s))ds — 0 a.s.
0<t<Ty  [0,4]

as n — oo for all Ty € (0,00). In fact the cited theorem shows that, for each n,
C,, can be chosen such that it takes values in a finite set and there is a sequence
0 <t? <ty--- such that C,, is constant over [t}, 1}, ) for all k € N.

Let Z,, be defined via (7) with C replaced by C,, and with M and N as introduced
above. A straightforward application of Gronwall’s inequality and (85) shows that for
each T} € (0,00), there is a ¢ = ¢(T1) € (0,00) such that

(86) sup E|Z,(t) —Z(t)| <c sup E (Cn(s) — C(s))ds .
0<t<Ty 0<t<Tr (0]

Hence Z,, — Z, in probability, uniformly on [0, T7].

If 7 =00, Z(t) € S° for all ¢ > 0. Thus, (86) implies that there exists Ny such
that if n > Ny, then Z,,(¢) € S° for all ¢ > 0, and therefore 7,, = oo for all n > Nj.
Then clearly 7,, — 7 a.s. as n — oo on the set {r = co}. Next note that, a.s. on
the set {7 < oo} and for every § > 0, there exist ¢t € [r,7 + §) and ¢ > 0 such
that dist(Z(t),S) > e. This is because, in view of (83), Z(7 +1t), t > 0, is described
via (7) with initial condition Z(7) and M = N = 0. If Z(r) = 0, the property is
satisfied trivially since C(t) = p for all t > 7. Otherwise, the property follows from a
standard argument based on the law of the iterated logarithm for Brownian motion
(cf. pages 260-261 in [19]). This, along with the convergence of Z,, to Z, shows that
Tn = inf{t : Z,(t) ¢ S°} converges to 7 a.s. as n — oo. In proving this statement
we also use the observation that if Z(t—) ¢ S, then Z(t) ¢ S. Thus 7, AT — 7 AT.
Combining these observations with (84), we obtain

(87) E e PLF(CL(t))dt — E e P f(a)m(da, dt).
[0,7, AT [0,p] X [0,7AT]
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The result now follows on using this observation in (82). a

Proof of Lemma 5.9. Let ¢ > 0 be arbitrary and let T' € (0,00) be such that
f«(p)e BT/ < €. Consider U = (C, M, N) given by C(t) = C(t)l,cr, M(t) =
M(tAT),and N(t) = N(tAT), t > 0. Clearly U € A,(z), and it is easy to check that
|Je(2,U) — Jo(2,U)| < e. This proves 1. Henceforth we will assume, without loss of
generality, that 1 holds for U in the statement of the lemma. Using (7) and the bounds
on the state and control space, it is easy to show supg<;«r[M(EAT, w)+ N({EAT, w)] <
c1 + casupg< <7 |W(t)|, where ¢; and ¢, are nonnegative constants that may depend
on T. Let L € (0,00) be large enough so that coEsupge,<q |W()|/(L —c1) < e
Define U by C' = C, M(t) = M(t) AL, N(t) = N(t) A L. Let Z be the corresponding
controlled process and 7 the corresponding hitting time. Let T be as in part 1, and
define A = {supg<,<p[M({tAT)+ N({EAT)] < L}. Then

(88) Ji(z,U)=E 14 e PLFCH)Ndt +E 14 e PLE(C@))dt .
[0,7] [0,7]

Using the bound on f, the choice of L, and Markov’s inequality, the second term
on the right side of the above inequality is bounded by €. Also, since on the set A,
M(t) < L and N(t) < L for all t < 7 AT, we have that the evolution of Z is the
same as that of Z. Therefore 7 in the first expression on the right side of (88) can be
replaced with 7. This shows that |J;(z,U) — Jy(z, U)| < 2¢ and hence 2 follows.

We now consider 3. Let U = (C, M, N) be an admissible control satisfying prop-
erties 1 and 2 and let Z be the solution to (7) under (C, M, N) defined on some
probability system. Following Theorem 1.2.1 of [2] (see comments below (85)) we can
assume without loss of generality that C' takes values in a finite set, is RCLL, and
piecewise constant with finitely many points of change over [0,7]. We also assume
without loss of generality (by modifying controls if needed) that M () = M(t A 1),
N(t) = N({t A7), and C(t) = C(t)14<r + pli>r. Fix 1,0 € (0,00) and define the
piecewise constant processes C g9, M, 9, and N, ¢ as follows. For m = 0, define
M, o(mb) = M, ¢(0) = kn if M(0) € [kn,kn+n). For m > 1, set 6M,, ¢(mb) = kn
if M(m@) — M(m8@ — 0) € [kn,kn + n). By property 2, we need only consider
the finite set {kn : k = 0,1,2,..., K}, where K is some positive integer. Then
let M, ¢(t) = M, g(m0) for t € [mf,mb + 0). Define N, ¢ analogously based on
N. Define Cp9(mb) = kn if C(mb) € [kn,kn + n) and C,¢(t) = C,e(mb) for
t € [mf,mb + 0). The constructed process Uy = (Cy,0, My9, Ny,9) is an admissi-
ble control. Let Z, y denote the solution to (7) under this control, defined on some
probability system, and let 7, o denote the first time this process exits S7. Choose a
sequence (1), 0x) such that ng, 0, — 0 as k — oco. Denote Z,, 9, by Zj. Similar ab-
breviations are used for Uy, g, , Ty, 6, One can easily check that (Zi,U) — (Z,U) in
D([0,T],R? x [0,p] x [0, L] x [0, L]) (in probability) as k — oo. If 7 = oo, the uniform
convergence Zj — Z implies that there exists Ky such that for all £ > Ky we have
Zy(t) € S° for all t > 0, and thus 7, = oo for all k > Kj. Therefore 7, — 7 a.s. as
k — oo on the set {7 = oo}. Next note that, a.s. on the set {T < oo}, for every § > 0
there exists ¢t € [r,7+68) and € > 0 such that dist(Z(¢),S) > e. This is because, on this
set, by our choice of U, Z(7+t), t > 0, is described via (7) with M = N = 0 and initial
condition Z(7). In the case Z(7) = 0 the property is satisfied trivially since C(t) = p
for all ¢ > 7. Otherwise, the property follows from an argument analogous to the
proof of Theorem 9.4.3 of [19] (see pp. 260-261). Next, recalling that Z, — Z, Z(¢)
is continuous for all ¢ > 7 and the observation that Z(7—) € (S9)¢ = Z(1) € (S7)¢,
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we conclude 7, AT — 7 AT in probability. The convergence of J(z,Uy) to J(z,U)
now follows. This proves 3.

The proofs of 4 and 5 are quite standard and we provide only a sketch; the reader
is referred to the proof of Theorem 10.3.1 of [19] (pages 285-287) for details. Assume
that U satisfies properties 1-3, and let v > 0. Part 4 is essentially a consequence of
the martingale convergence theorem on noting that the o-fields G, = o{U(n#),n <
m; W(ly),ly <, 0} increase to the o-field G = o{U(n0),n < m; W(s),s <,0} as~ | 0.
The main idea is to define controls U, and controlled processes Z, recursively over
intervals [m#, (m + 1)0) by using the right side of (60) in defining the law of U, over
[m#, (m+1)6). Proving the weak convergence of (Z,, C,) to (Z, C) is straightforward.
The convergence of hitting times is argued as in the proof of part 3. Finally, part 5 is
proved by convolving g, , defined in (61), in the (z,w) variables by a parametrized
family of mollifiers and arguing weak convergence of the resulting controlled pair
to (Z,C) as the mollifying parameter approaches a suitable limit. Convergence of
stopping times is argued, once more, as in 3. O
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