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CONVERGENT SEMIDISCRETIZATION OF A NONLINEAR FOURTH ORDER
PARABOLIC SYSTEM

Ansgar Jüngel1 and René Pinnau2

Abstract. A semidiscretization in time of a fourth order nonlinear parabolic system in several space
dimensions arising in quantum semiconductor modelling is studied. The system is numerically treated
by introducing an additional nonlinear potential. Exploiting the stability of the discretization, con-
vergence is shown in the multi-dimensional case. Under some assumptions on the regularity of the
solution, the rate of convergence proves to be optimal.
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1. Introduction

During the last decade the interest in constructing positivity–preserving numerical schemes for fourth order
nonlinear parabolic equations grew significantly [3, 8, 20]. These kind of equations arise in different fields of
applied mathematics, such as lubrication problems for spreading droplets or thin films (for an excellent overview
see [6] and the references therein) and also in modern quantum semiconductor design [25]. Due to their higher
order nature and the lack of a suitable maximum principle, they pose challenging analytical and numerical
problems. Even if strictly positive continuous solutions are available, standard discretizations often fail to feature
this property. Nevertheless, the proof of positivity for the relevant discrete physical variables is of immense
importance concerning the performance of algorithms and a posteriori interpretation of numerical solutions. In
the existing literature the special structure of the equations is the key to the derivation of such uniform bounds
and strongly depends on the degeneracy of the nonlinearity in the equations under consideration [5,7,8,11,19].

In this paper we focus on a nonlinear fourth order parabolic system arising in quantum semiconductor
modelling. The derivation and numerical treatment of new macroscopic quantum models is essential for electrical
engineers to keep pace with the accelerating miniaturization in device fabrication. Reaching the decanano
length scale quantum effects are no more negligible and the widely used classical semiconductor models become
unapplicable. To overcome this problem much effort has been spent to incorporate the relevant quantum
mechanical phenomena in the well understood classical models. The state of the art in quantum semiconductor
device modelling ranges from microscopic models such as Schrödinger–Poisson systems [22] to macroscopic
equations such as the quantum hydrodynamic model (QHD) [12–14]. During the last years a whole hierarchy
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278 A. JÜNGEL AND R. PINNAU

of macroscopic models has been derived. They deal with macroscopic, fluid–type unknowns which allow for a
natural interpretation of boundary conditions [24]. The models consist of balance equations for the particle
density, current density and energy density and can be derived via a moment expansion from a many particle
Schrödinger–Poisson system [15,18].

Most analytical and numerical work on these models was spent on the stationary equations, since the main
interest was focused on the stationary current–voltage characteristics. Particularly for stationary simulations, a
first moment version of the isothermal QHD, the quantum drift diffusion model (QDD) [2,4], proved to be quite
promising since it allows a very efficient numerical treatment [27]. Only recently some results on the transient
equations are available. The transient quantum drift diffusion model can be derived as a zero relaxation time
limit in the rescaled QHD, which reads

nt + div J = 0,

τ2
relax Jt + τ2

relax div
(

J ⊗ J

n

)
+ θ∇n + n∇V − ε2n∇

(
∆
√

n√
n

)
= −J,

−λ2∆V = n − Cdot.

Here, the parameters are the scaled Planck constant ε, the scaled Debye length λ, the scaled temperature θ
and the scaled relaxation time τrelax. The distribution of charged background ions is described by the doping
profile Cdot(x), which is assumed to be independent of time (for details see [25]). The variables are the electron
density n(x, t), the current density J(x, t) and the electrostatic potential V (x, t).

Note that the QHD is a dispersive regularization of the classical hydrodynamic model [17] which is of
hyperbolic type. There are only few results available on the QHD and also its numerical treatment poses
severe problems due to the presence of high frequency oscillations, comparable to the effects which can be
observed in the context of the KdV equation [23]. Up to now it is not clear if the QHD generally allows for
non-negative electron densities. The main difficulty of the analytical treatment of the QHD is the nonlinear
third-order term. Fortunately, things improve significantly in the diffusive regime, i.e. for small relaxation times
τrelax. A numerical study of the limit τrelax → 0 for the stationary QHD can be found in [26], yielding a parabolic
equation of fourth order.

The limiting transient system (τrelax = 0), stated on a bounded domain Ω, can be written as

nt = −ε2

2
∆2n +

ε2

2

d∑
i,j=1

∂xi∂xj

(
∂xin ∂xjn

n

)
+ θ ∆n + div (n∇V ) , (1.1a)

−λ2∆V = n − Cdot. (1.1b)

This is a fourth order nonlinear parabolic equation for the electron density n, which is self–consistently coupled
to Poisson’s equation for the potential V . In the case of vanishing quantum effects (ε = 0) this system reduces
to the classical unipolar drift–diffusion model [21].

To get a well posed problem, system (1.1) has to be supplemented with appropriate boundary conditions.
We assume that the boundary ∂Ω of the domain Ω splits into two disjoint parts ΓD and ΓN , where ΓD models
the Ohmic contacts of the device and ΓN represents the insulating parts of the boundary. Let ν denote the unit
outward normal vector along ∂Ω. The electron density is assumed to fulfil local charge neutrality at the Ohmic
contacts:

n = Cdot on ΓD. (1.1c)

Concerning the potential we assume that it is a superposition of its equilibrium value and an applied biasing
voltage U at the Ohmic contacts, and that the electric field vanishes along the Neumann part of the boundary:

V = Veq + U on ΓD, ∇V · ν = 0 on ΓN . (1.1d)
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Further, it is natural to assume that there is no normal component of the current along the insulating part of
the boundary and additionally, the normal component of the quantum current has to vanish:

J · ν = 0, ∇
(

∆
√

n√
n

)
· ν = 0 on ΓN . (1.1e)

Lastly, we require that no quantum effects occur at the contacts:

∆
√

n = 0 on ΓD. (1.1f)

These boundary conditions are physically motivated and commonly employed in quantum semiconductor mod-
elling. The numerical investigations in [24] underline the reasonability of this choice.

System (1.4) is supplemented by the initial condition

n(x, 0) = n0(x) in Ω. (1.1g)

Let us collect some results available for system (1.1). In [25] the dynamic stability of stationary states with
a slightly different set of boundary conditions was established, at least for small scaled Planck constants and
small applied biasing voltages. So far, there are only a few results available concerning the solvability of (1.1)
due to the lack of an appropriate maximum principle ensuring the positivity of the electron density n. For zero
temperature (θ = 0) and vanishing electric field (1.1) simplifies to

nt = −ε2

2
∆2n +

ε2

2

d∑
i,j=1

∂xi∂xj

(
∂xin ∂xjn

n

)
· (1.2)

Surprisingly, this equation also arises as a scaling limit in the study of interface fluctuations in a certain spin
system. Bleher et al. [9] showed that there exists a unique positive classical solution locally in time in one space
dimension, assuming strictly positive H1(Ω)-data and periodic boundary conditions. Their argument is based
on the regularity of the semigroup generated by the Bilaplacian. The authors proved in [19] under much weaker
assumptions the existence of a non-negative global solution n in one space dimension, using an exponential
transformation of variables which exploits the special nonlinear structure of equation (1.2).

Note that the leading order term in (1.2) is not degenerate, such that the well-known methods for lubrication–
type equations

ht + div (f(h)∇∆h) = 0 (1.3)
are unapplicable. During the last years the dynamics of equations of this type were thoroughly investigated
using nonlinear entropy methods [5, 7, 11]. Numerically, there are several ways of dealing with equation (1.3).
For instance, Bertozzi et al. [8] designed a space discretization using finite differences, which exhibits the
same properties as the continuous equation. Barrett et al. [3] proposed a non-negativity preserving finite
element method, where the non-negativity property is imposed as a constraint such that at each time level a
variational inequality has to be solved. Recently, Grün et al. developed a finite element method without such
a constraint [16]. All of them heavily rely on the nonlinear entropy estimates available due to the degeneracy
and cannot be used for equation (1.2).

Concerning system (1.1) in one space dimension, a different numerical scheme was introduced by the authors,
which proved to be stable and convergent [20]: writing equation (1.1a) in conservation form

nt = div
(

n∇
(
−ε2 ∆

√
n√

n
+ θ log(n) + V

))

and introducing the quantum quasi Fermi level

F = −ε2 ∆
√

n√
n

+ θ log(n) + V
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yields the system

nt = div(n∇F ), (1.4a)

−ε2 ∆
√

n√
n

+ θ log(n) + V = F, (1.4b)

−λ2∆V = n − Cdot. (1.4c)

Here, −ε2∆
√

n/
√

n is the so-called quantum Bohm potential. The additional boundary conditions

F = U on ΓD, ∇F · ν = 0 on ΓN

are consistent with (1.1c)–(1.1f).
Then, an implicit time discretization by a backward Euler scheme for system (1.4) is suggested. The resulting

sequence of elliptic systems proves to be uniquely solvable at each time step and moreover the semidiscrete
solution is strictly positive. However, the positivity property relaxes in the limit to non-negativity. Due to the
possible presence of vacuum (n = 0) it was not possible to identify the limiting quantum quasi Fermi level F
and to derive adequate bounds to establish convergence in several space dimensions.

In this paper we generalize this convergence result to the multi-dimensional case. From Remark 2.3 in [20] we
learn that even for several space dimensions the semidiscretization possesses a strictly positive solution n(x, tk)
as long as the lattice temperature θ is sufficiently large. Since there is no uniform lower bound on the electron
density available we will assume this property and some regularity of the continuous solution. The positivity
assumption seems reasonable due to the suggestive form of the nonlinearity and can also be proved for small
data [9]. This regularity assumption has the benefit that we cannot only prove the desired convergence result
but get also estimates on the rate of convergence which proves to be optimal for the Euler scheme.

The proof is based on a stability estimate which is a consequence of the boundedness of the entropy (or free
energy)

S(t) = ε2

∫
Ω

∣∣∣∇√n(t)
∣∣∣2 dx + θ

∫
Ω

H (n(t)) dx +
λ2

2

∫
Ω

|∇V (t)|2 dx. (1.5)

In fact, S is non-increasing in time (see [20]). Here, H(s) def= s (log(s) − 1) + 1 denotes a primitive of the
logarithm.

The paper is organized as follows. In Section 2 we introduce the semidiscretization of (1.4). Section 3 is
devoted to the proof of convergence in the multi-dimensional case, which relies on an energy estimate for the
discrete solution. Imposing some natural assumptions we show that the scheme is convergent with the optimal
order in some suitable norm.

2. Semidiscretization

In this section we derive the implicit semidiscretization of (1.4) and state an existence and stability result
for the discretized system at each time level. In particular, the positivity of the electron density is guaranteed.

For the following investigations we introduce the new variable ρ =
√

n. Then (1.4) reads:

(
ρ2
)
t
= div(ρ2 ∇F ), (2.1a)

−ε2 ∆ρ

ρ
+ θ log(ρ2) + V = F, (2.1b)

−λ2∆V = ρ2 − Cdot. (2.1c)

For the numerical treatment of (2.1) we employ a vertical line method and replace the transient problem by a
sequence of elliptic problems.
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Let T > 0 be given. We divide the time interval [0, T ] into N subintervals by introducing the temporal
mesh {tk : k = 0, . . . , N}, where 0 = t0 < t1 < . . . < tN = T . We set τk

def= tk − tk−1 and define the maximal
subinterval length τ

def= maxk=1,...,N τk. We assume that the partition fulfils

τ → 0 as N → ∞. (2.2)

For any Banach space B we define

PCN (0, T ; B) def=
{
vτ : (0, T ] → B : vτ |(tk−1,tk] ≡ const. for k = 1, . . . , N

}
and introduce the abbreviation vk = vτ (t) for t ∈ (tk−1, tk] and k = 1, . . . , N . Further, let ṽτ denote the linear
interpolant of vτ ∈ PCN (0, T ; L2(Ω)) given by

ṽτ (t, x) =
t − tk−1

τk
(vk − vk−1) + vk−1, for x ∈ Ω, t ∈ (tk−1, tk].

Now we discretize (2.1) using an implicit Euler scheme:

Set ρ0 =
√

n(0). For k = 1, . . . , N solve recursively the elliptic systems

1
τk

(
ρ2

k − ρ2
k−1

)
= div(ρ2

k ∇Fk), (2.3a)

−ε2 ∆ρk

ρk
+ θ log(ρ2

k) + Vk = Fk, (2.3b)

−λ2∆Vk = ρ2
k − Cdot, (2.3c)

subject to the boundary conditions

ρk = ρD, Fk = FD, Vk = VD on ΓD, (2.3d)

∇ρk · ν = ∇Fk · ν = ∇Vk · ν = 0 on ΓN , (2.3e)

where
ρD =

√
Cdot, FD = U, VD = −θ log (Cdot) + U. (2.4)

Then the approximate solution to (2.1) is given by (ρτ , F τ , V τ ).
We use the standard notation for Sobolev spaces (see [1]), denoting the norm of Wm,p(Ω) (m ∈ R

+
0 , p ∈ [1,∞])

by ‖·‖W m,p(Ω). In the special case p = 2 we use Hm(Ω) instead of Wm,2(Ω). Further, let Hm
0 (Ω) be the closure

of C∞
c (Ω) with respect to the Hm(Ω) norm and let H1

0 (Ω ∪ ΓN ) for ΓN ⊂ ∂Ω be the closure of C∞
c (Ω ∪ ΓN)

with respect to the H1(Ω) norm [29]. Moreover, for any Banach space B we define the space Lp(0, T ; B) with
p ∈ [1,∞] consisting of all measurable functions ϕ : (0, T ) → B for which the norm

‖ϕ‖Lp(0,T ;B)
def=

(∫ T

0

‖ϕ‖p
B dt

)1/p

, p ∈ [1,∞),

‖ϕ‖L∞(0,T ;B)
def= sup

t∈(0,T )

‖ϕ(t)‖B , p = ∞,

is finite. If the time interval is clear we shortly write ‖·‖Lp(B).
Naturally, we have to assume some regularity properties on the data. For the subsequent considerations we

impose the following assumptions:
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A.1 Let Ω ⊂ R
d, d = 1, 2 or 3, be a bounded domain with boundary ∂Ω ∈ C1,1. The boundary ∂Ω is

piecewise regular and splits into two disjoint parts ΓN and ΓD. The set ΓD has nonvanishing (d − 1)-
dimensional Lebesgue–measure. ΓN is closed.

A.2 The boundary data fulfils (2.4) and

ρD ∈ H4(Ω), inf
Ω

ρD > 0, ∇ρD · ν = 0 on ΓN ,

FD ∈ C2,γ(Ω̄) for γ ∈
(

0,
1
2

)
, FD ≤ −FD < 0,

VD ∈ C2,γ(Ω̄),

and the initial datum satisfies ρ0 ∈ H2(Ω). Further, Cdot ∈ C0,γ(Ω̄).
A.3 Let γ ∈ (0, 1) and a ∈ C0,γ(Ω̄) with a ≥ a > 0. Then there exists a constant K = K(Ω, ΓD, ΓN , a, d, γ) >

0 such that for f ∈ C0,γ(Ω̄) and uD ∈ C2,γ(Ω̄) there exists a solution u ∈ C2,γ(Ω̄) of

div(a∇u) = f, u − uD ∈ H1
0 (Ω ∪ ΓN ),

which fulfils
‖u‖C2,γ(Ω̄) ≤ K

(
‖uD‖C2,γ(Ω̄) + ‖f‖C0,γ(Ω̄)

)
.

Remark 2.1.
(a) Assumption A.3 is essentially a restriction on the geometry of Ω. It is fulfilled in the case where the

Dirichlet and the Neumann boundary do not meet, i.e. ΓD ∩ ΓN = ∅ [29].
(b) The restriction FD ≤ −FD on the quantum quasi Fermi level is purely technical. From the physical

point of view the device behaviour is independent of a shift F �→ F + α, V �→ V + α, α ∈ R.
(c) For a smoother presentation we assume that the boundary conditions are independent of time.

In [20] an existence theorem for (2.3) is proved, which reads in the multi-dimensional case:

Proposition 2.2 (Assume A.1–A.3). Furthermore, let k ∈ {1, . . . , N} and let ρk−1 ∈ C0,γ(Ω̄). Then there
exists a constant θ0 > 0 such that for all θ > θ0 system (2.3) possesses a solution (ρk, Fk, Vk), fulfilling

(a) (ρk, Fk, Vk) ∈ H2(Ω) × C2,γ(Ω̄) × C2,γ(Ω̄) for 0 < γ < 1
2 ,

(b) ∃ck > 0 : ρk ≥ ck > 0 in Ω.

Furthermore, the approximate solution is stable in the following sense (see [20], Cor. 2.5).

Lemma 2.3 (Assume A.1–A.3). For k = 1, . . . , N let (ρk, Fk, Vk) be the recursively defined solution of (2.3)
and (ρτ , F τ , V τ ) ∈ PCN (0, T ; H2(Ω)×C2,γ(Ω̄)×C2,γ(Ω̄)). Then ρτ ∈ L∞(0, T ; H1(Ω)) and ρτ ∇F τ ∈ L2(0, T ;
L2(Ω)). Further, there exists a positive constant c, independent of τ , such that

‖ρτ‖L∞(H1) + ‖V τ‖L∞(H1) + ‖ρτ ∇F τ‖L2(L2) ≤ c. (2.5)

Remark 2.4. In the one-dimensional case it is possible to prove (see [20], Th. 3.3) the existence of a subsequence,
again denoted by (ρτ , F τ , V τ ), such that

ρτ ⇀ ρ weakly in L2(0, T ; H2(Ω)),

ρτ → ρ strongly in C0([0, T ]; C0,γ(Ω̄)),

(ρτ )2F τ
x ⇀ J weakly in L2(0, T ; L2(Ω)),

V τ → V strongly in C0([0, T ]; C2,γ(Ω̄)),

as τ → 0, where (ρ, J, V ) is a weak solution of the continuous problem (2.1). Note, that due to possible presence
of vacuum it is not possible to identify the limiting quantum quasi Fermi level F .
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3. Convergence in several space dimension

In this section we prove the convergence of the numerical scheme given by (2.3) in the multi-dimensional case.
Here, the a priori bounds on the approximate solution in Lemma 2.3 are not sufficient to guarantee convergence,
since the argument depends strongly on an L∞(0, T ; L∞(Ω))-bound on ρτ (see [20]). In one space dimension
this is an immediate consequence of the estimate (2.5) and the embedding H1(Ω) ↪→ L∞(Ω). Further, the
identification of the quantum quasi Fermi level F is only possible for a non-vanishing electron density n, which
is also essential for the derivation of the convergence result, since it allows to prove the standard regularity
ρτ ∈ L2(0, T ; H2(Ω)) for fourth order parabolic equations. Clearly, the derivation of convergence rates also
requires some regularity with respect to time. Here, we assume ρtt ∈ L2(0, T ; L2(Ω)), which is already employed
for the numerical analysis of the second order parabolic classical drift diffusion system. In fact, no analytical
results on system (1.4) are available in several space dimensions. Thus, we have to state additional assumptions
on the sequence of approximating solutions. These enable us to give even error estimates, which exhibit the
optimal order of convergence for the implicit Euler scheme.

Theorem 3.1 (Assume A.1–A.3). For k = 1, . . . , N let (ρk, Fk, Vk) be the recursively defined solution of (2.3)
and (ρτ , F τ , V τ ) ∈ PCN (0, T ; H2(Ω) × C2,γ(Ω̄) × C2,γ(Ω̄)). Assuming

A.4 ∃δ ∈ (0, 1) ∀τ > 0 : δ ≤ ρτ ≤ δ−1, ‖ρτ‖L∞(0,T ;H2(Ω)) ≤ δ−1;

there exists a subsequence, again denoted by (ρτ , F τ , V τ ), such that

ρτ ⇀ ρ weakly in L2(0, T ; H2(Ω)),

ρτ → ρ strongly in C0([0, T ]; C0,γ(Ω̄)),

F τ → F strongly in C0([0, T ]; H1(Ω)),

V τ → V strongly in C0([0, T ]; C2,γ(Ω̄)),

as τ → 0, where (ρ, F, V ) is a solution of the continuous problem (2.1).
Furthermore, if the embedding H2(Ω) ↪→ Wm,p(Ω) is continuous for some m ≥ 0, p ≥ 1 and
A.5 ρ ∈ H2(0, T ; L2(Ω));

then there exists a constant τ0 = τ0(Ω, λ, δ) > 0 such that for τ ∈ [0, τ0) we have the following error estimate

‖ρτ − ρ‖L∞(L2) + ε2 ‖ρτ − ρ‖L2(W m,p) + ‖F τ − F‖L∞(H2) + ‖V τ − V ‖L∞(H2) ≤ C eα T τ, (3.1)

for some positive constants α = α(Ω, λ, δ, τ0) and C = C(Ω, λ, δ, τ0).

Remark 3.2.
(a) Assumption A.4 allows us to verify the strong convergence F τ → F which yields the identification

J = ρ2 ∇F for the limiting current density. Notice that this extends the one-dimensional result (see
Rem. 2.4).

(b) Already in the classical regime (ε = 0) assumption A.5 is employed for the derivation of the optimal
order of convergence in one space dimension [10]. Remarkably, it is also sufficient in this higher order
system in several space dimensions.

(c) An inspection of the proof of Theorem 3.1 shows that the last assumption in A.4 can be replaced by
the weaker condition ‖ρτ‖L∞(0,T ;Z) ≤ δ−1, and Z is a Sobolev space which embeddes compactly into
W 1,3(Ω).

For the convergence result we also need some bound in the energy norm and on the time derivative. To this
purpose we introduce the linear interpolant of (ρτ )2 ∈ PCN (0, T ; L2(Ω)), defined by

ñτ (t, x) def=
t − tk

τk

(
ρ2

k(x) − ρ2
k−1(x)

)
+ ρ2

k−1(x), x ∈ Ω, t ∈ (tk−1, tk].
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Following the outlines of the proof of Lemma 3.1 and Lemma 3.2 in [20] one verifies that A.4 is sufficient to
derive the following additional stability estimates.

Lemma 3.3 (Assume A.1–A.4). For k = 1, . . . , N let (ρk, Fk, Vk) be the recursively defined solution of (2.3)
and (ρτ , F τ , V τ ) ∈ PCN (0, T ; H2(Ω) × C2,γ(Ω̄) × C2,γ(Ω̄)). Then ρτ ∈ L2(0, T ; H2(Ω)) and ñτ ∈ H1(0, T ;
H−1(Ω)). Further, there exists a positive constant c, independent of τ , such that

‖ρτ‖L2(H2) ≤ c and ‖ñτ
t ‖L2(H−1) ≤ c. (3.2)

For the proof of Theorem 3.1 we need the monotonicity of the quantum “operator”

A(ρ) =
1
ρ
div
(
ρ2∇∆ρ

ρ

)
, ρ ∈ H4(Ω).

Lemma 3.4 (Assume A.1 and A.3). Choose m ≥ 0, p ≥ 1 such that the continuous embedding H2(Ω) ↪→
Wm,p(Ω) holds. Then there exists for all β ∈ R and all δ ∈ (0, 1) a constant M = M(Ω, β, δ) > 0 such that for
all ρ ∈ H2(Ω) with δ ≤ ρ ≤ 1/δ and all φ ∈ H2(Ω) ∩ H1

0 (Ω ∪ ΓN ) it holds

∫
Ω

ρβ

∣∣∣∣div
(

ρ2 ∇
(

φ

ρ

))∣∣∣∣
2

dx ≥ M ‖φ‖2
W m,p(Ω) .

The proof of Lemma 3.4 is a slight generalization of the one in [25] (Th. 3.7). It follows the monotonicity result.

Lemma 3.5 (Assume A.1). Let u, v ∈ H4(Ω) be such that u, v ≥ δ > 0 in Ω and

u − v = 0, ∆u = ∆v = 0 on ΓD,

∇(u − v) · ν = 0, ∇∆u

u
· ν = ∇∆v

v
· ν = 0 on ΓN .

Then ∫
Ω

(A(u) − A(v))(u − v)dx =
∫

Ω

1
uv

∣∣∣∣div
(

u2∇u − v

u

)∣∣∣∣
2

dx. (3.3)

Proof. By integration by parts we obtain∫
Ω

(A(u) − A(v))(u − v)dx =
∫

Ω

(
∆u

u
div
(
u2∇u − v

u

)
− ∆v

v
div
(
v2∇u − v

v

))
dx

=
∫

Ω

(
v∆u − u∆v

uv
div
(
u2∇u − v

u

)
− ∆v

v
div
(
v2∇u − v

v
− u2∇u − v

u

))
dx.

Since
v2∇u − v

v
− u2∇u − v

u
= 0 in Ω,

this implies ∫
Ω

(A(u) − A(v))(u − v)dx =
∫

Ω

1
uv

∣∣∣∣div
(

u2∇u − v

u

)∣∣∣∣
2

dx. �

Now we are in the position to prove Theorem 3.1. The first part of proof is a slight generalization of the one
for Theorem 3.3 in [20]. However, we include it for the sake of a completeness.

Proof of Theorem 3.1. We choose a sequence of partitions of [0, T ] satisfying (2.2). According to Lemma 3.3
(ρτ ) is bounded in L2(0, T ; H2(Ω)). We may choose a subsequence, again denoted by (ρτ ), such that, as τ → 0,

ρτ ⇀ ρ weakly in L2(0, T, H2(Ω)).



CONVERGENT SEMIDISCRETIZATION OF A NONLINEAR FOURTH ORDER PARABOLIC SYSTEM 285

Further, we have due to Lemma 3.3 and Lemma 2.3 that ñτ ∈ H1(0, T ; H−1(Ω)). Since the embedding
H2(Ω) ↪→ C0,γ(Ω̄) is compact for 1 ≤ d ≤ 3 and 0 < γ < 1/2 we deduce from Aubin’s lemma [28] that

L∞(0, T ; H2(Ω)) ∩ H1(0, T ; H−1(Ω)) ↪→ C0(0, T ; C0,γ(Ω̄)) compactly.

Hence, using assumption A.4, there exists a subsequence, not relabeled, such that

ñτ → n strongly in C0(0, T ; C0,γ(Ω̄)).

The reader easily verifies the identification n = ρ2. By assumption A.4 and inequality (2.5), we get a uniform
estimate for ρ̃τ

t in L2(0, T ; H−1(Ω)). Hence, the compact embedding

L2(0, T ; H2(Ω)) ∩ H1(0, T ; H−1(Ω)) ↪→ L2(0, T ; H1(Ω))

implies that (up to a subsequence)

ρ̃τ → ρ strongly in L2(0, T ; H1(Ω))

and consequently,
ρτ → ρ strongly in L2(0, T ; H1(Ω)).

Standard results from elliptic theory and A.2 imply now

V τ → V strongly in C0(0, T, C2,γ(Ω̄)).

Defining Jτ = (ρτ )2∇F τ we deduce from Lemma 2.3 that (Jτ ) is bounded in L2(0, T, L2(Ω)), such that

Jτ ⇀ J weakly in L2(0, T ; L2(Ω)).

Now, the convergence of (F τ ) to F follows from the uniform bound ρτ ≥ δ combined with standard elliptic
theory. Further, J = ρ2∇F .

The derived convergence properties are by far sufficient to pass to the limit in the weak formulation of (2.3).
In order to estimate the rate of convergence, we need some regularity properties for ρk and ρ(tk). From

−ε2∆ρk = ρk(Fk − θ log(ρ2
k) − Vk) ∈ H2(Ω)

and assumption A.2 we obtain ρk ∈ H4(Ω). The compact embedding

L∞(0, T ; H2(Ω)) ∩ H1(0, T ; H−1(Ω)) ↪→ C0([0, T ]; C0,γ(Ω̄))

implies that ρ is continuous in C0([0, T ]; C0,γ(Ω̄)) and hence,

−ε2∆ρ = ρ
(
F − θ log

(
ρ2
)− V

) ∈ C0([0, T ]; C0,γ(Ω̄)).

By a bootstrapping argument, it follows ρ ∈ C0([0, T ]; H4(Ω)).
Now let k ∈ {1, . . . , N} be fixed. We take the difference of

2 ρt =
1
ρ

div
(
ρ2 ∇F

)
and

2
τk

(ρk − ρk−1) − 1
τk

(ρk − ρk−1)
2

ρk
=

1
ρk

div
(
ρ2

k ∇Fk

)
.
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Note that ρk, ρ ≥ δ. Further, by Taylor’s expansion we have

ρ(tk) = ρ(tk−1) + ρt(tk) τk +
1
2

∫ tk

tk−1

ρtt(s)(s − tk−1) ds.

Setting

fk
def=

1
2

∫ tk

tk−1

ρtt(s)(s − tk−1) ds

and defining the error

ek
def= ρk − ρ(tk)

we finally end up with

2
τk

(ek − ek−1) − 1
τk

(ρk − ρk−1)
2

ρk
+

2
τk

fk =
1
ρk

div
(
ρ2

k ∇Fk

)− 1
ρ(tk)

div
(
ρ(tk)2 ∇F (tk)

)
.

Now we use φ = τk ek as test function, which yields

2
∫

Ω

(ek − ek−1)ek dx −
∫

Ω

(ρk − ρk−1)
2

ρk
ek dx + 2

∫
Ω

fk ek dx =

τk

∫
Ω

[
1
ρk

div
(
ρ2

k ∇Fk

)− 1
ρ(tk)

div
(
ρ(tk)2 ∇F (tk)

)]
ek dx. (3.4)

We estimate termwise starting on the left-hand side.
Using the identity 2r(r − s) = r2 − s2 + (r − s)2 we get

2
∫

Ω

(ek − ek−1)ek dx = ‖ek‖2
L2(Ω) − ‖ek−1‖2

L2(Ω) + ‖ek − ek−1‖2
L2(Ω) .

Let η = δ/ maxk=1,...,N ‖ρk‖L∞(Ω) = δ2. It holds

−
∫

Ω

(ρk − ρk−1)
2

ρk
ek dx ≥ −(1 − η)

∫
Ω

(ρk − ρk−1)2 dx

= −(1 − η)
∫

Ω

(ek − ek−1 + ρ(tk) − ρ(tk−1))
2 dx

≥ −‖ek − ek−1‖2
L2(Ω) −

1 − η

η

∫
Ω

(ρt(tk) τk + fk)2 dx,

where we used Taylor’s expansion and Young’s inequality. Trivially, it holds

−2
∫

Ω

fk ek dx ≤ 2 ‖fk‖2
L2(Ω) +

1
2
‖ek‖2

L2(Ω) .
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The right-hand side of (3.4) can be estimated using integration by parts.

τk

∫
Ω

[
1
ρk

div
(
ρ2

k ∇Fk

)− 1
ρ(tk)

div
(
ρ(tk)2 ∇F (tk)

)]
ek dx

= −τk ε2

∫
Ω

(A(ρk) − A(ρ(tk)))(ρk − ρ(tk))dx

+ 2 τk θ

∫
Ω

[
∆ρk +

|∇ρk|2
ρk

− ∆ρ(tk) − |∇ρ(tk)|2
ρ(tk)

]
ek dx

+ τk

∫
Ω

[2∇ρk ∇Vk − 2∇ρ(tk)∇V (tk) + ρk ∆Vk − ρ(tk)∆V (tk)] ek dx

≤ −τk ε2

∫
Ω

(A(ρk) − A(ρ(tk)))(ρk − ρ(tk))dx

− 2 τk θ

∫
Ω

∣∣∣∣ρ(tk)
ρk

∇ρk − ρk

ρ(tk)
∇ρ(tk)

∣∣∣∣
2

dx

+ τk

∫
Ω

[2∇ρk ∇Vk − 2∇ρ(tk)∇V (tk) + ρk ∆Vk − ρ(tk)∆V (tk)] ek dx.

The last term can be handled as follows:

τk

∫
Ω

[2∇ρk ∇Vk − 2∇ρ(tk)∇V (tk) + ρk ∆Vk − ρ(tk)∆V (tk)] ek dx

= τk

∫
Ω

[2∇ek ∇Vk − 2∇ρ(tk)∇(V (tk) − Vk) + ρk ∆Vk − ρ(tk)∆V (tk)] ek dx

= τk

∫
Ω

[−e2
k ∆Vk − 2∇ρ(tk)∇(V (tk) − Vk) ek + e2

k ∆Vk − ρ(tk)∆(V (tk) − Vk) ek

]
dx

= −2 τk

∫
Ω

∇ρ(tk)∇(V (tk) − Vk) ek dx − τk

∫
Ω

ρ(tk)(ρ(tk) + ρk) e2
k dx

≤ −2 τk

∫
Ω

∇ρ(tk)∇(V (tk) − Vk) ek dx

≤ 2 τk ‖∇ρ(tk)‖L3(Ω) ‖∇(V (tk) − Vk)‖L6(Ω) ‖ek‖L2(Ω) .

The compact embedding

L∞(0, T ; H2(Ω)) ∩ H1(0, T ; H−1(Ω)) ↪→ C0([0, T ]; W 1,3(Ω))

yields the uniform bound ‖∇ρ(tk)‖L3(Ω) ≤ c0.
From the boundary conditions for ρk, Fk and Vk (see (2.3d), (2.3e) and (2.4)) we conclude that

∇ρk · ν = ∇∆ρk

ρk
· ν = 0 in the sense of L2(ΓN ),

ρk = ρD, ∆ρk = 0 in the sense of L2(ΓD).

Similarly,

∇ρ(tk) · ν = ∇∆ρ(tk)
ρ(tk)

· ν = 0 in the sense of L2(ΓN ),

ρ(tk) = ρD, ∆ρ(tk) = 0 in the sense of L2(ΓD).
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Combining all these estimates, together with the monotonicity of A (see (3.3)) and Lemma 3.4 gives after
summation

1
2
‖ek‖2

L2(Ω) + M ε2
k∑

l=1

τl ‖ek‖2
W m,p(Ω) ≤

1 − η

η

k∑
l=1

∫
Ω

(ρt(tl) τl + fl)
2 dx

+ 2
k∑

l=1

‖fl‖2
L2(Ω) + 2 c0

k∑
l=1

τl ‖∇(V (tl) − Vl)‖L6(Ω) ‖el‖L2(Ω) ,

where M = M(Ω, δ) > 0 is the constant specified in Lemma 3.5. Estimating

‖fk‖2
L2(Ω) ≤ τ2

k ‖ρtt‖2
L2(Ω×(tk−1,tk)) ,

and
‖∇(V (tk) − Vk)‖L6(Ω) ≤ c1 δ−1 ‖ek‖L2(Ω) ,

with c1 = c1(Ω, λ) > 0, yields

1
2
‖ek‖2

L2(Ω) + M ε2
k∑

l=1

τl ‖ek‖2
W m,p(Ω) ≤ c2

k∑
l=1

τ2
l

(
‖ρt‖2

L∞(tl−1,tl;L2(Ω)) + ‖ρtt‖2
L2(Ω×(tl−1,tl))

)

+2 c0 c1 δ−1
k∑

l=1

τl ‖el‖2
L2(Ω) ,

where c2 = c2(δ) > 0. Choose τ0 < δ2

4 c1
. Then

(
1
2
− 2 c1 δ−2 τ0

)
‖ek‖2

L2(Ω) + M ε2
k∑

l=1

τl ‖ek‖2
W m,p(Ω) ≤ c2 ‖ρ‖2

H2(0,T ;L2(Ω))τ
2 + 2 c0 c1 δ−1

k−1∑
l=1

τl ‖el‖2
L2(Ω) .

Now it follows from the discrete Gronwall lemma that

‖ek‖2
L∞(L2) + M ε2 ‖ek‖2

L2(W m,p) ≤ c3 eatkτ2

for some c3, a > 0. The estimates on F τ − F and V τ − V follow immediately from standard results of elliptic
theory. �

Remark 3.6. Although we do not get an estimate on ρτ − ρ in L2(0, T, H2(Ω)), the regularity in space is by
far sufficient to define a suitable finite element discretization of (1.4).

4. Conclusions

In this paper we analyzed a new semidiscretization for a nonlinear fourth order parabolic system. The
numerical scheme exploits the special nonlinear structure of the equations and its convergence strongly depends
on some monotonicity property of the nonlinearity. In contrast to the nonlinear entropy methods employed in
the numerical analysis of lubrication–type equations, the positivity of the scheme is not related to the degeneracy
of the nonlinearity. Future work will focus on semi–implicit schemes which allow for an adequate handling of
the nonlinear elliptic systems.
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