Convergent Synthesis of the E'FGH' ring fragment of ciguatoxin 1B via an acetylene cobalt complex strategy

Shigeyuki Takai and Minoru Isobe*
Laboratory of Organic Chemistry, School of Bioagricultural Sciences, Nagoya University Chikusa, Nagoya 464-8601, Japan

Supporting Information

Iodide 7

Iodide 7. IR (KBr) $v_{\max }$ 2955, 2930, 2857, 1472, 1463, 1362, 1253, 1203, 838, 776 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.09(3 \mathrm{H}, \mathrm{s}, \mathrm{TBS}), 0.12(3 \mathrm{H}, \mathrm{s}, \mathrm{TBS}), 0.88(9 \mathrm{H}$, s, ${ }^{\text {tBu }}$), $1.49(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 1.66(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 2.03(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 2.82(1 \mathrm{H}$, ddd $J=$ $8.5,6.0,3.0 \mathrm{~Hz}, \mathrm{H}-5), 3.33$ ($1 \mathrm{H}, \mathrm{dd}, J=10.5,6.0 \mathrm{~Hz}, \mathrm{H}-6$), 3.41 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$), 3.43 (1 H, ddd, $J=11.5,7.5,3.5 \mathrm{~Hz}, \mathrm{H}-1$), $3.51(1 \mathrm{H}, \mathrm{dd}, J=10.5,3.0 \mathrm{~Hz}, \mathrm{H}-6), 3.97$ $(1 \mathrm{H}, \mathrm{dm}, J=11.5 \mathrm{~Hz}, \mathrm{H}-1)$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta-4.64,-4.00,9.23,17.78$, $25.39,25.68,33.03,67.94,71.16,80.78$. ESI Q-TOF MS calcd for $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{INaO}_{2} \mathrm{Si}$ $[\mathrm{M}+\mathrm{Na}]^{+} 379.057$, found 379.065. $[\alpha]_{\mathrm{D}}{ }^{27}+59.3^{\circ}\left(c 0.86, \mathrm{CHCl}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{IO}_{2} \mathrm{Si}: \mathrm{C}, 40.45 ; \mathrm{H}, 7.07$. Found: C, $40.45 ; \mathrm{H}, 7.22$.

Nitrile 8

To a solution of iodide $7(3.38 \mathrm{~g}, 9.49 \mathrm{mmol})$ in dimethylsulfoxide (47 ml) was added sodium cyanide ($697 \mathrm{mg}, 14.2 \mathrm{mmol}$). After stirring for 2 h at $80^{\circ} \mathrm{C}$ under nitrogen atmosphere, the reaction mixture was poured into ammonium chloride aq. at rt in draft and then extracted with ether (x 3). The combined organic layer was washed with brine and dried over anhydrous sodium sulfate. Concentration of the solvent gave a crude oil, which was purified by silica gel column chromatography (ethyl acetate $/$ hexane $=10$ / 90) to afford nitrile $\mathbf{8}(2.31 \mathrm{~g}, 95 \%)$ as a colorless oil.

Nitrile 8. IR (KBr) $v_{\max }$ 2955, 2931, 2859, 2251, 1472, 1363, 1254, 1134, 1127, $1101,1050,869,839,778,670 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.09(3 \mathrm{H}, \mathrm{s}$, TBS $), 0.11(3 \mathrm{H}, \mathrm{s}, \mathrm{TBS}), 0.88(9 \mathrm{H}, \mathrm{s}, \mathrm{tBu}), 1.45(1 \mathrm{H}$, dddd, $J=12.5,12.5,10.5,4.5$ $\mathrm{Hz}, \mathrm{H}-3), 1.60-1.79(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 2.02-2.10(1 \mathrm{H}, \mathrm{dm}, J=12.5 \mathrm{~Hz}, \mathrm{H}-3), 2.58(1 \mathrm{H}$,
dd, $J=16.5,6.5 \mathrm{~Hz}, \mathrm{H}-6), 2.73(1 \mathrm{H}, \mathrm{dd}, J=16.5,3.5 \mathrm{~Hz}, \mathrm{H}-6), 3.26(1 \mathrm{H}, \mathrm{ddd} J=$ $9.0,6.5,3.5 \mathrm{~Hz}, \mathrm{H}-5), 3.36(1 \mathrm{H}, \mathrm{ddd}, J=11.5,11.5,3.5 \mathrm{~Hz}, \mathrm{H}-1), 3.44$ (1 H , ddd, J $=10.5,9.0,4.5 \mathrm{~Hz}, \mathrm{H}-4), 3.94(1 \mathrm{H}$, dddd, $J=11.5,4.5,2.0,1.5 \mathrm{~Hz}, \mathrm{H}-1) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta-4.89,-3.97,17.79,21.40,25.14,25.66,33.44,67.98$, $70.14,77.91,117.51$. ESI Q-TOF MS calcd for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{NNaO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$278.155, found 278.152. $[\alpha]_{\mathrm{D}}{ }^{27}+57.2^{\circ}\left(c \quad 1.78, \mathrm{CHCl}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{Si}: \mathrm{C}$, 61.13; H, 9.87; N, 5.48. Found: C, 60.96; H, 10.25; N, 5.61.

Aldehyde 9

To a solution of nitrile $\mathbf{8}(1.42 \mathrm{~g}, 5.56 \mathrm{mmol})$ in dry toluene (28 ml) was added dropwise a solution of 1.0 M diisobutylaluminum hydride in hexane $(7.23 \mathrm{ml}, 7.23$ mmol) at $-78^{\circ} \mathrm{C}$ under nitrogen atmosphere. After stirring for 1 h at $-78{ }^{\circ} \mathrm{C}$, the reaction mixture was added 10% acetic acid aq. (28 ml) at $-78{ }^{\circ} \mathrm{C}$. After warming up to rt gradually, the reaction mixture was added ether (200 ml) and poured into a mixture of saturated sodium hydrogen carbonate aq. and saturated potassium sodium tartrate aq. (50 $\mathrm{ml} / 50 \mathrm{ml}$). After stirring for 1 h at rt , the reaction mixture was extracted with ether (x 3). The combined organic layer was washed with brine and then dried over anhydrous sodium sulfate. Concentration of the solvent gave a crude oil, which was purified by silica gel column chromatography (ether / hexane $=10 / 90)$ to afford aldehyde 9 (836 $\mathrm{mg}, 58 \%$) as a colorless oil

Aldehyde 9. IR (KBr) $v_{\max }$ 2956, 2931, 2858, 2728, 1731, 1473, 1363, 1260, 1129, $1101,838,777,670 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.04(3 \mathrm{H}, \mathrm{s}, \mathrm{TBS}), 0.05$ (3H, s, TBS), $0.86\left(9 \mathrm{H}, \mathrm{s}, \mathrm{t}^{\mathrm{t} u}\right), 1.38-1.52(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 1.61-1.72(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2)$, $1.98-2.08(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 2.42(1 \mathrm{H}, \mathrm{ddd}, J=16.5,9.0,3.0 \mathrm{~Hz}, \mathrm{H}-6), 2.77(1 \mathrm{H}$, ddd, J $=16.5,4.0,2.0 \mathrm{~Hz}, \mathrm{H}-6), 3.28-3.40(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$ and $\mathrm{H}-4), 3.58(1 \mathrm{H}, \mathrm{td}, J=9.0,4.0$ $\mathrm{Hz}, \mathrm{H}-5), 3.85(1 \mathrm{H}, \mathrm{dm}, J=11.5 \mathrm{~Hz}, \mathrm{H}-1), 9.76(1 \mathrm{H}, \mathrm{dd}, J=3.0,2.0 \mathrm{~Hz},-\mathrm{CHO})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta-4.90,-4.11,17.77,25.39,25.64,33.32,46.70,67.81$, 70.98, 78.19, 201.84. ESI Q-TOF MS calcd for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{NaO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$281.155, found 281.161. $[\alpha]_{\mathrm{D}}{ }^{26}+43.4^{\circ}$ (c $0.85, \mathrm{CHCl}_{3}$). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Si}: \mathrm{C}$, 60.42; H, 10.14. Found: C, 60.36; H, 10.24.

Silyl Enyne 11

To a solution of 1,3-bis(triisopropylsilyl)propyne $10(1.41 \mathrm{~g}, 4.00 \mathrm{mmol})$ in dist. tetrahydrofuran (15 ml) was added dropwise a solution of $1.50 \mathrm{M} n$-BuLi in hexane
($2.45 \mathrm{ml}, 3.68 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$ under nitrogen atmosphere. After stirring for 20 min at 0 ${ }^{\circ} \mathrm{C}$, the reaction mixture was added dropwise a solution of aldehyde $9(792 \mathrm{mg}, 3.06$ mmol) in dist. tetrahydrofuran (5 ml) at $-78{ }^{\circ} \mathrm{C}$. After stirring for 2 h at $-78{ }^{\circ} \mathrm{C}$, the reaction mixture was poured into saturated ammonium chloride aq. at $0{ }^{\circ} \mathrm{C}$ and then extracted with ether (x 3). The combined organic layer was washed with brine and dried over anhydrous sodium sulfate. Concentration of the solvent gave a crude oil, which was purified by silica gel column chromatography (ether / hexane $=2 / 98$) to afford silyl enyne 11 ($983 \mathrm{mg}, 73 \%, Z: E=4.9: 1$) as a colorless oil.

Silyl Enyne 11 (Z-isomer). IR (KBr) $v_{\max }$ 2943, 2892, 2866, 2148, 1464, 1252, $1130,1100,1036,999,883,838,776,677 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.06$ ($6 \mathrm{H}, \mathrm{s}, \mathrm{TBS}$), 0.88 ($9 \mathrm{H}, \mathrm{s}$, tBu-TBS), 1.08 ($18 \mathrm{H}, \mathrm{s}$, TIPS), 1.09 ($3 \mathrm{H}, \mathrm{s}$, TIPS), 1.43 (1 H , dddd, $J=16.0,12.5,6.5,5.5 \mathrm{~Hz}, \mathrm{H}-3$), $1.63(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 2.00(1 \mathrm{H}, \mathrm{dm}, J=$ $12.5 \mathrm{~Hz}, \mathrm{H}-3), 2.52(1 \mathrm{H}$, dddd, $J=16.5,8.5,7.5,1.5 \mathrm{~Hz}, \mathrm{H}-6), 2.79(1 \mathrm{H}$, dddd, $J=$ $16.5,6.0,3.5,2.0 \mathrm{~Hz}, \mathrm{H}-6), 3.18$ ($1 \mathrm{H}, \mathrm{ddd}, J=8.5,8.5,3.5 \mathrm{~Hz}, \mathrm{H}-5$), 3.31 ($1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-1), 3.31(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 3.87(1 \mathrm{H}, \mathrm{dm}, J=11.5 \mathrm{~Hz}, \mathrm{H}-1), 5.62(1 \mathrm{H}, \mathrm{ddd}, J=11.0$, $2.0,1.5 \mathrm{~Hz}, \mathrm{H}-8), 6.04(1 \mathrm{H}, \mathrm{ddd}, J=11.0,7.5,6.0 \mathrm{~Hz}, \mathrm{H}-7) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta-4.63,-4.11,11.33,17.95,18.68,25.64,25.85,33.38,33.61,67.80,71.46$, 81.81, $95.41,103.91,110.85,141.56 .[\alpha]_{\mathrm{D}}{ }^{22}+28.0^{\circ}\left(c 0.60, \mathrm{CHCl}_{3}\right)$. ESI Q-TOF MS calcd for $\mathrm{C}_{25} \mathrm{H}_{49} \mathrm{O}_{2} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]+437.327$, found 437.338 .

E' ring-enyne 12

To a solution of silyl enyne $\mathbf{1 1}(865 \mathrm{mg}, 1.98 \mathrm{mmol})$ in tetrahydrofuran (10 ml) was added a solution of 1.0 M tetrabutylammonium fluoride in tetrahydrofuran $(15.8 \mathrm{ml}$, 15.8 mmol) at $0^{\circ} \mathrm{C}$. After stirring for 10 h at rt under nitrogen atmosphere, the reaction mixture was poured into saturated ammonium chloride aq. at $0^{\circ} \mathrm{C}$ and then extracted with ether (x 3). The combined organic layer was washed with brine and dried over anhydrous sodium sulfate. Concentration of the solvent gave a crude oil, which was purified by silica gel column chromatography (ether / hexane $=50 / 50$) to afford an alcohol (308 mg , 94%) as a colorless oil.

To a solution of the alcohol ($98 \mathrm{mg}, 0.59 \mathrm{mmol}$) in dichloromethane (3 ml) was added ethyl vinyl ether ($0.56 \mathrm{ml}, 5.90 \mathrm{mmol}$) and pyridinium p-toluenesulfonate (44 mg , $0.18 \mathrm{mmol})$. After stirring for 2 h at rt under nitrogen atmosphere, the reaction mixture was poured into saturated sodium hydrogen carbonate aq. at $0{ }^{\circ} \mathrm{C}$ and then extracted with dichloromethane (x 3). The combined organic layer was washed with brine and dried over anhydrous sodium sulfate. Concentration of the solvent gave a crude oil, which was
purified by silica gel column chromatography (ether / hexane $=5 / 95$) to afford E^{\prime} ringenyne $\mathbf{1 2}$ ($137 \mathrm{mg}, 97 \%$) as a colorless oil.

E' ring-enyne 12 (Z-isomer). IR (KBr) $v_{\text {max }}$ 3290, 2977, 2939, 2853, 1441, 1395, $1378,1341,1280,1210,1131,1099,1059,1046,949,639 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta 1.20(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{EE}), 1.31(1 / 2 \mathrm{x} 3 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{EE}), 1.33$ $(1 / 2 \times 3 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{EE}), 1.34-1.56(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 1.60-1.72$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$), 2.14$2.30(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 2.44-2.82(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 3.08-3.11$ ($1 \mathrm{H}, \mathrm{m}$, acetylenic), 3.14-3.42 (3H, m, H-1,H-4 and H-5), 3.43-3.72 ($2 \mathrm{H}, \mathrm{m}, \mathrm{EE}$), 3.89 ($1 \mathrm{H}, \mathrm{dm}, J=12 \mathrm{~Hz}, \mathrm{H}-1$), $4.75(1 / 2 \mathrm{x} 1 \mathrm{H}, \mathrm{q}, J=5.5 \mathrm{~Hz}, \mathrm{EE}), 4.84(1 / 2 \mathrm{x} 1 \mathrm{H}, \mathrm{q}, J=5.5 \mathrm{~Hz}, \mathrm{EE}), 5.55(1 \mathrm{H}, \mathrm{dm}, J=$ $11.0 \mathrm{~Hz}, \mathrm{H}-8), 6.19(1 \mathrm{H}, \mathrm{dm}, J=11.0 \mathrm{~Hz}, \mathrm{H}-7)$. ESI Q-TOF MS calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{3}$ [M+H]+ 239.165, found 239.177.

Propargyl Alcohol 16

To a solution of silylacetylene 15 ($620 \mathrm{mg}, 1.22 \mathrm{mmol}$) in methanol (6 ml) was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($34 \mathrm{mg}, 0.24 \mathrm{mmol}$). After stirring for 2 h at rt , the reaction mixture was poured into saturated ammonium chloride aq. at $0^{\circ} \mathrm{C}$ and then extracted with ether (x 3). The combined organic layer was washed with brine and dried over anhydrous sodium sulfate. Concentration of the solvent gave a crude oil, which was purified by silica gel column chromatography (ethyl acetate $/$ hexane $=20 / 80$) to afford an alcohol (475 mg , 99%).

To a solution of the alcohol ($17.8 \mathrm{~g}, 45.3 \mathrm{mmol}$) in benzylchloride (110 ml) was added KOH powder $(12.7 \mathrm{~g}, 226.5 \mathrm{mmol})$. After stirring for 2 h at $90^{\circ} \mathrm{C}$, the reaction mixture was poured into saturated ammonium chloride aq. at $0^{\circ} \mathrm{C}$ slowly and then extracted with ether (x 3). The combined organic layer was washed with brine and dried over anhydrous sodium sulfate. Concentration of the solvent gave a crude oil, which was purified by silica gel column chromatography (ether / hexane $=6 / 94$) to afford a benzyl ether ($19.1 \mathrm{~g}, 87 \%$) as a pale yellow oil.

To a solution of the benzyl ether ($480 \mathrm{mg}, 0.99 \mathrm{mmol}$), which was treatment with toluene azeotrope in advance, in dist. tetrahydrofuran $(10 \mathrm{ml})$ was added a solution of n BuLi (1.60 M in Hexane, $0.75 \mathrm{ml}, 1.19 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. After stirring for 20 min at $0^{\circ} \mathrm{C}$, a solution of $(\mathrm{HCHO})_{\mathrm{n}}(149 \mathrm{mg}, 4.96 \mathrm{mmol})$ in dist. tetrahydrofuran 5 ml was added. After stirring for 1 h at $-78^{\circ} \mathrm{C}$ and for 16 h at $0^{\circ} \mathrm{C}$, the reaction mixture was poured into saturated ammonium chloride aq. at $0{ }^{\circ} \mathrm{C}$ and then extracted with ether (x 3). The combined organic layer was washed with brine and dried over anhydrous sodium sulfate. Concentration of the solvent gave a crude oil, which was purified by silica gel column chromatography (ether / hexane $=5 / 95$ to $25 / 75$) to afford

SM ($76 \mathrm{mg}, 16 \%$), formated-16 ($84 \mathrm{mg}, 16 \%$) and propargyl alcohol 16 (283 mg , 55%) as a pale yellow oil.

To a solution of formated-16 ($84 \mathrm{mg}, 0.16 \mathrm{mmol}$) in $\mathrm{MeOH}(3 \mathrm{ml})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($22 \mathrm{mg}, 0.16 \mathrm{mmol}$). After stirring for 20 min at rt , the reaction mixture was poured into saturated ammonium chloride aq. at $0^{\circ} \mathrm{C}$ and then extracted with ether (x 3). The combined organic layer was washed with brine and dried over anhydrous sodium sulfate. Concentration of the solvent gave a crude oil, which was purified by silica gel column chromatography (ether / hexane $=50 / 50$) to afford propargyl alcohol 16 (80 $\mathrm{mg}, 100 \%$) as a pale yellow oil.

Propargyl Alcohol 16. IR (KBr) $v_{\text {max }} 3434,3071,3047,2958,2932,2892,2858$, $1962,1895,1830,1590,1473,1428,1390,1364,1304,1158,1113,1028,822,742$, $701,613,513 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.08\left(9 \mathrm{H}, \mathrm{s},{ }^{t} \mathrm{Bu}\right), 2.16(1 \mathrm{H}, \mathrm{br}-\mathrm{s}$, $-\mathrm{OH}), 3.37(1 \mathrm{H}, \mathrm{dd} J=10.0,5.5 \mathrm{~Hz}, \mathrm{H}-6), 3.47(1 \mathrm{H}, \mathrm{dd}, J=10.0,6.0 \mathrm{~Hz}, \mathrm{H}-6), 4.06$ ($2 \mathrm{H}, \mathrm{br}-\mathrm{d}, J=6.0 \mathrm{~Hz}$, propargylic), $4.26(1 \mathrm{H}, \mathrm{dm}, J=8.5 \mathrm{~Hz}, \mathrm{H}-1), 4.32-4.38(2 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-2$ and $\mathrm{H}-5), 4.48(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz},-\mathrm{OCH} 2 \mathrm{Ph}), 4.53(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}$, $-\mathrm{OCH} 2 \mathrm{Ph}), 5.67\left(2 \mathrm{H}, \mathrm{s}\right.$, olefinic), 7.22-7.75 ($15 \mathrm{H}, \mathrm{m}$, aromatic). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta 19.32,26.87,51.08,69.00,70.19,72.03,73.47,74.46,84.04,84.43$, 127.42, 127.67, 127.77, 128.34, 129.74, 129.84, 130.26, 133.48, 133.62, 136.05, 136.16, 137.92. ESI Q-TOF MS calcd for $\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{NaO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 535.228$, found 535.228. $[\alpha]_{\mathrm{D}}{ }^{24}-53.3^{\circ}\left(c 1.10, \mathrm{CHCl}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Si}: \mathrm{C}, 74.96 ; \mathrm{H}$, 7.08. Found: C, 74.75; H, 7.38.

Allyl Alcohol 17

To a solution of $\mathbf{1 6}(363 \mathrm{mg}, 0.71 \mathrm{mmol})$ in dist. THF $(7 \mathrm{ml})$ was added a solution of Red- Al^{\circledR} (65% in toluene, $0.43 \mathrm{ml}, 1.42 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After stirring for 20 min at 0 ${ }^{\circ} \mathrm{C}$ and for 15 min at $\mathrm{rt}, 10 \%$ acetic acid aq. was added at $0^{\circ} \mathrm{C}$ and then the reaction mixture was poured into a mixture of saturated sodium hydrogen carbonate aq. and saturated potassium sodium tartrate aq. (1 vol. $/ 1$ vol.) at $0^{\circ} \mathrm{C}$. After stirring for 1 h at rt , the reaction mixture was extracted with ether (x 3). The combined organic layer was washed with water and dried over anhydrous sodium sulfate. Concentration of the solvent gave a crude oil, which was purified by silica gel column chromatography (ether $/$ hexane $=30 / 70)$ to afford allyl alcohol $17(344 \mathrm{mg}, 0.67 \mathrm{mmol}, 95 \%)$ as a colorless oil.

Allyl alcohol 17. IR (KBr) $v_{\max }$ 3448, 3071, 3032, 2931, 2858, 1473, 1428, 1390, $1363,1310,1111,1091,978,862,822,741,702,612,508 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$,
$300 \mathrm{MHz}) \delta 1.05\left(9 \mathrm{H}, \mathrm{s},{ }^{t} \mathrm{Bu}\right), 1.26(1 \mathrm{H}, \mathrm{br}-\mathrm{s},-\mathrm{OH}), 3.39(1 \mathrm{H}, \mathrm{dd} J=10.0,5.0 \mathrm{~Hz}$, H-6), $3.45(1 \mathrm{H}, \mathrm{dd}, J=10.0,6.0 \mathrm{~Hz}, \mathrm{H}-6), 3.92(1 \mathrm{H}, \mathrm{ddd}, J=8.5,6.5,1.0 \mathrm{~Hz}, \mathrm{H}-1)$, $3.99(2 \mathrm{H}, \mathrm{br}-\mathrm{m}, \mathrm{H}-3 '), 4.17(1 \mathrm{H}$, dddd, $J=8.5,3.0,1.5,1.5 \mathrm{~Hz}, \mathrm{H}-2), 4.35(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-5), 4.51(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz},-\mathrm{OCH} 2 \mathrm{Ph}), 4.55(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz},-\mathrm{OCH} 2 \mathrm{Ph}), 5.56$ (1 H , ddt, $J=15.5,6.5,1.5 \mathrm{~Hz}, \mathrm{H}-1$ '), $5.66(1 \mathrm{H}$, ddd, $J=10.5,1.5,1.5 \mathrm{~Hz}$, cisolefinic), $5.75(1 \mathrm{H}$, ddd, $J=10.5,2.0,1.5 \mathrm{~Hz}$, cis-olefinic), $5.91(1 \mathrm{H}, \mathrm{dtd}, J=15.5$, $5.5,1.0 \mathrm{~Hz}, \mathrm{H}-2$ '), 7.22-7.69 (15H, m, aromatic). ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 19.22, 26.83, 63.02, 69.11, 72.22, 73.36, 74.09, 79.17, 127.60, 127.74, 128.36, 129.04, 129.81, 130.83, 133.03, 133.54, 133.98, 136.05, 138.05. ESI Q-TOF MS calcd for $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{KO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{K}]^{+} 553.218$, found 553.217. $[\alpha]_{\mathrm{D}}{ }^{24}-82.7^{\circ}$ (c 1.05, CHCl_{3}). Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{Si}: \mathrm{C}, 74.67 ; \mathrm{H}, 7.44$. Found: C, 74.68; H, 7.67.

β-Diol 19 and α-Diol 20

To a solution of allyl alcohol $17(2.20 \mathrm{~g}, 4.27 \mathrm{mmol})$ in dist. dichloromethane (21 $\mathrm{ml})$ were added $d i$-sodium hydrogenphosphate ($1.20 \mathrm{~g}, 8.55 \mathrm{mmol}$) and $80 \% \mathrm{~m}$ chloroperbenzoic acid $(1.03 \mathrm{~g}, 4.77 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After stirring for 14 h at rt under nitrogen atmosphere, the reaction mixture was poured into saturated sodium sulfite aq. and then extracted with dichloromethane (x 3). The combined organic layer was washed with brine and dried over anhydrous sodium sulfate. Concentration of the solvent gave a crude oil, which was purified by silica gel column chromatography (ether / hexane $=30 /$ 70) to afford a crude epoxy alcohol $\mathbf{1 8}(2.22 \mathrm{~g})$ as a colorless oil.

To a solution of the crude epoxy alcohol $18(2.22 \mathrm{~g})$ in dist. toluene (21 ml) was added a solution of Red-A1 ${ }^{\circledR}$ (65% in toluene, $2.5 \mathrm{ml}, 8.55 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After stirring for 1.5 h at $0^{\circ} \mathrm{C}$, the reaction mixture was added 10% acetic acid aq. at $0^{\circ} \mathrm{C}$ and then poured into a mixture of saturated sodium hydrogen carbonate aq. and saturated potassium sodium tartrate aq. (1 vol. $/ 1 \mathrm{vol}$.) at $0^{\circ} \mathrm{C}$. After stirring for 1 h at rt , the reaction mixture was extracted with ether (x 3). The combined organic layer was washed with water and dried over anhydrous sodium sulfate. Concentration of the solvent gave a crude oil, which was purified by silica gel column chromatography (ether $/$ hexane $=30 / 70$) to afford allyl alcohol $17(126 \mathrm{mg}, 6 \%)$ and a olefinic alcohol ($1.92 \mathrm{~g}, 86 \%$ in two steps) as a colorless oil.

To a solution of the olefinic alcohol ($3.30 \mathrm{~g}, 6.19 \mathrm{mmol}$) in ethanol (62 ml) were added sodium hydrogen carbonate ($1.56 \mathrm{~g}, 18.6 \mathrm{mmol}$) and 10% palladium charcoal (620 mg). After stirring for 4 h at rt under hydrogen atmosphere, the reaction mixture was passed through SuperCel ${ }^{\circledR}$. Concentration of the solvent gave a crude oil, which was purified by silica gel column chromatography (ether $/$ hexane $=20 / 80$) to afford β-diol 19 and α-diol 20 (total $3.31 \mathrm{~g}, 100 \%$) as a colorless oil.
β-Diol 19. IR (KBr) $v_{\max } 3444,2929,2857,1968,1890,1831,1735,1455,1428$, $1363,1111,825,742,703,612,503 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.04(9 \mathrm{H}$, $\left.\mathrm{s},{ }^{t} \mathrm{Bu}\right), 1.10-1.14(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 1.44-1.56(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$ and $\mathrm{H}-4), 1.68-1.86(2 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-2^{\prime}$ and H-3), 1.92-2.15 ($2 \mathrm{H}, \mathrm{br},-\mathrm{OH}$), $1.97(1 \mathrm{H}$, dddd, $J=14.5,8.0,8.0,5.0 \mathrm{~Hz}$, H-2'), $3.19(1 \mathrm{H}, \mathrm{dd}, J=9.0,1.0 \mathrm{~Hz}, \mathrm{H}-1), 3.33(1 \mathrm{H}, \mathrm{dd}, J=10.0,4.0 \mathrm{~Hz}, \mathrm{H}-6), 3.39$ $(1 \mathrm{H}, \mathrm{dd}, J=10.0,6.5 \mathrm{~Hz}, \mathrm{H}-6), 3.54-3.63(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 3.72-3.82(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2)$, $\left.3.743 .84(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3)^{\prime}\right), 4.21\left(1 \mathrm{H}, \mathrm{dd}, J=8.0,4.0 \mathrm{~Hz}, \mathrm{H}-11^{\prime}\right), 4.48(1 \mathrm{H}, \mathrm{d}, J=12.0$ $\mathrm{Hz},-\mathrm{OCH} 2 \mathrm{Ph}), 4.53(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz},-\mathrm{OCH} 2 \mathrm{Ph}), 7.23-7.74(15 \mathrm{H}, \mathrm{m}$, aromatic). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 19.22,26.87,27.16,32.47,36.61,60.68,67.92$, $68.50,72.69,73.24,76.57,83.43,127.53,127.68,127.77,128.40,129.71,129.89$, 133.39, 134.44, 135.89, 138.11. ESI Q-TOF MS calcd for $\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{NaO}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$ 557.270, found 557.273. $[\alpha]_{\mathrm{D}}{ }^{25}-26.6^{\circ}\left(c 1.60, \mathrm{CHCl}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{O}_{5} \mathrm{Si}$: C, 71.87; H, 7.92. Found: C, 71.79; H, 7.86.
α-Diol 20. IR (KBr) $v_{\max } 3424,3071,3032,2932,2893,2859,1968,1890,1831$, 1773, 1467, 1455, 1428, 1363, 1317, 1112, 1084, 824, 742, 703, 613, $505 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.03\left(9 \mathrm{H}, \mathrm{s},{ }^{t} \mathrm{Bu}\right), 1.02-1.12(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 1.43-1.55(2 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-4$ and $\mathrm{H}-2 \mathrm{~s})$, 1.67-1.75 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), 1.72-1.80 $(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$ '), $2.84(1 \mathrm{H}, \mathrm{br}-\mathrm{s}$, $-\mathrm{OH}), 3.09-3.27(1 \mathrm{H}, \mathrm{br}-\mathrm{m},-\mathrm{OH}), 3.32(1 \mathrm{H}, \mathrm{dd} J=10.0,4.0 \mathrm{~Hz}, \mathrm{H}-6), 3.38(1 \mathrm{H}, \mathrm{dd}$, $J=10.0,6.0 \mathrm{~Hz}, \mathrm{H}-6), 3.41(1 \mathrm{H}, \mathrm{dd}, J=9.0,4.5 \mathrm{~Hz}, \mathrm{H}-1), 3.48-3.58\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1^{\prime}\right.$ and H-5), 3.67-3.82 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$ '), $4.18(1 \mathrm{H}, \mathrm{ddd}, J=9.0,4.5,4.0 \mathrm{~Hz}, \mathrm{H}-2), 4.46$ $(1 \mathrm{H}, \mathrm{d}, J=16.5 \mathrm{~Hz},-\mathrm{OCH} 2 \mathrm{Ph}), 4.51(1 \mathrm{H}, \mathrm{d}, J=16.5 \mathrm{~Hz},-\mathrm{OCH} 2 \mathrm{Ph}), 7.25-7.71$ $\left(15 \mathrm{H}, \mathrm{m}\right.$, aromatic). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 19.15,26.89,27.38,32.85$, $32.89,61.24,71.41,72.37,72.63,73.29,83.61,127.52,127.57,127.63,127.86$, 128.36, 129.77, 130.04, 132.89, 134.13, 135.74, 135.81, 138.08. ESI Q-TOF MS calcd for $\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{NaO}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 557.270$, found 557.267. [$\left.\alpha\right]_{\mathrm{D}}{ }^{25}-36.1^{\circ}$ (c 0.64 , CHCl_{3}). Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{O}_{5} \mathrm{Si}: \mathrm{C}, 71.87$; H, 7.92. Found: C, 71.79; H, 7.86.

Alcohol 21

To a solution of β-diol 19 ($380 \mathrm{mg}, 0.71 \mathrm{mmol}$) in dichloromethane (3.5 ml) were added benzaldehyde dimethylacetal ($0.21 \mathrm{ml}, 1.42 \mathrm{mmol}$) and 10 -comphorsulfonic acid $(33 \mathrm{mg}, 0.14 \mathrm{mmol})$ at rt . After stirring for 14 h , the reaction mixture was poured into saturated sodium hydrogen carbonate aq. at $0^{\circ} \mathrm{C}$ and then extracted with dichloromethane (x 3). The combined organic layer was washed with brine and dried over anhydrous sodium sulfate. Concentration of the solvent gave a crude oil, which was purified by
silica gel column chromatography (ether $/$ hexane $=10 / 90$) to afford a benzylidene acetal ($438 \mathrm{mg}, 99 \%$) as a colorless oil.

To the benzylidene acetal ($590 \mathrm{mg}, 0.95 \mathrm{mmol}$) in round flask was added dropwise a solution of $1.0 \mathrm{M} \mathrm{BH}_{3}$.THF in THF $(9.5 \mathrm{ml}, 9.47 \mathrm{mmol})$ at rt. After refluxing for 7 h , the reaction mixture was added methanol at $0^{\circ} \mathrm{C}$ much carefully. Concentration of the solvent gave a crude oil, which was purified by silica gel column chromatography (ether / hexane $=15 / 85)$ to afford alcohol $21(525 \mathrm{mg}, 89 \%)$ as a colorless oil.

Alcohol 21. IR (KBr) $v_{\max } 3449,3069,3032,2932,2858,1961,1890,1825,1734$, $1455,1428,1363,1111,1029,825,740,703,612,503 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 1.02\left(9 \mathrm{H}, \mathrm{s},{ }^{t} \mathrm{Bu}\right), 1.08-1.22(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 1.36-1.52(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$ and $\mathrm{H}-4)$, 1.76-1.96 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$ and $\mathrm{H}-2$ '), 2.04-2.16 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}$), $3.05(1 \mathrm{H}, \mathrm{br},-\mathrm{OH}), 3.30$ $(1 \mathrm{H}, \mathrm{dd}, J=9.5,3.5 \mathrm{~Hz}, \mathrm{H}-6), 3.34(1 \mathrm{H}, \mathrm{dd}, J=9.0,1.0 \mathrm{~Hz}, \mathrm{H}-1), 3.44(1 \mathrm{H}, \mathrm{dd}, J=$ $9.5,7.0 \mathrm{~Hz}, \mathrm{H}-6), 3.47-3.55(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 3.59-3.69(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 3.85(1 \mathrm{H}, \mathrm{ddd}, J$ $=10.5,7.5,3.5 \mathrm{~Hz}, \mathrm{H}-3 '), 4.02(1 \mathrm{H}, \mathrm{ddd}, J=10.5,9.0,4.5 \mathrm{~Hz}, \mathrm{H}-3 '), 4.23(1 \mathrm{H}$, ddd, $J=6.0,4.5,1.0 \mathrm{~Hz}, \mathrm{H}^{\prime} 1$ '), $4.37(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz},-\mathrm{OCH} 2 \mathrm{Ph}), 4.45(1 \mathrm{H}, \mathrm{d}, J$ $=12.0 \mathrm{~Hz},-\mathrm{OCH} 2 \mathrm{Ph}), 4.50(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz},-\mathrm{OCH} 2 \mathrm{Ph}), 4.56(1 \mathrm{H}, \mathrm{d}, J=12.0$ $\mathrm{Hz},-\mathrm{OCH} 2 \mathrm{Ph}), 7.18-7.70\left(20 \mathrm{H}, \mathrm{m}\right.$, aromatic). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 19.15$, $26.93,27.00,32.86,33.85,58.46,68.36,71.82,72.59,73.21,74.81,77.14,84.24$, 127.33, 127.49, 127.57, 127.68, 127.77, 128.21, 128.36, 129.64, 129.74, 133.82, $134.76,135.82,135.89,138.18,139.02$. ESI Q-TOF MS calcd for $\mathrm{C}_{39} \mathrm{H}_{49} \mathrm{O}_{5} \mathrm{Si}$ $[\mathrm{M}+\mathrm{H}]^{+} 625.335$, found 625.370. $[\alpha]_{\mathrm{D}}{ }^{24}-11.9^{\circ}\left(c \quad 1.13, \mathrm{CHCl}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{39} \mathrm{H}_{48} \mathrm{O}_{5} \mathrm{Si}: \mathrm{C}, 74.96 ; \mathrm{H}, 7.74$. Found: C, $74.96 ; \mathrm{H}, 7.87$.

Aldehyde 22

To a solution of 21 ($623 \mathrm{mg}, 1.00 \mathrm{mmol}$) in DMSO (5 ml) was added IBX (419 $\mathrm{mg}, 1.50 \mathrm{mmol})$. After stirring for 5 h at rt , the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ $(10 \mathrm{ml})$. The resulting emulsion was passed through SuperCel ${ }^{\circledR}$ and washed with ether. The filtrate was extracted with ether (x 3). Concentration of the solvent gave a crude oil, which was purified by silica gel column chromatography (ether / hexane $=20 / 80$) to afford aldehyde 22 ($569 \mathrm{mg}, 92 \%$) as a colorless oil.

Aldehyde 22. IR (KBr) $v_{\text {max }} 3069,3032$, 2932, 2893, 2858, 1720, 1473, 1455, 1428, $1363,1111,1028,825,741,703,612,509 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.05$ $\left(9 \mathrm{H}, \mathrm{s},{ }^{t} \mathrm{Bu}\right), 1.10-1.26(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 1.35-1.47(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 1.48-1.57(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 4), $1.77-1.87(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 2.67(1 \mathrm{H}, \mathrm{ddd}, J=16.5,4.5,3.5 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{C}), 2.83(1 \mathrm{H}$, ddd, $J=16.5,6.0,1.5 \mathrm{~Hz}, \mathrm{H}-2$ '), $3.29(1 \mathrm{H}, \mathrm{dd}, J=9.0,2.0 \mathrm{~Hz}, \mathrm{H}-1), 3.28(1 \mathrm{H}, \mathrm{m}$,

H-6), 3.40-3.51 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$ and H-6), $4.03(1 \mathrm{H}, \mathrm{ddd}, J=10.5,9.0,4.5 \mathrm{~Hz}, \mathrm{H}-2)$, $4.41\left(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.45(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz},-\mathrm{OCH} 2 \mathrm{Ph}), 4.51(1 \mathrm{H}$, d, $J=12.0 \mathrm{~Hz},-\mathrm{OCH} 2 \mathrm{Ph}), 4.52(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz},-\mathrm{OCH} 2 \mathrm{Ph}), 4.53(1 \mathrm{H}, \mathrm{ddd}, J=$ $6.0,4.5,2.0 \mathrm{~Hz}, \mathrm{H}-1$ '), 7.15-7.71 ($20 \mathrm{H}, \mathrm{m}$, aromatic), $9.85(1 \mathrm{H}, \mathrm{dd}, J=2.5,1.5 \mathrm{~Hz}$, $\left.\mathrm{H}-3^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 19.09,26.90,27.45,32.82,45.00,68.12$, $72.18,72.64,73.06,73.24,77.11,84.20,127.47,127.53,127.61,127.63,127.67$, 128.24, 128.32, 129.64, 129.73, 133.76, 134.55, 135.78, 135.87, 138.32, 138.44, 201.80. ESI Q-TOF MS calcd for $\mathrm{C}_{39} \mathrm{H}_{46} \mathrm{NaO}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 645.301$, found 645.353. $[\alpha]_{\mathrm{D}}{ }^{24}-13.3^{\circ}\left(c \quad 1.30, \mathrm{CHCl}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{39} \mathrm{H}_{46} \mathrm{O}_{5} \mathrm{Si}: \mathrm{C}, 75.20 ; \mathrm{H}, 7.44$. Found: C, 75.07; H, 7.66.

E'FH' ring 25

To a solution of E' ring-aldehyde $\mathbf{1 2}(603 \mathrm{mg}, 2.53 \mathrm{mmol})$, which was treatment with toluene azeotrope in advance, in dist. tetrahydrofuran (25 ml) was added dropwise a solution of $1.59 \mathrm{M} n \mathrm{BuLi}$ in Hexane ($1.59 \mathrm{ml}, 2.53 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$ under nitrogen atmosphere. After stirring for 30 min at $-78^{\circ} \mathrm{C}$, a solution of aldehyde $22(1.05 \mathrm{~g}, 1.69$ mmol), which was treatment with toluene azeotrope in advance, in dist. tetrahydrofuran $(7 \mathrm{ml})$ was added to the reaction mixture over 10 min . After stirring for 35 min at $-78^{\circ} \mathrm{C}$, the reaction mixture was poured into saturated sodium hydrogen carbonate aq. at $0^{\circ} \mathrm{C}$ and then extracted with ether (x 3). The combined organic layer was washed with brine and dried over anhydrous sodium sulfate. Concentration of the solvent gave a crude oil, which was purified by silica gel column chromatography (ethyl acetate $/$ hexane $=5 / 95$ to $20 / 80$) to afford an propargyl alcohol $(1.24 \mathrm{~g}, 86 \%)$ as a colorless oil, recovered E^{\prime} ring-enyne 12 ($258 \mathrm{mg}, 43 \%$) and recovered H^{\prime} ring-aldehyde 22 ($151 \mathrm{mg}, 14 \%$).

To a solution of the propargyl alcohol ($250 \mathrm{mg}, 0.29 \mathrm{mmol}$) in tetrahydrofuran (2.9 ml) was added 1.0 M tetrabutylammonium fluoride in tetrahydrofuran ($0.58 \mathrm{ml}, 0.58$ mmol) at $0{ }^{\circ} \mathrm{C}$. After stirring for 7 h at rt under nitrogen atmosphere, the reaction mixture was poured into saturated ammonium chloride aq. at $0^{\circ} \mathrm{C}$ and then extracted with ether (x 3). The combined organic layer was washed with brine and dried over anhydrous sodium sulfate. Concentration of the solvent gave a crude diol, which was used in next step without further purification.

To a solution of the crude diol in dichloromethane (4 ml) were added pyridine (0.5 ml), acetic anhydride (0.2 ml) and N, N-dimethylaminopyridine (10 mg). After stirring for 2 h at rt , the reaction mixture was poured into saturated sodium hydrogen carbonate aq. at $0{ }^{\circ} \mathrm{C}$ and then extracted with dichloromethane (x 3). The combined organic layer was washed with brine and dried over anhydrous sodium sulfate. Concentration of the
solvent gave a crude oil, which was purified by silica gel column chromatography (ethyl acetate $/$ hexane $=30 / 70)$ to afford diacetate $\mathbf{2 3}(201 \mathrm{mg}, 98 \%)$ as a colorless oil.

To a solution of diacetate 23 ($37 \mathrm{mg}, 0.052 \mathrm{mmol}$) in methanol (2 ml) was added pyridinium p-toluenesulfonate ($13 \mathrm{mg}, 0.052 \mathrm{mmol}$). After stirring for 30 min at rt , the reaction mixture was poured into saturated sodium hydrogen carbonate aq. at $0^{\circ} \mathrm{C}$ and then extracted with ether (x 3). The combined organic layer was washed with brine and dried over anhydrous sodium sulfate. Concentration of the solvent gave a crude oil, which was purified by short silica gel column chromatography to afford a crude alcohol.

To a solution of the crude alcohol in dry dichloromethane (2 ml) was added a solution of $\mathrm{Co}_{2}(\mathrm{CO})_{8}(36 \mathrm{mg}, 0.10 \mathrm{mmol})$ in dry dichloromethane $(1 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. After stirring for 1.5 h at rt , the solvent was concentrated. The residue was purified by silica gel column chromatography (ether / hexane $=40 / 60$) to afford acetylene cobalt complex $\mathbf{2 4}$ ($46 \mathrm{mg}, 96 \%$ in two steps) as a reddish brown oil.

To a solution of acetylene cobalt complex 24 ($71 \mathrm{mg}, 0.077 \mathrm{mmol}$) in dry dichloromethane (7.7 ml) was added a solution of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.20 \mathrm{M}$ in 1,2dichloroethane, $0.39 \mathrm{ml}, 0.077 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. After stirring for 10 min at $0^{\circ} \mathrm{C}$ and for 30 min at rt , the reaction mixture was poured into saturated sodium hydrogen carbonate aq. at $0{ }^{\circ} \mathrm{C}$ and then extracted with dichloromethane (x 3). The combined organic layer was washed with brine and dried over anhydrous sodium sulfate. Concentration of the solvent gave a crude oil, which was purified by silica gel column chromatography (ether / hexane $=30 / 70$) to afford E'FH' ring 25 ($51 \mathrm{mg}, 77 \%$) as a reddish brown oil.

E'FH' ring 25. IR (KBr) $v_{\text {max }}$ 2931, 2855, 2361, 2090, 2051, 2026, 1741, 1560, $1456,1373,1239,1095,736,698,661,518,498 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ 1.27-1.38 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), 1.42-1.60 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$), $1.42-1.60(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-16$ and $\mathrm{H}-17)$, $1.75-1.86(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$ and $\mathrm{H}-17), 1.92\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCOCH}_{3}\right), 1.97(1 \mathrm{H}, \mathrm{ddd}, J=14.5$, $10.5,3.5 \mathrm{~Hz}, \mathrm{H}-12), 2.26-2.38(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-6, \mathrm{H}-12$ and $\mathrm{H}-16)$, 2.69 ($1 \mathrm{H}, \mathrm{br}-\mathrm{dd}, J=$ $13.5,9.5 \mathrm{~Hz}, \mathrm{H}-6), 3.21$ ($1 \mathrm{H}, \mathrm{dd}, J=10.0,4.5 \mathrm{~Hz}, \mathrm{H}-4$), 3.28 ($1 \mathrm{H}, \mathrm{dd}, J=10.0,4.0$ $\mathrm{Hz}, \mathrm{H}-5)$, 3.25-3.35 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$), 3.40-3.47 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$), 3.53-3.62 (3H, m, H-14, $\mathrm{H}-18$ and $\mathrm{H}-19), 3.81-3.91(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$ and $\mathrm{H}-13), 4.54(2 \mathrm{H}, \mathrm{s},-\mathrm{OCH} 2 \mathrm{Ph}), 4.59(1 \mathrm{H}$, d, $\left.J=12.0 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.67(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz},-\mathrm{OCH} 2 \mathrm{Ph}), 4.79(1 \mathrm{H}, \mathrm{dd}, J=$ $11.5,1.5 \mathrm{~Hz}, \mathrm{H}-11)$, 4.91 (1 H , ddd, $J=10.0,9.5,5.0 \mathrm{~Hz}, \mathrm{H}-15$), 5.86 ($1 \mathrm{H}, \mathrm{ddd}, J=$ $11.0,9.5,7.5 \mathrm{~Hz}, \mathrm{H}-7), 6.76(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}, \mathrm{H}-8), 7.22-7.34(10 \mathrm{H}, \mathrm{m}$, aromatic). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 21.16,25.56,27.56,29.19,29.28,29.87$, 38.70, 67.92, 68.83, 71.72, 72.79, 73.48, 74.03, 74.64, 77.50, 78.13, 80.06, 80.61, 86.78, $99.72,127.55,127.62,127.70,128.34,130.51,130.70,138.40,138.64$, 169.79, 199.41. ESI Q-TOF MS calcd for $\mathrm{C}_{41} \mathrm{H}_{43} \mathrm{Co}_{2} \mathrm{O}_{13}[\mathrm{M}+\mathrm{H}]+861.137$, found 861.168. $[\alpha]_{\mathrm{D}}{ }^{27}-916.0^{\circ}\left(c 0.016, \mathrm{CHCl}_{3}\right)$.

Ketone 26, Conjugated Enone 27 and Diene 28

To a PORTABLE REACTOR (TVS-N2 type, TAIATSU TECHNO® ${ }^{\circledR}$ CORPORATION, Japan) was placed a solution of acetylene cobalt complex $\mathbf{2 5}(29 \mathrm{mg}, 0.034 \mathrm{mmol})$ in benzene (17 ml). After stirring for 4.5 h at $65{ }^{\circ} \mathrm{C}$ under $100 \mathrm{~kg} / \mathrm{cm}^{2}$ hydrogen atmosphere, the pressure was reduced to ambient pressure at rt. The reaction mixture was passed through SuperCel ${ }^{\circledR}$ and concentrared to give a crude oil, which was purified by preparative thin layer chromatography to afford SM ($2.1 \mathrm{mg}, 7 \%$), diene 27 (2.9 mg , 15%), ketone 26 ($7.3 \mathrm{mg}, 37 \%$) and conjugated enone $28(0.7 \mathrm{mg}, 4 \%)$.

Ketone 26. IR (KBr) $v_{\text {max }}$ 2931, 2858, 1738, 1716, 1455, 1372, 1240, 1092, 1038, $738,699 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.27(1 \mathrm{H}, \operatorname{dddd}, J=12.0,12.0,11.0$, $5.0 \mathrm{~Hz}, \mathrm{H}-3), 1.40-1.50(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-16$ and 17$), 1.47-1.53(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 1.77(1 \mathrm{H}$, $\mathrm{dm}, J=8.5 \mathrm{~Hz}, \mathrm{H}-17), 1.87\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCOCH}_{3}\right), 1.91-1.96(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-12), 1.97-2.03$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), $2.20(1 \mathrm{H}, \mathrm{ddd}, J=13.5,6.5,3.0 \mathrm{~Hz}, \mathrm{H}-6), 2.29(1 \mathrm{H}, \mathrm{ddd}, J=8.0$, $5.0,3.0 \mathrm{~Hz}, \mathrm{H}-16), 2.56(1 \mathrm{H}, \mathrm{dd}, J=10.5,7.0 \mathrm{~Hz}, \mathrm{H}-9), 2.97(1 \mathrm{H}, \mathrm{ddd}, J=13.5$, $10.5,3.5 \mathrm{~Hz}, \mathrm{H}-6), 2.97$ (1 H , ddd, $J=11.0,9.5,4.0 \mathrm{~Hz}, \mathrm{H}-4$), 3.27 (1 H , ddd, $J=$ $9.5,3.5,3.0 \mathrm{~Hz}, \mathrm{H}-5), 3.28(1 \mathrm{H}, \mathrm{ddd}, J=11.5,11.5,3.0 \mathrm{~Hz}, \mathrm{H}-1), 3.43(1 \mathrm{H}, \mathrm{dd}, J=$ $12.5,7.5 \mathrm{~Hz}, \mathrm{H}-19), 3.50(1 \mathrm{H}, \mathrm{dd}, J=9.5,2.5 \mathrm{~Hz}, \mathrm{H}-14), 3.55-3.60(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-18)$, $3.57(1 \mathrm{H}, \mathrm{dd}, J=12.5,5.5 \mathrm{~Hz}, \mathrm{H}-19), 3.73(1 \mathrm{H}, \mathrm{ddd}, J=7.0,5.5,2.5 \mathrm{~Hz}, \mathrm{H}-13)$, $3.83(1 \mathrm{H}, \mathrm{dm}, J=11.5 \mathrm{~Hz}, \mathrm{H}-1), 3.87(1 \mathrm{H}, \mathrm{dd}, J=8.5,5.5 \mathrm{~Hz}, \mathrm{H}-11), 3.97(1 \mathrm{H}, \mathrm{dd}$, $J=10.5,10.5 \mathrm{~Hz}, \mathrm{H}-9), 4.51(2 \mathrm{H}, \mathrm{s},-\mathrm{OCH} 2 \mathrm{Ph}), 4.53(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}$, $-\mathrm{OCH} 2 \mathrm{Ph}), 4.58\left(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.86(1 \mathrm{H}, \mathrm{ddd}, J=10.0,9.5,5.0$ $\mathrm{Hz}, \mathrm{H}-15), 5.62(1 \mathrm{H}, \mathrm{ddd}, J=10.5,10.5,7.0 \mathrm{~Hz}, \mathrm{H}-8), 5.71$ (1 H , ddd, $J=10.5$, $10.5,6.5 \mathrm{~Hz}, \mathrm{H}-7), 7.25-7.37$ ($10 \mathrm{H}, \mathrm{m}$, aromatic). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$) δ 21.13, 25.51, 27.36, 28.67, 29.11, 29.40, 32.76, 36.90, 68.15, 68.27, 71.41, 72.87, $73.43,73.54,75.20,77.60,78.83,79.66,82.16,124.57,127.63,127.99,128.32$, $128.38,128.69,138.12,138.30,169.80,211.48$. ESI Q-TOF MS calcd for $\mathrm{C}_{35} \mathrm{H}_{44} \mathrm{NaO}_{8}[\mathrm{M}+\mathrm{Na}]^{+} 615.293$, found 615.284. $[\alpha]_{\mathrm{D}}{ }^{24}+118.7^{\circ}\left(c 0.30, \mathrm{CHCl}_{3}\right)$.

Diene 28. IR (KBr) $v_{\max }$ 2926, 2854, 1739, 1455, 1373, 1240, 1145, 1090, 1046, $738,698 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.30-1.46(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3, \mathrm{H}-16$ and 17), 1.45-1.55 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$), $1.78(1 \mathrm{H}, \mathrm{dm}, J=7.5 \mathrm{~Hz}, \mathrm{H}-17), 1.89\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCOCH}_{3}\right)$, 1.90-1.95 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-12$), 1.94-1.99 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), 2.22 ($1 \mathrm{H}, \mathrm{br}-\mathrm{ddd}, J=13.5,6.0$, $4.0 \mathrm{~Hz}, \mathrm{H}-6), 2.30(1 \mathrm{H}$, ddd, $J=8.5,5.0,3.0 \mathrm{~Hz}, \mathrm{H}-16), 2.74$ (1 H , ddd, $J=13.5$, $10.5,3.5 \mathrm{~Hz}, \mathrm{H}-6), 3.07(1 \mathrm{H}, \mathrm{ddd}, J=9.5,4.0,3.5 \mathrm{~Hz}, \mathrm{H}-5), 3.20(1 \mathrm{H}$, ddd, $J=$ $10.5,9.5,4.0 \mathrm{~Hz}, \mathrm{H}-4), 3.25(1 \mathrm{H}, \mathrm{ddd}, J=11.5,11.5,3.0 \mathrm{~Hz}, \mathrm{H}-1), 3.39(1 \mathrm{H}, \mathrm{dd}, J$
$=10.0,2.5 \mathrm{~Hz}, \mathrm{H}-14), 3.43(1 \mathrm{H}, \mathrm{dd}, J=12.0,7.0 \mathrm{~Hz}, \mathrm{H}-19), 3.53-3.58(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 18), 3.57 ($1 \mathrm{H}, \mathrm{dd}, J=12.0,5.5 \mathrm{~Hz}, \mathrm{H}-19$), $3.78(1 \mathrm{H}, \mathrm{td}, J=6.0,2.5 \mathrm{~Hz}, \mathrm{H}-13), 3.83$ ($1 \mathrm{H}, \mathrm{dm}, J=11.5 \mathrm{~Hz}, \mathrm{H}-1$), $3.96(1 \mathrm{H}, \mathrm{dt}, J=7.0,7.0 \mathrm{~Hz}, \mathrm{H}-11), 4.53(1 \mathrm{H}, \mathrm{d}, J=$ $12.0 \mathrm{~Hz},-\mathrm{OCH} 2 \mathrm{Ph}), 4.54(2 \mathrm{H}, \mathrm{s},-\mathrm{OCH} 2 \mathrm{Ph}), 4.58(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz},-\mathrm{OCH} 2 \mathrm{Ph})$, $4.90(1 \mathrm{H}, \mathrm{ddd}, J=10.0,10.0,5.0 \mathrm{~Hz}, \mathrm{H}-15), 5.58(1 \mathrm{H}, \mathrm{dd}, J=11.0,7.0 \mathrm{~Hz}, \mathrm{H}-10)$, $5.79(1 \mathrm{H}$, ddd, $J=11.0,10.5,6.0 \mathrm{~Hz}, \mathrm{H}-7), 5.97(1 \mathrm{H}, \mathrm{br}-\mathrm{d}, ~ J=11.0 \mathrm{~Hz}, \mathrm{H}-9), 6.01$ (1 H, br-d, $J=11.0 \mathrm{~Hz}, \mathrm{H}-8$), $7.25-7.39$ ($10 \mathrm{H}, \mathrm{m}$, aromatic). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}) \delta 21.13,26.10,27.47,29.07,31.65,33.23,38.17,67.90,68.50,71.15,72.90$, $73.40,77.56,78.83,80.54,80.74,80.90,127.59,127.63,127.94,128.35,129.46$, 129.78, 130.27, 134.74, 138.35, 138.51, 169.80. ESI Q-TOF MS calcd for $\mathrm{C}_{35} \mathrm{H}_{44} \mathrm{NaO}_{7}[\mathrm{M}+\mathrm{Na}]^{+} 599.298$, found 599.302. $[\alpha]_{\mathrm{D}}{ }^{25}-74.6^{\circ}\left(c \quad 0.25, \mathrm{CHCl}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{44} \mathrm{O}_{7}$: C, 72.89; H, 7.69. Found: C, 72.88; H, 7.72.

Conjugated Enone 27. IR (KBr) $v_{\text {max }}$ 2928, 2855, 1737, 1653, 1455, 1373, 1241, 1093, 1040, 738, $699 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.29-1.40(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3)$, 1.40-1.50 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-16$ and 17), 1.46-1.58 $(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 1.74-1.78(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-17)$, 1.80-1.94 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), 1.80-1.94 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-12$), $1.88\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCOCH}_{3}\right), 2.25-2.31$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16$), $2.70(1 \mathrm{H}, \mathrm{ddd}, J=13.5,9.5,7.0 \mathrm{~Hz}, \mathrm{H}-6), 2.79(1 \mathrm{H}, \mathrm{dd}, J=13.5$, $6.0 \mathrm{~Hz}, \mathrm{H}-10), 2.85-2.93(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10), 2.90(1 \mathrm{H}, \mathrm{br}-\mathrm{ddd}, J=13.5,9.5,2.0 \mathrm{~Hz}, \mathrm{H}-$ 6), $3.07(1 \mathrm{H}, \mathrm{ddd}, J=10.5,9.5,4.5 \mathrm{~Hz}, \mathrm{H}-4), 3.23(1 \mathrm{H}, \mathrm{ddd}, J=9.5,7.0,2.0 \mathrm{~Hz}$, H-5), 3.28 (1 H , ddd, $J=11.5,11.5,3.0 \mathrm{~Hz}, \mathrm{H}-1$), $3.43(1 \mathrm{H}, \mathrm{dd}, J=12.0,3.5 \mathrm{~Hz}, \mathrm{H}-$ 19), 3.44 ($1 \mathrm{H}, \mathrm{dd}, J=9.5,2.5 \mathrm{~Hz}, \mathrm{H}-14$), $3.52-3.58(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-18), 3.56(1 \mathrm{H}, \mathrm{dd}, J=$ $12.0,5.5 \mathrm{~Hz}, \mathrm{H}-19), 3.75(1 \mathrm{H}, \mathrm{ddd}, J=7.5,4.5,2.5 \mathrm{~Hz}, \mathrm{H}-13), 3.83(1 \mathrm{H}, \mathrm{dm}, J=$ $11.5 \mathrm{~Hz}, \mathrm{H}-1), 3.94(1 \mathrm{H}, \mathrm{ddt}, J=7.5,4.5,2.5 \mathrm{~Hz}, \mathrm{H}-11), 4.53(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}$, $-\mathrm{OCH} 2 \mathrm{Ph}), 4.53(1 \mathrm{H}, J=12.0 \mathrm{~Hz},-\mathrm{OCH} 2 \mathrm{Ph}), 4.56\left(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{Ph}\right)$, $4.57(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz},-\mathrm{OCH} 2 \mathrm{Ph}), 4.85(1 \mathrm{H}, \mathrm{ddd}, J=10.0,9.5,5.0 \mathrm{~Hz}, \mathrm{H}-15)$, $6.11(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}, \mathrm{H}-8), 6.32(1 \mathrm{H}, \mathrm{dt}, J=12.0,9.5 \mathrm{~Hz}, \mathrm{H}-7), 7.26-7.38(10 \mathrm{H}$, m , aromatic). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 21.14,25.58,27.39,29.10,29.68$, $30.67,32.43,37.18,49.98,67.99,68,45,71.91,72.86,73.43,74.21,76.25,77.45$, $80.25,80.35,127.59,127.68,127.93,128.34,128.37,134.71,138.33,138.40$, 139.74, 169.84, 202.29. ESI Q-TOF MS calcd for $\mathrm{C}_{35} \mathrm{H}_{44} \mathrm{NaO}_{8}$ [M+Na]+ 615.293, found 615.290. $[\alpha]_{\mathrm{D}}{ }^{26}+16.8^{\circ}\left(c 0.12, \mathrm{CHCl}_{3}\right)$.

E'FGH' ring 5

To a solution of ketone $\mathbf{2 6}(7.9 \mathrm{mg}, 0.013 \mathrm{mmol})$ in methanol (1 ml) was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($3 \mathrm{mg}, 0.022 \mathrm{mmol}$). After stirring for 3 h at rt , the reaction mixture was poured into saturated ammonium chloride aq. at $0{ }^{\circ} \mathrm{C}$ and then extracted with ether (x 3). The
combined organic layer was washed with brine and dried over anhydrous sodium sulfate. Concentration of the solvent gave a crude oil, which was purified by preparative thin layer chromatography to afford a hydroxyketone ($7.2 \mathrm{mg}, 99 \%$).
To a solution of the hydroxyketone ($7.2 \mathrm{mg}, 0.013 \mathrm{mmol}$) and triethylsilane $(0.13 \mathrm{ml}$, $0.81 \mathrm{mmol})$ in dry acetonitrile (1.3 ml) was added $\mathrm{BF}_{3} . \mathrm{OEt}_{2}(0.79 \mathrm{M}$ in $1,2-$ dichloroethane, $0.1 \mathrm{ml}, 0.079 \mathrm{mmol}$) at $-15^{\circ} \mathrm{C}$ under nitrogen atmosphere. After stirring for 20 min at $-15^{\circ} \mathrm{C}$ and for 30 min at rt , the reaction mixture was poured into saturated sodium hydrogen carbonate aq. at $0{ }^{\circ} \mathrm{C}$ and then extracted with ether (x 3). The combined organic layer was washed with brine and dried over anhydrous sodium sulfate. Concentration of the solvent gave a crude oil, which was purified by preparative thin layer chromatography to afford E'FGH' ring $\mathbf{5}(4.0 \mathrm{mg}, 57 \%)$ as a white solid.

E'FGH' ring 5. Mp 113.0-113.5 ${ }^{\circ} \mathrm{C}$. IR (KBr) $v_{\text {max }}$ 2931, 2863, 1455, 1118, 1097, $733,695 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz},-20^{\circ} \mathrm{C}\right.$, a 2:1 mixture of DOWN and UP conformers) $\delta 1.40-1.47(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-17), 1.45-1.51(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16), 1.49-1.56(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-3), 1.64-1.71(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 1.70-1.75(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-17), 2.05(1 / 3 \mathrm{H}, \mathrm{dd}, J=13.5,5.5$ $\left.\mathrm{Hz}, \mathrm{H}-9_{\mathrm{UP}}\right), 2.07-2.12\left(1 / 3 \mathrm{H}, \mathrm{m}, \mathrm{H}-6_{\mathrm{UP}}\right), 2.07-2.12\left(2 \times 2 / 3 \mathrm{H}, \mathrm{m}, \mathrm{H}-6_{\mathrm{DOWN}}\right.$ and $\mathrm{H}-$ $3_{\text {DOWN }}$), 2.10-2.15 ($1 / 3 \mathrm{H}, \mathrm{m}, \mathrm{H}-12_{\mathrm{UP}}$), 2.10-2.15 ($2 \times 2 / 3 \mathrm{H}, \mathrm{m}, \mathrm{H}-12_{\text {DOWN }}$), 2.14-2.18 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16$), 2.18-2.22 ($1 / 3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3_{\mathrm{UP}}$), $2.25(2 / 3 \mathrm{H}, \mathrm{dd}, J=12.5,5.5 \mathrm{~Hz}, \mathrm{H}-$ $9_{\text {DOWN }}$), 2.28 ($1 / 3 \mathrm{H}$, dd, $J=14.0,5.0 \mathrm{~Hz}, \mathrm{H}-12_{\mathrm{UP}}$), 2.75 ($2 / 3 \mathrm{H}$, ddd, $J=12.5,10.5$, $\left.9.5 \mathrm{~Hz}, \mathrm{H}-6_{\text {DOWN }}\right), 2.80\left(2 / 3 \mathrm{H}, \mathrm{ddd}, J=12.5,9.5,9.5 \mathrm{~Hz}, \mathrm{H}-9_{\text {DOWN }}\right), 2.92-2.96$ ($1 / 3 \mathrm{H}, \mathrm{m}, \mathrm{H}-9 \mathrm{UP}$), 2.94-2.98 ($1 / 3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{U}}$), $3.00(2 / 3 \mathrm{H}, \mathrm{dd}, J=9.5,9.5 \mathrm{~Hz}, \mathrm{H}-$ $5_{\text {DOWN }}$), $3.13\left(2 / 3 \mathrm{H}, \mathrm{dd}, J=9.5,9.5 \mathrm{~Hz}, \mathrm{H}-10_{\text {DOWN }}\right), 3.17(1 \mathrm{H}, \mathrm{ddd}, J=9.5,9.5,4.0$ $\mathrm{Hz}, \mathrm{H}-15), 3.25\left(1 / 3 \mathrm{H}, \mathrm{ddd}, J=10.5,10.0,4.5 \mathrm{~Hz}, \mathrm{H}-4_{\mathrm{UP}}\right), 3.31(1 / 3 \mathrm{H}, \mathrm{dd}, J=10.0$, $5.5 \mathrm{~Hz}, \mathrm{H}-5_{\mathrm{UP}}$), 3.32-3.38 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$), $3.33\left(2 / 3 \mathrm{H}, \mathrm{dd}, J=9.5,3.5 \mathrm{~Hz}, \mathrm{H}-14_{\mathrm{DOWN}}\right)$, 3.40 ($1 / 3 \mathrm{H}$, dd, $J=9.5,4.0 \mathrm{~Hz}, \mathrm{H}-14_{\mathrm{UP}}$), 3.41 ($2 / 3 \mathrm{H}$, ddd, $J=10.5,9.5,4.5 \mathrm{~Hz}, \mathrm{H}-$ $4_{\text {Down }}$), 3.46-3.49 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-19$), 3.48-3.52 ($1 / 3 \mathrm{H}, \mathrm{m}, \mathrm{H}-13_{\mathrm{UP}}$), 3.53-3.58 ($1 / 3 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-10_{\mathrm{UP}}$), 3.57-3.61 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-18$), 3.71-3.74 ($1 / 3 \mathrm{H}, \mathrm{m}, \mathrm{H}-11_{\mathrm{UP}}$), 3.71-3.74 ($2 / 3 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-13_{\text {DOWN }}$), 3.82 ($2 / 3 \mathrm{H}$, ddd, $J=9.5,9.0,2.5 \mathrm{~Hz}, \mathrm{H}-11_{\text {DOWN }}$), $3.86-3.92(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 1), $4.60\left(1 / 3 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz},-\mathrm{OCH} 2 \mathrm{Ph}_{\mathrm{UP}}\right), 4.60\left(2 \mathrm{x} 2 / 3 \mathrm{H}, \mathrm{s},-\mathrm{OCH} 2 \mathrm{Ph}_{\mathrm{DOWN}}\right), 4.60$ $\left(2 x 1 / 3 \mathrm{H}, \mathrm{s},-\mathrm{OCH} 2 \mathrm{Ph}_{\mathrm{UP}}\right), 4.61\left(2 / 3 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz},-\mathrm{OCH} 2 \mathrm{Ph}_{\mathrm{DOWN}}\right), 4.68(1 / 3 \mathrm{H}, \mathrm{d}$, $\left.J=12.0 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{Ph}_{\mathrm{UP}}\right), 4.70\left(2 / 3 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{Ph}_{\mathrm{DOWN}}\right), 5.71(2 / 3 \mathrm{H}$, ddd, $\left.J=11.0,9.5,5.5 \mathrm{~Hz}, \mathrm{H}-8_{\text {Down }}\right), 5.72(2 / 3 \mathrm{H}, \mathrm{ddd}, J=11.0,10.5,5.5 \mathrm{~Hz}, \mathrm{H}-$ $7_{\text {DOWN }}$), $5.80\left(1 / 3 \mathrm{H}\right.$, ddd, $\left.J=11.0,10.5,5.5 \mathrm{~Hz}, \mathrm{H}-8_{\mathrm{UP}}\right), 5.84(1 / 3 \mathrm{H}, \mathrm{ddd}, J=11.0$, $10.5,5.0 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{UP}$), $7.29-7.40\left(10 \mathrm{H}, \mathrm{m}\right.$, aromatic). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right.$, at $-20^{\circ} \mathrm{C}$, a $2: 1$ mixture of DOWN and UP conformers) $\delta 25.59,25.90,27.36,27.48$, 29.40, 29.69, 30.14, 31.24, 31.35, 31.61, 32.33, 32.89, 33.96, 35.47, 38.97, 39.06, 67.98, 68.36, 70.72, 71.01, 72.35, 73.12, 76.13, 76.40, 77.85, 78.32, 78.44, 79.57, $80.78,81.48,82.48,82.77,86.16,86.49,86.55,86.63,87.40,127.33,127.37$,
127.40, 127.54, 127.61, 127.91, 128.12, 128.24, 128.34, 128.94, 137.84, 138.28, 138.34. ESI Q-TOF MS calcd for $\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]+557.288$, found 557.285. $[\alpha]_{\mathrm{D}}{ }^{25}+21.7^{\circ}\left(c 0.32, \mathrm{CHCl}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{O}_{6}$: C, 74.13; H, 7.92. Found: C, 73.96; H, 8.03.
shige600-1

