2091
Progress of Theoretical Physics, Vol. 64, No. 6, December 1980
Convergent Theory for Effective Interaction in Nuclei®

Kenji SUZUKI and Shyh Yuan LEE*

Department of Physics, Kvushu Institute of Technology
Kitakyushu 80+
* Department of Physics, State University of New York
at Stony Brook. New York 11794

(Received July 9, 1980)

A general equation is derived for constructing the effective interaction on the basis of
the similarity transformation theory. It is proved that the equation is equivalent to Bloch’s
equation for the degenerate perturbation theory and, therefore, the present approach is also
equivalent to the energy independent Rayleigh-Schrddinger theory. Some iteration methods
are proposed to solve the equation, and the convergence conditions for the iteration procedures
are discussed. Two iteration methods—self-energy insertion and vertex renormalization—are
obtained to reach the true eigenvalues of the full Hamiltonian even when there are some
intruder states. It is proved that the self-energy insertion procedure produces the eigenvalues
of eigenstates which have large overlap with the model space. On the other hand, the vertex
renormalization procedure gives the eigenvalues nearest to the unperturbed starting energy.

§1. Introduction

One of the most fundamental problems in the nuclear theory is the derivation
of the effective interaction between nucleons in nuclei. There have been many
theoretical studies on this subject, which are summarized in several articles,”™*
since Kuo and Brown’s pioneering work® in applying Brueckner’s reaction matrix

D8 has been developed as

theory® to finite nuclei. The folded diagram theory
a powerful perturbation method for the derivation of the effective interaction,
One of the characteristics of the nuclear many-body problem is that the free
nucleon-nucleon force may have a strong repulsive core at short distance. For
this reason, straightforward application of the perturbation theory to the nuclear
many-body problem cannot be successful. Usual treatment of the short-range corre-

lation is to introduce Brueckner’s reaction matrix (G matrix).”®

Usually one
believes that one can use this G matrix as a starting interaction in the perturba-
tion calculation of the effective interaction. Many numerical calculations, based
on the G matrix, have been made, especially for nuclei with a few valence nucleons
outside the core, e.g., O and ®F (see Refs. 2), 4)).

The most outstanding problem in the perturbation approach is the convergence
of the perturbation expansion {or the effective interaction. The result obtained by

* Work partially supported by USDOE Contact No. EY-76-S-02-3001.
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Barrett and Kirson”® questioned the validity of order by order calculation of the
effective interaction. Further, the study of Schucan and Weidenmiiller™® pointed
out that the presence of the intruder state in the midst of low lying shell-model
states is the essential source of the divergence of the perturbation expansion.
Because such an intruder state appears quite often in the nuclear spectra, it
throws suspicion on the development of the nuclear many-body theory. These
intruder states are usually low lying collective states. The collectivity pushes
the intruder state near to the low lying model-space states and this intruder state
causes the divergence of the perturbation expansion.

The problem of the divergence has been discussed by many authors. One of
the approaches is to use the Padé approximant which approximates the divergent
series by the ratio of two polynomials.”®™® TIn this approach, it has been found
that a rather high order of Padé approximant is necessary to obtain an accurate
result for the effective interaction. The high order Padé approximant requires
the calculation of high order terms in the perturbation expansion, This situation
of the Padé approximant method seems not to make any improvement over the
difficulty with the divergence of the perturbation expansion.

Another approach is that a new model space which includes intruder states
is introduced and the effective interaction is calculated perturbatively in this en-
larged model space.”” In this approach, some experimental knowledge of the in-
truder state is necessary to perform a sensible calculation. In the nuecleus with
two valence nucleons such as ®O or ®F, the intruder states have been established
to be 4p-2h deformed states. Actually, there are a huge number of states with
4p-2h configuration, but the intruder state is a collective linear combination of
these 4p-2h configurations. How to construct the intruder states from the 4p-2h
configurations may, however, be technically difficult and ambiguous. This situation
seems to cause another complication.

There are also other studies which aim at overcoming the divergence of the
perturbation expansion, e.g., the partial resummation method based on the folded
diagram theory,” the self-consistent coupled equation based on RPA,™ the Hartree-
Fock basis expansion method,” exp(S) method,” the generalized vertex method
based on the multiple scattering equation,™ the unitary transformation method,™
etc. All of these “nonperturbed” approaches may be understood as the method
of the partial resummation of the perturbation expansion series. In general, a
different partial summation leads to a different solution for the effective interaction,
whenever the perturbation expansion is divergent.

The effective interaction depends on the set of eigenvalues to be produced.
If the perturbation series is divergent, the resummation of the series has to be
made with care so as to preserve the equation of motion. Our main interest is to
investigate the situation of the resummation procedure. In this paper, we shall
propose convergent resummation procedure for the effective interaction in the
framework of the time independent Rayleigh-Schrédinger perturbation theory.
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Convergent Theory for Effective Interaction in Nuclei 2093

In §2, a general equation is derived for the effective interaction by the use of
the similarity transformation theory in the eigenvalue problem. We see that the

.. . .o
equation is understood as a generalization of Bloch’s equation®

for the degenerate
perturbation theory. In § 3, some iteration procedures are proposed to solve the
equation and the convergence conditions for the iterative solutions are discussed.
A new solution is derived which is convergent even when the intruder states

are present. In §4, a summary of the findings of this paper is given.

§ 2. Similarity transformation and Rayleigh-Schrédinger theory

We consider a many-body system which is described by the Schridinger equa-
tion

HT>=E|T> (21
with the Hamiltonian
H=H,+V, (2-2)

where F, is the unperturbed Hamiltonian and V is the residual interaction.

The fundamental assumption in solving low lying states of the many-body
system is that the main components of these states can be constructed from con-
figurations of a few active particles and holes occupying a few active orbits. The
set of states with the configurations of active orbits is called model space which is
referred to as the P space. The complement of the P space is called the Q space.
We define projection operators P and Q which project states onto the P and Q
spaces, respectively. The operators P and Q are introduced as the eigenprojectors
of I, and satisfy the relations

[H, P]=[H, Q]=0,
QH,P=PH,Q=0. (2-3)

The aim now is to construct an effective Hamiltonian H, which acts only
inside the P space and satisfies the condition that any eigenvalue of H_¢ should
be one of the exact eigenvalues of the full Hamiltonian F1. A general equation for
determining I can be derived by the use of the similarity transformation theory.
We consider a similarity transformation of the Hamiltonian M

H=X"'HX, (2-4)

where X is a transformation operator which is defined in the entire Hilbert space
and has its inverse XL

The transformed Hamiltonian 4 is decomposed into four terms

I =PIHP+PHQ+QIP+QIQ. (2-5)
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The condition that PYH P be the P-space effective Hamiltonian is
QHP=QX'HX)P=0. (2-6)
Then the effective Hamiltonian Hy is given by
ILy=PIP=P(X "'"HX)P. (2-7)

Equation (2-6) provides the necessary and sufficient condition for the determina-
tion of M, We can prove this statement by following the similarity transforma-
tion theory in the eigenvalue problem. We here note that if X is a solution to

Eq. (2-6), Hy in Eq. (2-7) satisfies
el ¢y = I 19> (2-8)

for any state [¢> in the P space. Therefore, the eigenvalue of Il becomes also
the eigenvalue of 4. This means that the eigenvalue of H.; agrees with one of
the eigenvalues of the Hamiltonian H, because the similarity transformation does
not change the eigenvalues.

Different choice of X leads us to a different many-body theory. The unitary

)

transformation method'® or the exp(S) theory'™ corresponds to a certain choice of

X and the fundamental equation for the effective interaction in each theory can be
derived from the general equation (2-6).

We here consider a similarity transformation
X=¢", (2-9)
H=e"He", (2-10)

where w is an operator which has the properties
w=0wP, (2-11)
PoP=QwQ=PpQ=0. (2:12)

The w is introduced as an operator which acts as a transformation of a P-space

state to a (-space state. From Eq. (2-11), we have another property of o
W =pt=--=0. (2-13)

These properties of » simplify extremely the calculation of the transformation of

IH in Eq. (2:10). We have from Eq. (2-13)
N=¢"=14w, (2-14)
and the four terms in Eq. (2:5) are given by

PHP=PHP+PVQu, (2-15)

Zz0z 1snbny oz uo 3senb Aq $S5Z#98 /1 602/9/79/001e/did/wod dno-olwsepese//:sdiy Wwoly papeojumoq



Convergent Theory for Effective Interaction in Nuclei 2095

PHQ=PVQ, (2-16)
Q.9Q=QHQ—wPVQ, (2-17)
QU P=QVP+QHQw—wPHP—0PVQo, (2-18)

where we have used the relation (2-3) for H.
From Egs. (2:6) and (2-18), we have an equation for m

OVP+OQHQw—oPIIP—oPVQw=0. (2-19)

This is our fundamental equation for determining H. If we have a solution
w to Eq. (2:-19), we obtain H; by substituting o into Eq. (2:15). We define
P-space effective interaction by subtracting the unperturbed energy PH,P from

Hese
R=Il4+—PH,P
—PVP+PVQw. (2-20)
The P-space eigenvalue problem is then written as
Hetlpy= (PHP+R) 16,0 =E,[6,) . (2-21)

The eigenvalue K, agrees with one of the eigenvalues of I, as long as w is a
solution to Eq. (2-19). In terms of E, and |$,>, Eq. (2:19) can be solved

formally as

d ~
o= 2 0(E,) (2O (2-22)
with
1
E)=_. _QVP 9.
oE)= 5 g (2-23)

where <$ﬂ| is the biorthogonal state corresponding to [¢,> and d is the dimension
of the P space. The effective interaction is then given by

4 .
R=PVP+ Z:]PVQE QHO QVP|g, 5P, [ (2.24)

The true eigenstate of I corresponding to the P-space eigenstate |¢,> is given by
7> =c"l¢,>
= I(/)/L> +o (E/z> I¢/z>~ (2-2b)

The term w(E,) |$,> represents the (-space component in the true eigenstate of
IH. The eigenstate |%,> in Eq. (2-25) is Feshbach’s formal solution and the
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effective interaction R in Eg. (2-24) is the Bloch-Horowitz energy dependent
solution.

It may be of interest mathematically to note that the transformation of H in
Eq. (2-10) defines the Q-space “effective” Hamiltonian Q4Q in Eq. (2-17) in the

sense that
<(/J)Q‘QL%Q:<¢qi (QHQ - CZ)P‘/YQ) = Eq <¢q! , (226>

where (¢, is an eigenstate in the dual Q space and E, is one of the exact
eigenvalues of FH.

The energy independent Rayleigh-Schridinger (R.S.) theory for the effective
interaction can be reformulated on the basis of the similarity transformation in
Eq. (2-10). This reformulation may be useful for the understanding of the full

structure of the R.S. theory. The usual wave operator used in the R.S. theory
is

2=P+o. (2-27)
In terms of 2, Eq. (2:19) for o becomes a simple form
QHR—-QQPHR=0. (2.28)

We now consider a degenerate case that the unperturbed energies of the
P-space states are degenerate, i.e.,

PH,P=E,P. (2.29)

In this degenerate case, Eq. (2-28) for 2 is written as
1 Q
Q=P+ —QVR—=8PVQ, (2-30)
e e

where ¢ is the energy denominator defined by
e=E,—QIHQ. (2-31)

Equation (2-30) is just Bloch’s equation.”” Some equivalent equations have also
been derived by Schucan and Weidenmiiller’ and by Lindgren®” from different
approaches. Bloch proved that the R.S. expansion can be generated from
Eq. (2-30). The R.S. expansion, which is the order by order expansion in powers
of the interaction V, can be derived as follows: We expand £ as

g:P+g(1)+Q(2>+_._
=51 0%, (2-32)
k=0

where 29 =P and 2% for n=>1 contains all terms of n-th order in V, From
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Convergent Theory for Effective Interaction in Nuclei 2097
Eq. (2-30), we obtain an equation for 2%
gm =Ly ga-n_ L5 gwpyga-i-n, (2-33)
e e k=0

The effective interaction R in Eq. (2-20) is now given by PV& and R is expanded

as

R=3R™ (2-34)
n=>0
with
R = PVQ® (2-35)

where R™ is (n+41)-th order term in V. The solution for R™ is then given
by

R =Py Ly ge-n X pyrQgwpa-i-n, (2-36)
e k=0 ¢
If we start with 29 =P and R” =PV P, the recurrence procedure in Egs. (2-33)
and (2-36) generates all terms in the R.S. expansion. Equation (2-36), of which
general structure has been discussed in Ref. 24), would be fruitful in the study
of the linked cluster expansion for the effective interaction.

If the R.S. expansion for R is convergent, we can solve Bloch’s equation
(2-30) or equivalently Eq. (2-19) for o perturbatively. However, the system of
interest, especially the nuclear many-body system, often has low lying collective
states (intruder states) which give rise to the divergence of the perturbation
series.  As has already discussed by Schucan and Weidenmiiller, the R.S. expan-
sion is divergent in almost all of the practical nuclear problems. In the divergent
case, the recurrence procedure in Eq. (2-36) becomes unstable and we cannot
obtain any reliable solution from the perturbation expansion for R. However, the

solution @ or £ does exist in principle and some other methods are possible to
solve Eq. (2-19) or (2-30).

§ 3. Iteration method and convergence condition

Any expansion formula for the effective interaction based on the R.S. theory
appears as a solution to the general equation (2-19). However, it should be noted
that the equation for ® is nonlinear and the solution w is not unique. The R.S.
perturbation expansion, which is derived from the recurrence procedure in
Eq. (2-36), gives us one possible solution to Eq. (2:19). We shall show that the
nonlinear equation (2-19) can be solved by the iteration method. It is known to
a nonlinear equation that a different iteration procedure (linearization procedure)
would lead us to a different solution or a different expansion formula. Several
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iteration procedures are possible, but we here discuss two methods which may be
important in the application to the practical problem.
(A) The self-energy insertion procedure

We consider a linearized iterative equation for the solution w to Eq. (2-19)

(Ey—QHQ)0,=QVP—0,(PVP+PVQa,.)
= QVYP* (J)n‘—[{nfl s (3 ' 1)

where we have used the assumption (2-29) for the unperturbed Hamiltonian I1,.

We define R, as n-th order iterative effective interaction
R,=PVP+PVQo,. (3-2)
The solution w, to Eq. (3-1) is given by a series expansion

oo *_1 NELEE! . )
e s VP (R, )", 5.3
‘ = EOfQHQ) (Ra) (3-3)

The corresponding n-th iterative effective interaction R, is given by
Rn:Q';" 2 Qm <[€n~1> m’ (84>
m=1

7, 11

where O is the Q-box interaction defined by

- | 1
_PVP+PVO.. L. ovp
C £, —-QH QQ
~pvPPveyPsPvevLyvp ..., (3-5)
C (44 [

and Q,, is

i —1 mit
m— I)‘].( = > QV l)
Q 2 <EO —0QHQ
_ 1 aQ (3:6)
m! dE™

The solution in Eq. (3-4) is the same as Krenciglowa and Kuo’s resummation
formula.”® In the limiting case that n—>oco, the solution R, agrees with the Des

Cloizeaux® and Brandow’s formal solution”

Ze:/o:Q'&— 2 Qm, (Rm) m' (3.7)
ot
As has already discussed by Schucan and Weidenmiiller," the series expansion for

R diverges whenever the intruder state appears in the low lying spectrum to be
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produced from the P-space effective interaction. In this divergent case, the recur-
rence relation for R, in Eq. (3-4) becomes unstable.

The divergence of the expansion in Eq. (3-7) does not necessarily mean the
divergence of the iterative solution w, to Eq. (3-1). Actually, the series o, in
Eq. (3-3) can be summed up and the solution can be expressed in a matrix form
as

lalonl@y= 31 <alVIBXBI ]Rl >, (3-8)

and the corresponding effective interaction is given by

Virdr] 1 I (3-9)

{a| Rl =LalV[B) |‘ <a Eyt Ry

where [¢) and ¢, are the eigenstate of QF(Q and the corresponding eigenvalue
respectively, i.e.,

QHOQlg> =29, (3-10)

and |3» and [7) are the orthogonal P-space states. Equation (3:9) manifests
itself that the iteration procedure in Eq. (3-1) corresponds to the self-energy
insertion.

We obtain another expression for the iterative solution w, to Eq. (3-1) by

introducing the eigenstate of (n2—1)-th order P-space effective Hamiltonian, ie.,
(PHUP+R71—1> [{/)ﬂ(n—l)>: Eﬂ(n—l)‘(/)ﬂ(n—l)>. (311)
By using E," and |$," ">, we can solve Eq. (3-1)

SR
4= 1E<" Y —QHQ™

Wy =

QVP|4,0705(F, 0], (3-12)

where <{¢,""| is the biorthogonal state corresponding to [, ">, The effective
interaction is now given by

1 ~
R,=PVP+ Y1 PVO _ QVP|$, @5 ¢
+” E (71. 1y QHQQ I¢F ><¢IL I
‘LE‘ E (n— 1)) [() (n— l)><¢ (n— l)l (313>

=

where /Q\(E/f"’“) is defined as the Q-box interaction at E,=E,” " in Eq. (3-5).
The iterative solution in Eq. (3-13) has been derived by Krenciglowa and Kuo.'”
The solution R, in Fq. (3-13) is equivalent to the self-consistent solution for the
energy dependent Bloch-Horowitz cffective interaction in Eq. (2-24).

Let us now discuss the covergence condition for the iteration procedure (A).

220z 1snBny 0z uo 1s8nb Aq $5Z7981/1602/9/79/el0ne/d)d/woo"dno-olwepese;/:sdny woly pepeojumod



2100 K. Suzuki and S.Y. Lee

Even though there are some intruder states in the sytem, the iterative solution
in Eq. (8-9) or (3-13) is generally convergent. The iterative solution converges
to a subset of eigensolutions of the full Hamiltonian. The problem is which subset
of eigenvalues and eigenstates can be obtained from the iterative equation (3:9)
or (3-13). It has already been known from the model calculation that if the
solution is convergent, the eigenstates with large P-space overlap are obtained from
the P-space eigenvalue problem in Eq. (2-21).%

The general convergence condition can be derived from the iterative equation
(3-1). Let us define Jw, as a small deviation of w, from the exact solution o,

0w, =W, —o . (3-14)
The corresponding deviation §R, of R, from the solution R is given by
OR,=PVQ(00,). (3-15)
From Eq. (3:-1), we have the following relation between ¢R, and 0R,_;:
OR,\pp = — {0 (E) 0} 0R.1d,.> (3-16)

where |¢,> is the eigenstate of the P-space effective Hamiltonian in Eq. (2-21)
and w(E,) is defined in Eq. (2:23). In the derivation of Eq. (3-16), we have
neglected the higher order term with respect to the deviations 0w, and 0w,-,.
The relation (3-16) can also be derived from the solution R, in Eq. (3-9). The
convergence condition of the iteration means that the norm [0R,|¢,>] must be
smaller than ||[0R,|¢,>]. From Eq. (3-16), the convergence condition becomes

H 6Rn ‘ (/);L>H I= <¢ﬂ { 6RI¢—1 {U)TU) <E/z) o' (E/—') a)} 6Rn~1 1 (/)ﬂ>

< FOR.- 821" (3-17)
‘We here consider the eigenvalue problem
Fl&H>=W,.l& (3-18)
with
F,=ow(E)o (E)o. (3-19)

The F, is a P-space operator and Hermitian. We easily see that I, satisfies
(PIF,I9>=0 (3-20)

for any state |¢> in the P space. Therefore, the eigenvalue W, must be zero or
positive and the normalized eigenstates {|&>} in Eq. (3:18) span the orthogonal set
in the P space. The condition (3-17) is now written as

2ICEIOR 8,0 W <2 [KEIOR, -l |? (3-21)
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which must be satisfied for any small deviation §R,_;., We then obtain the con-
vergence condition

W,e<1. (for any g and &) (3-22)

If the full Hamiltonian H has the solutions » and w(Z,) such that W, satisfy
the condition (3-22), the iteration procedure in Eq. (3-1) or equivalently in
Egs. (3-9) and (3:13) converges and the effective interaction R can be obtained.

From the condition (3-22), we obtain a necessary condition for the conver-
gence which may be of great interest in the practical application. If the condition
(3:22) is satisfied, we have an inequality

{bul{o"(E) o (E) o<1, (3-23)

where we have used the relation between o (X,) and @ in Eq. (2:-22). We then
obtain

A()Q: [<¢/l!‘(07 (E/l) (') (Eﬂ) '(I/),’I>1<1 » (3'24)

where {¢,> is a normalized P-space eigenstate. By using the expression of the
true eigenstate |¥,> of H in Eq. (2-25), we can write the condition (3-24) as

U, . 0q <1/2,
Fu?.> 1+0g

(3-25)

It is clear from the condition (3:25) that pq represents a measure of the probability
of the Q-space occupation in the true wavefunction |¥,>. It is concluded that if
the iteration procedure in Eq. (3-1) gives a convergent solution for R, the true
wavefunction |¥,> should have large overlap with the P space.

If the eigenvalues {E,} are far away from the eigenvalues {e,;} of QHQ— in
some realistic physical problems this condition is satisfied — the matrix element
of w becomes very small, ie.,

alold = KalVig,)/ (E,—ep) K1, (3-26)

In this case, the matrix element of F, in Eq. (3-19) becomes also very small and
the condition W, <(1 is satisfied. We then see that if E,&e, the iteration in
Eq. (3:9) or (3:13) converges and we obtain the true eigenstate [¥,> in
Eq. (2-25) which has large overlap with the P space.

We see from the convergence condition that when we intend to calculate the
low lying states, the model space must be chosen so that it contains the major
component of the low lying states to be produced. If there is an intruder state
and we choose the usual shell-model states as the P space, the condition pa<(1 is
not satisfied for this intruder state. In order to obtain the intruder state in the
framework of the effective interaction theory based on the iterative self-energy
insertion procedure, we need some modification to the P space. However, even if
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2102 K. Suzuki and S.Y. Lee

there are some intruder states, the iteration is generally convergent. This iteration
scheme may be efficient for the calculation of the “two-body’ effective interaction
to be used in the shell-model calculation, because the eigenstates to be obtained
are dominated by the model space component.

(B) Vertex renormalization procedure

We next consider an iterative equation
{E,— (QHQ—w, \PVO)},=QVP—w, PVP. (3-27)

In order to clarify the meaning of the iteration procedure, we introduce a renor-
malized interaction defined by

S,=0-w, V. (3-28)

The Q-space projection QS, ;Q means the Q-space “effective” interaction, which may
be clear from Eqgs. (2-17) and (2-26). In terms of S, ,, Eq. (3-27) can be solved

as

o=t o5 .p (3-29)
E,~QHO-0S,_.0
and
R,—PS, P+ PS, 0. 1 QS,..P, (3-30)

E,—QHQ—-0S,..Q
where we have used the properties
PS,_\P=PVP,
PS,_  Q=PVQ. (3-31)

We see from Eq. (3-30) that S,., serves as a renormalized vertex interaction
in this iteration procedure. However, it is worth pointing out that although
Eq. (3-30) looks symmetric in the expression, the effective interaction R, is
not Hermitian, because S}_5S,.,. It can be said from the expression for R, in
Eq. (3-30) that the iteration in Eq. (3-27) is, in essence, the vertex renormaliza-
tion procedure,

If we start with wy,=0 in Eq. (3-27), the solution R, can be written in
terms of the Q-box interaction and its derivatives. The first few terms are given by

~

R=0, (3-32)

R= 1.0, (3-33)
1-0,

R=- .Y 9

1-0,—-0,{1/(1—-0)}0
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- 1 0, (3-34)
1—_ Ql_QZRZ
where Q, and O, have been defined in Eq. (3-6). The general solution is obtained
as
1 o~
Ro= R —— (3-35)
1-0-%0. T R

The second iterative solution R, has a simple interpretation, that is, R, agrees
with the solution obtained from the application of the Newton-Raphson method to
the Bloch-Horowitz equation (2-24). The solution R, thus obtained corresponds to
a certain resummation of the folded diagrams to infinite order. This type of the
resummation has already been discussed in Refs. 10) and 24), although the general
solution R, in Eq. (3:35) had not yet been found.

The convergence condition for this iteration procedure is that the eigenvalues
of the effective Hamiltonian PH P+ R converge to those of the full Hamiltonian
H nearest to the unperturbed energy E, The proof is given as follows: Let
{¢el and i¢,> be an eigenbra in Eq. (2-26) and an eigenket in Eq. (2-21) of
QIHQ and PIP, respectively. From Eq. (3-27), we have a relation between the
deviation 6w, and dw,_,

E—E,

Galdonlgy= (=2

)<Bolb0nsld,, (3-36)

where £, and E,; are the ecigenvalues of PIHP and QHQ, respectively, We

require for the convergence of the iteration

{Pol 0wyl G| < Iyl 0w, | B>l (3-37)

We then obtain the convergence condition
_ | BBy 3.38
O, EE : ( )

q

Recall that E, and E, are both the ture eigenvalues of F1, particularly E,is not
the eigenvalue of the original (Q-space Hamiltonian QHQ. The inequality in
Eq. (3-38) manifests that the condition is satisfied by d eigenvalues {E,} of H
nearest to the unperturbed energy E,

From the convergence condition in Eq. (3-38), we can say that the admixture
in the energy spectrum of the eigenvalues of QFQ and those of the P-space
effective Hamiltonian P P does not cause instability in this iteration procedure.
Therefore, even if there are some intruder states of which eigenvalues are close
to the unperturbed energy E, thev can be produced from the P-space eigenvalue
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problem. This is the essential difference between the procedures (A) and (B).

The rate of convergence of this iteration is proportional to the magnitude of
0r,. The unperturbed energy E, can be chosen to optimize the rate of convergence.
This iteration method can reach any eigenvalue of H, if an appropriate value
of K, is chosen.

The iterative solution R, in Eq. (3-35) is indeed complicated. However,
R, should be calculated in a correct order. In the following, we shall discuss a
counter example that a truncation to Eq. (3-35) may give rise to a serious mis-
take. We consider a series expansion for R, which is actually possible and the

first few terms are given by

Rn = VQ + ‘72 VQZ - ‘73 VQS Jr """

“F T\QVQ{\ZVQ2+ ‘7‘;‘7QV‘1 VTQJ e . (3 39)
where
s 1 = )
Ve=- 7 Q, (3-40)
1-0,
~ 1 A
Va=—" _Qn. (3-41)
1—“Q1

The right-hand side of R, contains only V, with m less than . In so doing, one
can calculate an “approximate” R, or one can introduce some truncation to R,.
However, any truncation might lead to a serious mistake of inconsistency, especially
when the R.S. expansion diverges. Any truncation or approximation to R, in the
iteration procedure does not preserve the equation to be solved. The expansion
formula for R, in Eq. (3-39) may sometimes be advantageous, but it is not
advisable to apply to the actual calculation when there are intruder states. Due
to the presence of the intruder state, Q and Q,,, become quite large because of the
small energy denominator E,—QHQ in Eq. (3-5). If O and Qm are large, the
series expansion for R, is meaningless. It is, therefore, important to calculate
R, according to Eq. (3-35). It should be noted that the expression of R, in
Eq. (3-35) contains only operators defined in the P space which has rather small
dimension. We believe that the exact calculation of R, is applicable to the actual
problem, if we can calculate the Q-box interaction and its derivative Qm

§ 4. Conclusions and discussion

We have considered, in § 2, the similarity transformation of the Hamiltonian for
the derivation of the effective interaction. A general equation has been derived for
the energy independent effective interaction. It has been proved that the equation
is essentially equivalent to Bloch’s equation and the R.S. theory can be refor-

mulated on the basis of the similarity transformation theory.
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In order to solve the equation, we have discussed, in § 3, two iteration proce-
dures. It has been shown that a different iteration procedure leads us to a dif-
ferent solution or a different expansion formula for the effective interaction. Our
main interest has been how to overcome the difficulty of divergence of the R.S.
perturbation expansion due to the presence of the intruder state and how to obtain
the convergent result for the effective interaction. We have found that two itera-
tion procedures (A) and (B) bring convergent solutions even if the intruder states
are present.

The iteration method (A) corresponds, in essence, to the self-energy insertion
procedure which is also equivalent to Krenciglowa and Kuo’s iteration scheme.” Tt
has been proved that the eigenstates with large overlap with the model space are
obtained from the procedure (A). We can expect, therefore, that the procedure
(A) would be a very effective way of calculation of the “two-body” effective
interaction for the two valence particles in nuclei such as ®*O or ®F, because the
model space is chosen usually as the set of the shell-model states with the con-
figurations of a few active orbits. If the coupling between the shell-model states
and the collective intruder states is weak, the effective interaction would not be
changed largely by the intruder states. In this weak coupling case, the procedure
(A) would successfully give us the “two-body” effective interaction which includes
the renormalization effect induced by the intruder states.

In our study, we have found a very powerful iteration method (B) which is
also convergent even when there are some intruder states. The convergence con-
dition for the procedure (B) is satisfied by the eigenstates which have the eigen-
values nearest to the unperturbed energy. The convergence condition is independ-
ent of the structure of the wavefunction of the eigenstate to be produced; which is
essentially different from the convergence condition for the procedure (A). If
the unperturbed energy is chosen as an appropriate value, the iterative solution
obtained through the procedure (B) reaches all the low lying states including the
intruder states. The procedure (B) derives a new solution for the effective interac-
tion. The effective interaction derived from the procedure (B) would be quite
different from that obtained from the procedure (A). If there are some intruder
states, the effective interaction in the procedure (B) would accept a very large
renormalization and non-Hermiticity, which has already been shown by the au-
thors.® Any effort of trying to describe the intruder state in the perturbative
approach is bound to fail, but the linearized iteration procedure (B) provides us a
stable and convergent method for the calculation of the effective interaction by
which the intruder states, as well as the low lying shell-model states, can be
produced.

Only remaining problem is how to calculate the (-box interaction. This
problem will be discussed in a subsequent paper. In this respect, the study by
Adhikari and Bandad®® would- be encouraging. They have proposed a multiple
scattering equation to calculate certain type of diagrams to infinite order which are
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included in the Q-box interaction. It is hopeful that we are able to calculate

the convergent effective interaction in nuclei in very near future.
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