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A general equation is derived for constructing the effective interaction on the basis of 

the similarity transformation theory. It is proved that the equation is equivalent lo Bloch's 

equation for the degenerate perturbation theory and, therefore, the present approach is also 

equivalent to the energy independent Raylcigh-Schroclinger theory. Some iteration methods 

are proposed to solve the equation, and the convergence conditions for the iteration procedures 

are discussed. Two iteration methods~self-energy insertion and vertex renormalization~are 

obtained to reach the true eigenvalues of the full Hamiltonian even when there are some 

intruder states. It is proved that the self-energy insertion procedure produces the eigenvalues 

of eigenstates which have large overlap with the model space. On the other hand, the vertex 

renormalization procedure gives the eigenvalues nearest to the unperturbed starting energy. 

§ l. Introduction 

One of the most fundamental problems in the nuclear theory is the derivation 

of the effective interaction between nucleons in nuclei. There have been many 

theoretical studies on this subject, which are summarized in several articles,ll~ 4 J 

since Kuo and Brown's pioneering work') in applying Brueckner's reaction matrix 

theory6J to finite nuclei. The folded diagram theory 1J.7l.sJ has been developed as 

a powerful perturbation method for the derivation of the effective interaction. 

One of the characteristics of the nuclear many-body problem is that the free 

nucleon-nucleon force may have a strong repulsive core at short distance. For 

this reason, straightforward application of the perturbation theory to the nuclear 

many-body problem cannot be successful. Usual treatment of the short-range corre

lation is to introduce Brueckner's reaction matrix (G matrix) .51 •6) Usually one 

believes that one can use this G matrix as a starting interaction in the perturba

tion calculation of the effective interaction. Many numerical calculations, based 

on the G matrix, have been made, especially for nuclei with a few valence nucleons 

outside the core, e.g., 180 and 18F (see Refs. 2), 4)). 

The most outstanding problem in the perturbation approach is the convergence 

of the perturbation expansion for the effective interaction. The result obtained by 

*1 Work partially supported by USDOE Contact No. EY-76-S-02-3001. 
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2092 K. Suzuki and S. Y. Lee 

Barrett and Kirson 21 ' 9l questioned the validity of order by order calculation of the 
effective interaction. Further, the study of Sch ucan and W eidenmtiller 10l pointed 
out that the presence of the intruder state in the midst of low lying shell-model 
states is the essential source of the divergence of the perturbation expansion. 
Because such an intruder state appears quite often in the nuclear spectra, it 
throws suspicion on the development of the nuclear many-body theory. These 
intruder states are usually low lying collective states. The collectivity pushes 
the intruder state near to the low lying model-space states and this intruder state 
causes the divergence of the perturbation expansion. 

The problem of the divergence has been discussed by many authors. One of 
the approaches is to use the Pade approximant which approximates the divergent 
series by the ratio of two polynomials.w~ 13 J In this approach, it has been found 
that a rather high order of Pade approximant is necessary to obtain an accurate 
result for the effective interaction. The high order Pade approximant requires 
the calculation of high order terms in the perturbation expansion. This situation 
of the Pade approximant method seems not to make any improvement over the 
difficulty with the divergence of the perturbation expansion. 

Another approach is that a new model space which includes intruder states 
is introduced and the effective interaction is calculated perturbatively in this en
larged model space.w In this approach, some experimental knowledge of the in
truder state is necessary to perform a sensible calculation. In the nucleus with 
two valence nucleons such as 180 or 18 F, the intruder states have been established 
to be 4p-2h deformed states. Actually, there are a huge number of states with 
4jJ-2h configuration, but the intruder state is a collective linear combination of 
these 4p-2h configurations. How to construct the intruder states from the 4p-2h 
configurations may, however, be technically difficult and ambiguous. This situation 
seems to cause another complication. 

There are also other studies which aim at overcoming the divergence of the 
perturbation expansion, e.g., the partial resummation method based on the folded 
diagram theory/') the self-consistent coupled equation based on RPA/5) the Hartree
Fock basis expansion method, 16l exp (S) method,m the generalized vertex method 
based on the multiple scattering equation/8) the unitary transformation method, 19l 

etc. All of these "nonperturbed" approaches may be understood as the method 
of the partial resummation of the perturbation expansion series. In general, a 
different partial summation leads to a different solution for the effective interaction, 
whenever the perturbation expansion is divergent. 

The effective interaction depends on the set of eigenvalues to be produced. 
If the perturbation series is divergent, the resummation of the series has to be 
made with care so as to preserve the equation of motion. Our main interest is to 
investigate the situation of the resummation procedure. In this paper, we shall 
propose convergent resummation procedure for the effective interaction in the 
framework of the time independent Rayleigh-Schriidinger perturbation theory. 
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Convergent Theory for Effective Interaction in Nuclei 2093 

In § 2, a general equation is derived for the effective interaction by the use of 

the similarity transformation theory in the eigenvalue problem. We see that the 

equation is understood as a generalization of Bloch's equation20J for the degenerate 

perturbation theory. In § 3, some iteration procedures are proposed to solve the 

equation and the convergence conditions for the iterative solutions are discussed. 

A new solution is derived which is convergent even when the intruder states 

are present. In § 4, a summary of the findings of this paper is given. 

§ 2. Similarity transformation and Rayleigh-Schrodinger theory 

We consider a many-body system which is described by the Schri:idinger equa-

tion 

H[1JI) = E[1JI) (2 ·1) 

with the Hamiltonian 

(2· 2) 

where H 0 is the unperturbed Hamiltonian and Vis the residual interaction. 

The fundamental assumption in solving low lying states of the many-body 

system is that the main components of these states can be constructed from con

figurations of a few active particles and holes occupying a few active orbits. The 

set of states with the configurations of active orbits is called model space which is 

referred to as the P space. The complement of the P space is called the Q space. 

We define projection operators P and Q which project states onto the P and Q 
spaces, respectively. The operators P and Q are introduced as the eigenprojectors 

of H 0 and satisfy the relations 

[Ho, P] = [Ho, QJ =0, 

(2 ·3) 

The mm now IS to construct an effective Hamiltonian Heff which acts only 

inside the P space and satisfies the condition that any eigenvalue of Heff should 

be one of the exact eigenvalues of the full Hamiltonian II. A general equation for 

determining Heff can be derived by the use of the similarity transformation theory. 

We consider a similarity transformation of the Hamiltonian H 

cW = x- 1 HX, (2 ·4) 

where X is a transformation operator which IS defined m the entire Hilbert space 

and has its inverse x- 1• 

The transformed Hamiltonian !/{ is decomposed into four terms 

(2. 5) 
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2094 K. Suzuki and S. Y. Lee 

The condition that P !]{ P be the P-space effective Hamiltonian 1s 

Q!J[P=Q(X- 1HX) P=O. (2·6) 

Then the effective Hamiltonian Heff is given by 

(2. 7) 

Equation (2 · 6) provides the necessary and sufficient condition for the determina

tion of Heff· We can prove this statement by following the similarity transforma

tion theory in the eigenvalue problem. We here note that if X is a solution to 

Eq. (2 · 6), Heff in Eq. (2 · 7) satisfies 

(2·8) 

for any state 1¢) in the P space. Therefore, the eigenvalue of Heff becomes also 

the eigenvalue of !]{. This means that the eigenvalue of Heff agrees with one of 

the eigenvalues of the Hamiltonian H, because the similarity transformation does 

not change the eigenvalues. 

Different choice of X leads us to a different many-body theory. The unitary 

transformation method 19> or the exp (S) theory 17> corresponds to a certain choice of 

X and the fundamental equation for the effective interaction in each theory can be 

derived from the general equation (2 · 6). 

We here consider a similarity transformation 

where w 1s an operator which has the properties 

w=QwP, 

PwP=QwQ=PwQ=O. 

(2 ·9) 

(2 ·10) 

(2 ·11) 

(2 ·12) 

The w is introduced as an operator which acts as a transformation of a P-space 

state to a Q-space state. From Eq. (2 ·11), we have another property of W 

W2 =u}= ··· =0. (2 ·13) 

These properties of w simplify extremely the calculation of the transformation of 

H in Eq. (2 ·10). We have from Eq. (2 ·13) 

X=e"=1+oJ, (2 ·14) 

and the four terms in Eq. (2 · 5) are given by 

P!J[P=PHP+PVQw, (2 ·15) 
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Convergent Theory for Effective Interaction in Nuclei 

P&Q=PVQ, 

Q&Q=QHQ-ruPVQ, 

Qj{ P = Q VP + QHQoJ- ruP HP- cuPVQoJ, 

where we have used the relation (2·3) for I-I0 • 

From Eqs. (2 · 6) and (2 ·18), we have an equation for ro 

QVP+QHQoJ-roPJJP-iuPVQoJ=O. 

2095 

(2 ·16) 

(2 ·17) 

(2 ·18) 

(2 ·19) 

This is our fundamental equation for determining Heff· If we have a solution 

w to Eq. (2 ·19), we obtain Iie!f by substituting CiJ into Eq. (2 ·15). We define 

P-space effective interaction by subtracting the unperturbed energy P H 0P from 

Heff 

=P"VP+PVQoJ. (2. 20) 

The P-space eigenvalue problem is then written as 

(2. 21) 

The eigenvalue EP agrees with one of the eigenvalues of H, as long as ru is a 

solution to Eq. (2·19). In terms of E,, and 1¢,,), Eq. (2·19) can be solved 

formally as 

d 

ru = 2.: ru (E,,) i¢,,)(¢J (2. 22) 
f-1=1 

with 

1 
oJ (E)=- ··-· -QVP 

~' E -OHO ' 
fJ.' r- ,.._. 

(2. 23) 

where <¢PI is the biorthogonal state corresponding to lr/>P) and dis the dimension 

of the P space. The effective interaction is then given by 

(2. 24) 

The true eigenstate of H corresponding to the P-space eigenstate I ¢ 11 ) is given by 

I1Jr,,) = e" I r/>1) 

= l¢1,)+w(E1,) l¢1,). (2. 25) 

The term CiJ (E,,) I r/;1) represents the Q-space component m the true eigenstate of 

II. The eigenstate IW1) in Eq. (2 · 25) is F eshbach's formal solution and the 
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2096 K. Suzuh and S. Y. Lee 

effective interaction R 111 Eq. (2 · 24) is the Bloch-Horowitz energy dependent 

solution. 

It may be of interest mathematically to note that the transformation of H in 
Eq. (2 ·10) defines the Q-space "effective" Hamiltonian Q!f{Q in Eq. (2 ·17) in the 

sense that 

where ( ¢q I is an eigenstate in the dual Q space and Eq IS one of the exact 

eigenvalues of II. 

The energy independent Rayleigh-Schriidinger (R.S.) theory for the effective 
interaction can be reformulated on the basis of the similarity transformation in 

Eq. (2 ·10). This reformulation may be useful for the understanding of the full 

structure of the R.S. theory. The usual wave operator used in the R.S. theory 

IS 

f2= P+ril. (2. 27) 

In terms of f2, Eq. (2 ·19) for oJ becomes a simple form 

QHf2-Qf2PHf2=0. (2. 28) 

We now consider a degenerate case that the unperturbed energies of the 

P-space states are degenerate, i.e., 

(2. 29) 

In this degenerate case, Eq. (2 · 28) for f2 1s written as 

1 Q 
f2=P+-QVf2--f2PVQ, (2. 30) 

e e 

where e 1s the energy denominator defined by 

(2. 31) 

Equation (2 · 30) is just Bloch's eq uation. 201 Some equivalent equations have also 

been derived by Schucan and Weidenmi.iller 101 and by Lindgren2 D from different 

approaches. Bloch proved that the R.S. expansion can be generated from 
Eq. (2 · 30). The R.S. expansion, which is the order by order expansion in powers 

of the interaction V, can be derived as follows: We expand f2 as 

f2 = P+f2()) + g<2> + ... 

(2. 32) 

where g<o> = P and gcn> for n~1 contains all terms of n-th order 111 V. From 
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Convergent Theory for Effective Interaction in Nuclei 2097 

Eq. (2 · 30), we obtain an equation for gcnl 

gcn) = Q V gcn-1) _ Q ~ 1 
QCk) PV gcn-k-1). (2. 33) 

e e k~o 

The effective interaction R in Eq. (2 · 20) is now given by PVQ and R is expanded 

as 

(2. 34) 

with 

R(n) = pyg<nl ' (2. 35) 

where Rcn) 1s (n+1)-th order term in Y. The solution for Rc" 1 1s then given 

by 

RC"l =PVQvgcn-1)- ~1PVQ QCklRCn-k-1). (2· 36) 
c k= 0 c 

If we start with gcoJ = P and Rco1 = PV P, the recurrence procedure in Eqs. (2 · 33) 

and (2·36) generates all terms in the R.S. expansion. Equation (2·36), of vvhich 

general structure has been discussed in Ref. 24), would be fruitful in the study 

of the linked cluster expansion for the effective interaction. 

If the R.S. expansion for R is convergent, we can solve Bloch's equation 

(2 · 30) or equivalently Eq. (2 ·19) for o) perturbatively. However, the system of 

interest, especially the nuclear many-body system, often has low lying collective 

states (intruder states) which give rise to the divergence of the perturbation 
senes. As has already discussed by Schucan and Weidenmuller, 101 the R.S. expan
swn 1s divergent in almost all of the practical nuclear problems. In the divergent 

case, the recurrence procedure in Eq. (2 · 36) becomes unstable and we cannot 

obtain any reliable solution from the perturbation expansion for R. However, the 
solution w or S2 does exist in principle and some other methods are possible to 

solve Eq. (2·19) or (2·30). 

§ 3. Iteration method and convergence condition 

Any expansion formula for the effective interaction based on the R.S. theory 
appears as a solution to the general equation (2·19). However, it should be noted 

that the equation for !il is nonlinear and the solution U) is not unique. The R.S. 
perturbation expansion, which is derived from the recurrence procedure in 

Eq. (2 · 36), gives us one possible solution to Eq. (2 ·19). We shall show that the 
nonlinear equation (2 ·19) can be solved by the iteration method. It is known to 
a nonlinear equation that a different iteration procedure (linearization procedure) 
would lead us to a different solution or a different expansion formula. Several 
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2098 K. Suzuh and S. Y. Lee 

iteration procedures are possible, but we here discuss two methods which may be 

important in the application to the practical problem. 

(A) The self-energy insertion procedure 

We consider a linearized iterative equation for the solution O) to Eq. (2·19) 

(3 ·1) 

where we haYe used the assumption (2-29) for the unperturbed Hamiltonian H 0 • 

Vve define R, as n-th order iterative effeetive interaction 

Rn=PVP+YVQu),. 

The solution o), to Eq. (3 ·1) is given by a series expans1on 

The corresponding n-th iterative effective interaction Rn 1s given by 

Rn = Q + 25 Q"' (Rn-1) "', 
1/t=l 

where Q 1s the Q-box interaction''· w defined by 

and Q"' 1s 

Q=PVP+PVO l_ QVP 
-E0 -QHQ 

=PVP+PVQVP+PV_Q-VQVP+ ···, 
e e e 

Q,n= -PVQ(E;~di--IQ)"' ;lQVP 

1 dmQ 

m! dEo"' 

(3. 3) 

(3. 4) 

(3. 5) 

(3·6) 

The solution in Eq. (3 · 4) 1s the same as Krenciglowa and Kuo's resumma tion 

formula _w In the 1 imiting case that 11---" =, the solution R= agrees with the Des 

Cloizea ux"' and Brandow's formal solution" 

R,, = Q + I: Qm (Rw) "'. (3-7) 
m ! 

,\s hils already disrussecl hy Schncml and \Veiclenmt\ller,"'' the series expansion for 

R"" diverges vvhenever the intruder state appears in the low lying spectrum to be 
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Convergent Theory for Effective Interaction in Nuclei 2099 

produced from the P-space effective interaction. In this divergent case, the recur

rence relation for Rn in Eq. (3 · 4) becomes unstable. 

The divergence of the expansion in Eq. (3 · 7) does not necessarily mean the 

divergence of the iterative sol uti on !On to Eq. (3 ·1). Actually, the series U)n in 

Eq. (3 · 3) can be summed up and the solution can be expressed in a matrix form 

as 

(3·8) 

and the corresponding effective interaction is given by 

(3·9) 

where jq) and Sq are the eigenstate of QI-IQ and the corresponding eigenvalue 

respectively, i.e., 

(3·10) 

and [a), I d) and ir) are the orthogonal P-space states. Equation (:3 · 9) manifests 

itself that the iteration procedure in Eq. (3 ·1) corresponds to the self-energy 

insertion. 

We obtain another expression for the iterative solution Wn to Eq. (3 ·1) by 

introducing the eigenstate of (n -1) -th order P-space effective Hamiltonian, i.e., 

By using E/'- 11 and l¢1/n-Jl), we can solve Eq. (3·1) as 

d 

" (J)n= .:..._. 

/~=1 

_ 1 ___ _ OV pI¢ (n-1))(¢ (n-1) I 
E"cn-1J_QHQ- " " ' 

(3 ·11) 

(3 ·12) 

where (¢/" ·11 I is the biorthogonal state corresponding to lr;i1,cn 1)). The effective 

interaction is now given by 

R =PVP+ -0 PVO - 1 QVPI" cn-1>)('X cn-1>1 n /;;;t ~ E/n-1) -QHO '~'~' 'P" 

(3 ·13) 

where Q (E1/"- 11 ) is defined as the Q-box interaction at E0 = E 11 cn- 11 in Eq. (3 · 5). 

The iterative solution in Eq. (3 ·1 :3) has been derived by Krenciglowa and Kuo.w 

'flw solution](" in Eq. (:\. I:l) i.s equivnlent to the sdf-cotlsistt•nt solution for the 

energy dependent Bloch-Horowit;c effective interaction in Eq. (2 · 2-~). 

Let us now discuss the covergence condition for the iteration procedure (A). 
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2100 K. Suzuh and S. Y. Lee 

Even though there are some intruder states in the sytem, the iterative solution 

111 Eq. (3 · 9) or (3 ·13) is generally convergent. The iterative solution converges 

to a subset of eigensolutions of the full Hamiltonian. The problem is which subset 

of eigenvalues and eigenstates can be obtained from the iterative equation (3 · 9) 

or (3 ·13). It has already been known from the model calculation that if the 

solution is convergent, the eigenstates with large P-space overlap are obtained from 

the P-space eigenvalue problem in Eq. (2·21) .231 

The general convergence condition can be derived from the iterative equation 

(3 ·1). Let us define ooJn as a small deviation of !Vn from the exact solution oJ, 

(3 ·14) 

The corresponding deviation oR, of Rn from the solution R IS given by 

(3 ·15) 

From Eq. (3·1), we have the following relation between oR" and oRn_ 1 : 

(3 ·16) 

where 1¢,,) is the eigenstate of the P-space effective Hamiltonian in Eq. (2·21) 

and w (E1,) is defined in Eq. (2 · 23). In the derivation of Eq. (3 ·16), we have 

neglected the higher order term with respect to the deviations OOJn and OtVn-1· 

The relation (3 ·16) can also be derived from the solution Rn in Eq. (3 · 9). The 

convergence condition of the iteration means that the norm l[oRnl¢~')[1 must be 

smaller than II oRn-11¢1') II. From Eq. (3 ·16), the convergence condition becomes 

li oRnl¢") li 2 = ( ¢,,1 oRL1 {cu1w (E,J w1 (E,,) w} oRn-11¢,,) 

<II oRn-11¢1')11 2
• 

\V e here consider the eigenvalue problem 

with 

(3 ·17) 

(3 ·18) 

(3 ·19) 

The F,, 1s a P-space operator and Hermitian. We easily see that F,, satisfies 

(3. 20) 

for any state 1¢) in the P space. Therefore, the eigenvalue vVI', must be zero or 

positive and the normalized eigenstates {I;)} in Eq. (3·18) span the orthogonal set 

in the P space. The condition (3 ·17) is now written as 

(3. 21) 
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Convergent Theory for Effective Interaction in "Vuclei 2101 

which must be satisfied for any small deviation oRn-l· We then obtain the con

vergence condition 

(3 ·22) 

If the full Hamiltonian H has the solutions U) and IV (E,,) such that w~, satisfy 

the condition (3 · 22), the iteration procedure in Eq. (3 ·1) or equivalently in 

Eqs. (3 · 9) and (3 ·13) converges and the effective interaction R can be obtained. 

From the condition (3 · 22), we obtain a necessary condition for the conver

gence which may be of great interest in the practical application. If the condition 

(3 · 22) is satisfied, we have an inequality 

where we have used the relation betvveen w (E,) and 1v in Eq. (2 · 22). We then 

obtain 

(3. 24) 

where 1¢,) is a normalized P-space eigenstate. By using the expression of the 

true eigenstate 11Jf,,) of H in Eq. (2 · 25), we can write the condition (3 · 24) as 

(3. 25) 

It is clear from the condition (3 · 25) that PQ represents a measure of the probability 

of the Q-space occupation in the true wavefunction j1Jf1,). It is concluded that if 

the iteration procedure in Eq. (3 ·1) gives a convergent solution for R, the true 

wavefunction 11Jf,) should have large overlap with the P space. 

If the eigenvalues {E,} are far away from the eigenvalues {cq} of QHQ- in 

some realistic physical problems this condition is satisfied - the matrix element 

of w becomes very small, i.e., 

(3 ·26) 

In this case, the matrix element of F 11 in Eq. (3 ·19) becomes also very small and 

the condition ~V~,<1 is satisfied. We then see that if E 11 «:;cq, the iteration m 

Eq. (3 · 9) or (3 ·13) converges and we obtain the true eigenstate 11Jf ,) in 

Eq. (2 · 25) which has large overlap with the P space. 

We see from the convergence condition that when we intend to calculate the 

low lying states, the model space must be chosen so that it contains the major 

component of the low lying states to be produced. If there is an intruder state 

and we choose the usual shell-model states as the P space, the condition PQ<1 is 

not satisfied for this intruder state. In order to obtain the intruder state in the 

framework of the effective interaction theory based on the iterative self-energy 

insertion procedure, we need some modification to the P space. However, even if 
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there are some intruder states, the iteration is generally convergent. This iteration 

scheme may be efficient for the calculation of the "two-body" effective interaction 

to be used in the shell-model calculation, because the eigenstates to be obtained 

are dominated by the model space component. 

(B) Vertex renormalization jJrocedure 

We next consider an iterative equation 

(3 ° 27) 

In order to clarify the meaning of the iteration procedure, we introduce a renor

malized interaction defined by 

(3 ·28) 

The Q-space projection QSn_ 1Q means the Q-space "effective" interaction, which may 

be clear from Eqs. (2 ·17) and (2 · 26). In terms of Sn-~> Eq. (3 · 27) can be solved 

as 

Wn = E _ QI-iQl _ QS Q-QSn-1P 
0 0 . n-1 

(3·29) 

and 

R =PS 1P+PS 1Q-- --1----0S 1P 
n n- n- Eo- QHoQ- QSn-1Q- n- ' 

(3·30) 

where we have used the properties 

(3 ° 31) 

We see from Eq. (3 · :-30) that Sn-I serves as a renormalized vertex interaction 

in this iteration procedure. However, it is worth pointing out that although 

Eq. (3 · 30) looks symmetric in the expression, the effective interaction R, is 

not Hermitian, because SJ_,=;t=,'-1',_ 1, It can be said from the expression for R, in 

Eq. (3 · 30) that the iteration in Eq. (3 · 27) is, in essence, the vertex renormaliza

tion procedure. 

If we start with rv0 = 0 in Eq. (3 · 27), the solution Rn can be written in 

terms of the Q-box interaction and its derivatives. The first few terms are given by 

R1=Q, 

R2=- 1=Q, 
1-Ql 

(:-:l 0 32) 

(3 ° 33) 
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(3. 34) 

where Q1 and Q, have been defined in Eq. (3 · 6). The general solution is obtained 

as 

Rn = ------ - 1- ···· ···---Q · 
n-1 ,-.... n-1 

(3. 35) 

1 - Ql- ~ Qm IT Rk 
m=2 k=n-m+l 

The second iterative solution R, has a simple interpretation, that is, R, agrees 

with the solution obtained from the application of the Newton-Raphson method to 
the Bloch-Horowitz equation (2 · 24). The solution Rn thus obtained corresponds to 

a certain resummation of the folded diagrams to infinite order. This type of the 
resummation has already been discussed in Refs. 10) and 24), although the general 

solution Rn in Eq. (3 · 35) had not yet been found. 

The convergence condition for this iteration procedure is that the eigenvalues 

of the effective Hamiltonian P Il0P + R converge to those of the full Hamiltonian 
I-I nearest to the unperturbed energy E 0• The proof is given as follows: Let 

(¢ql and I(~") be an eigenbra in Eq. (2·26) and an eigenket in Eq. (2·21) of 
Q3CQ and P 3f P, respectively. From Eq. (3 · 27), we have a relation between the 

deviation OWn and OWn-t 

(3. 36) 

where E,, and Eq are the eigenvalues of P 3( P and Q3fQ, respectively. We 
require for the convergence of the iteration 

(3. 37) 

'vVe then obtain the convergence condition 

(3. 38) 

Recall that Eq and E,, are both the ture eigenvalues of H, particularly Eq is not 

the eigenvalue of the original Q-space Hamiltonian QHQ. The inequality 111 

Eq. (3 · 38) manifests that the condition is satisfied by d eigenvalues {E"} of H 
nearest to the unperturbed energy E 0• 

From the convergence condition in Eq. (3 · 38), we can say that the admixture 
in the energy spectrum of the eigenvalues of QHQ and those of the P-space 

effective Hamiltonian P 3f P does not cause instability in this iteration procedure. 
Therefore, even if there are some intruder states of which eigenvalues are close 
to the unperturbed energy E 0 , they can be produced from the P-space eigenvalue 
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problem. This is the essential difference between the procedures (A) and (B). 

The rate of convergence of this iteration is proportional to the magnitude of 

PE,· The unperturbed energy E 0 can be chosen to optimize the rate of convergence. 

This iteration method can reach any eigenvalue of H, if an appropriate value 

of E 0 is chosen. 

The iterative solution Rn in Eq. (3 · 35) is indeed complicated. However, 

Rn should be calculated in a correct order. In the following, we shall discuss a 

counter example that a truncation to Eq; (3 · 35) may give rise to a serious mis

take. We consider a series expansion for Rn, which is actually possible and the 

first few terms are given by 

Rn=VQ+ V2VQ2+ VaVQ3 +""" 

+ V2 vQ V2 VQ2 + Va vQ V2 VQ3 + ...... , (3. 39) 

where 

VQ=-~-Q, (3·40) 
1-QI 

~ 1 ~ 

V m =---=-Qn,. (3 • 41) 
1-QI 

The right-hand side of Rn contains only V m with rn less than n. In so doing, one 

can calculate an "approximate" Rn or one can introduce some truncation to Rn. 

However, any truncation might lead to a serious mistake of inconsistency, especially 

when the R.S. expansion diverges. Any truncation or approximation to Rn in the 

iteration procedure does not preserve the equation to be solved. The expansion 

formula for Rn in Eq. (3 · 39) may sometimes be advantageous, but it is not 

advisable to apply to the actual calculation when there are intruder states. Due 

to the presence of the intruder state, Q and Qm become quite large because of the 

small energy denominator E 0 - QHQ in Eq. (3 · 5). If Q and Qm are large, the 

series expansion for Rn is meaningless. It is, therefore, important to calculate 

Rn according to Eq. (3 · 35). It should be noted that the expression of Rn in 

Eq. (3 · 35) contains only operators defined in the P space which has rather small 

dimension. We believe that the exact calculation of Rn is applicable to the actual 

problem, if we can calculate the Q-box interaction and its derivative Qm· 

§ 4. Conclusions and discussion 

We have considered, in § 2, the similarity transformation of the Hamiltonian for 

the derivation of the effective interaction. A general equation has been derived for 

the energy independent effective interaction. It has been proved that the equation 

is essentially equivalent to Bloch's equation and the R.S. theory can be refor

mulated on the basis of the similarity transformation theory. 
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In order to solve the equation, we have discussed, in § 3, two iteration proce

dures. It has been shown that a different iteration procedure leads us to a dif

ferent solution or a different expansion formula for the effective interaction. Our 

main interest has been how to overcome the difficulty of divergence of the R.S. 

perturbation expansion due to the presence of the intruder state and how to obtain 

the convergent result for the effective interaction. We have found that two itera

tion procedures (A) and (B) bring convergent solutions even if the intruder states 

are present. 

The iteration method (A) corresponds, in essence, to the self-energy insertion 

procedure which is also equivalent to Krenciglowa and Kuo's iteration scheme.w It 

has been proved that the eigenstates with large overlap with the model space are 

obtained from the procedure (A). We can expect, therefore, that the procedure 

(A) would be a very effective way of calculation of the "two-body" effective 

interaction for the two valence particles in nuclei such as 180 or 18F, because the 

model space is chosen usually as the set of the shell-model states with the con

figurations of a few active orbits. If the coupling between the shell-model states 

and the collective intruder states is weak, the effective interaction would not be 

changed largely by the intruder states. In this weak coupling case, the procedure 

(A) would successfully give us the "two-body" effective interaction which inc! udes 

the renormalization effect induced by the intruder states. 

In our study, we have found a very powerful iteration method (B) which is 

also convergent even when there are some intruder states. The convergence con

dition for the procedure (B) is satisfied by the eigenstates which have the eigen

values nearest to the unperturbed energy. The convergence condition is independ

ent of the structure of the wavefunction of the .eigenstate to be produced, which is 

essentially different from the convergence condition for the procedure (A). If 

the unperturbed energy is chosen as an appropriate value, the iterative solution 

obtained through the procedure (B) reaches all the low lying states including the 

intruder states. The procedure (B) derives a new solution for the effective interac

tion. The effective interaction derived from the procedure (B) would be quite 

different from that obtained from the procedure (A). If there are some intruder 

states, the effective interaction in the procedure (B) would accept a very large 

renormalization and non-Hermiticity, which has already been shown by the au

thors.'5> Any effort of trying to describe the intruder state in the perturbative 

approach is bound to fail, but the linearized iteration procedure (B) provides us a 

stable and convergent method for the calculation of the effective interaction by 

which the intruder states, as well as the low lying shell-model states, can be 

produced. 

Only remaining problem is how to calculate the Q-box interaction. This 

problem will be discussed in a subsequent paper. In this respect, the study by 

Adhikari and Bando26> would -be encouraging. They have proposed a multiple 

scattering equation to calculate certain type of diagrams to infinite order which are 
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2106 K. Suzuki and S. Y. Lee 

included m the Q-box interaction. It is hopeful that we are able to calculate 
the convergent effective interaction in nuclei in very near future. 
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