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We consider a cylindrically symmetrical shock converging onto an axis within

the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics

(MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial

magnetic field or to the azimuthal but singular magnetic field produced by a line

current on the axis. Under the constraint of zero normal magnetic field and zero

tangential fluid speed at the shock, a set of restricted shock-jump conditions are

obtained as functions of the shock Mach number, defined as the ratio of the local

shock speed to the unique magnetohydrodynamic wave speed ahead of the shock,

and also of a parameter measuring the local strength of the magnetic field. For the

line current case, two approaches are explored and the results compared in detail.

The first is geometrical shock-dynamics where the restricted shock-jump conditions

are applied directly to the equation on the characteristic entering the shock from

behind. This gives an ordinary-differential equation for the shock Mach number as

a function of radius which is integrated numerically to provide profiles of the shock

implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at

small radius. The second approach is direct numerical solution of the radially sym-

metric MHD equations using a shock-capturing method. For the axial magnetic field

case the shock implosion is of the Guderley power-law type with exponent that is not

affected by the presence of a finite magnetic field. For the axial current case, however,

the presence of a tangential magnetic field ahead of the shock with strength inversely

proportional to radius introduces a length scale R =
√

μ0/p0 I/(2 π ) where I is the

current, μ0 is the permeability, and p0 is the pressure ahead of the shock. For shocks

initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as

for the strictly gas-dynamic implosion. The diverging magnetic field then slows the

shock Mach number growth producing a maximum followed by monotonic reduc-

tion towards magnetosonic conditions, even as the shock accelerates toward the axis.

A parameter space of initial shock Mach number at a given radius is explored and

the implications of the present results for inertial confinement fusion are discussed.
C© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4894743]

I. INTRODUCTION

The study of shock waves that converge on to either a point or an axis in spherical or cylindrical

geometry, respectively, has long been of interest owing to the relevance of shock focusing for

inertial confinement fusion.1, 2 Guderley3 showed that a radially symmetric convergence of strong-

shocks in a neutral gas is described by a power-law, Mach-number-radius profile whose exponent

could be determined only from consideration of the one-dimensional unsteady Euler equations that

govern the shock collapse. Exponents were determined accurately by Butler.4 A simpler approach to

1070-6631/2014/26(9)/097103/18/$30.00 C©2014 AIP Publishing LLC26, 097103-1
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shock-convergence was introduced by Chisnell5 who considered the relationship between area and

shock strength for a shock moving along a channel.

Whitham6–8 later generalized this in a two-dimensional unsteady context to the so-called ge-

ometrical shock-dynamics, henceforth referred to as GSD, that describes the evolution of shock

waves via their interaction with bounding geometry. Geometrical shock dynamics is an inherently

nonlinear theory in which shocks propagate down the tubes defined by a system of geometrical rays

that are normal to the shock front. The shock motion is determined by information carried on the

characteristic of the same family as the shock that enters from behind. For radially symmetric shock

convergence, utilization of the shock-jump conditions then gives an ordinary differential equation

describing the shock evolution, without the need to determine the post-shock flow field. If the prin-

cipal interest lies in the shock physics and flow conditions immediately behind the shock, then this

reduction of dimensionality is appealing. Geometrical shock dynamics has proved effective for a

variety of shock-dynamics problems in multi-dimensional flows including shock focusing in gas

dynamics,9 propagation of shock waves along walls and in channels,10 shock-wave stability,7 and

shock propagation in non-uniform media.11 When applied to the symmetrically converging shock

of the Guderley type, GSD provides an extremely accurate approximation to power-law exponents

and in fact can describe an almost universal shock collapse process from an infinitesimal wave at

infinity to a strong-shock state near the point of convergence.12, 13

Interest in the effect of a magnetic field on the shock convergence process has been heightened

by the knowledge that the presence of a sufficiently strong magnetic field can inhibit the Richtmyer-

Meshkov14, 15 instability that occurs when a shock-wave impacts and impulsively accelerates a

perturbed density interface, thereby depositing vorticity and leading to rapid interface growth.16, 17

Suppression of the Richtmyer-Meshkov instability, while retaining the effects of shock heating, could

be expected to have potentially important consequences for the realization of inertial confinement

fusion (ICF). Furthermore, it has been experimentally demonstrated that immersing ICF targets in

seed magnetic fields results in an increase in observed ion temperature and neutron yield,18 which

is partially attributed to a reduction in heat losses from the center of the implosion due to electron

confinement.

A method based on shock dynamics was used by Whitham19 to conclude that the presence

of an axial magnetic field in an ionized gas whose field lines are normal to radially converging

particle paths did not affect the power-law convergence of cylindrically converging shocks: see also

Gundersen.20 Presently we revisit this configuration but also consider cylindrical shock convergence

in the presence of a singular, azimuthal magnetic field produced by a line current of constant

strength coincident with the axis of convergence. The latter will be seen to contain distinct epochs

in the radial collapse process and so overall, the flow is not of self-similar form. This case is of

particular interest as the use of a similar magnetic field in ICF experiments, generated by a seed

current through an axial thin wire, has been suggested as a means to further enhance electron

confinement.18

In Sec. II we write the equations of motion for non-resistive ideal inviscid magnetohydrodynam-

ics and develop the appropriate characteristic form. A set of restricted shock-jump conditions are

then obtained in Sec. III for flow appropriate to cylindrical shocks with a magnetic field orthogonal

to particle paths, and zero tangential velocity jump across the shock. The method of GSD is then

applied to magnetohydrodynamic shock convergence in Sec. IV. This method is chosen in part

owing to its relative simplicity but also because it is not restricted to flow fields with a self-similar

structure.21, 22 It will be seen to be effective for describing the principal physics of symmetrical shock

focusing in magnetohydrodynamics, enabling straightforward numerical solution over almost the

whole radial domain, while providing some analytical results at small radius. Presently, the case of

a bounded axial field is considered first followed by analysis of shock convergence with a singular

azimuthal field.

Geometrical shock dynamics is an approximate and not an exact theory. Hence in Sec. V, we

apply a finite-volume, shock-capturing method to provide numerical solutions to the full equation

set for shock-collapse onto a line current in an ionized gas within the ideal magnetohydrodynamics

approximation. Detailed comparisons between the GSD predictions and the full field numerical

simulations provide confidence in the present results.
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II. EQUATIONS OF MOTION

We consider the non-dissipative and non-resistive magnetohydrodynamic equations in cylindri-

cal co-ordinates (r, θ , z). The flow is assumed to be cylindrically symmetric with the only non-zero

velocity component in the radial direction, u(r, t). It is convenient presently to utilize as a variable, the

true magnetic field divided by
√

μ0, where μ0 is the permeability of the medium. This is denoted by

B = (0, Bθ (r, t), Bz(r, t)) and will be subsequently referred to as “the magnetic field.” The equations

of motion can then be written in non-conservative form as

∂W

∂t
+ A

∂W

∂r
= −

1

r
S, (1)

where

W = {ρ, u, Bθ , Bz, p}T ,

S =
{

ρ u,
B2

θ

ρ
, 0, u Bz, a2 ρ u

}T

,

(2)

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

u ρ 0 0 0

0 u
Bθ

ρ

Bz

ρ

1

ρ

0 Bθ u 0 0

0 Bz 0 u 0

0 a2 ρ 0 0 u

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (3)

where ρ(r, t) is the fluid density, p(r, t) is the thermodynamic pressure, and a2 = γ p/ρ is the speed

of sound.

The eigenvalues of A are (u, u, u, u ± c), showing that, for the present restricted one-dimensional

flow with ut = Bn = 0, the slow and intermediate speeds collapse to zero while the fast speed collapses

to the fast magnetosonic wave speed

c =

√

a2 +
B2

θ + B2
z

ρ
. (4)

Our interest is in the characteristic equation corresponding to the wavespeed u − c, which is the

characteristic entering the shock from behind. The left eigenvector for this case is
{

0, 1,−
Bθ

ρ c
,−

Bz

ρ c
,−

1

ρ c

}

, (5)

and the corresponding characteristic equation is given by

du

dt
−

1

ρ c

d

dt

(

p +
1

2
(B2

θ + B2
z )

)

= −
1

r

[

B2
θ

ρ
− u

(

a2

c
+

B2
z

ρ c

)]

, (6)

on dr/dt = u − c. Using the chain rule for the time derivative, this can be written as

−ρ c
du

dr
+

d

dr

(

p +
1

2
(B2

θ + B2
z )

)

=
1

r

ρ c

u − c

[

B2
θ

ρ
− u

(

a2

c
+

B2
z

ρ c

)]

. (7)

The above equations govern the evolution of a quasi-neutral conducting fluid when resistive and

viscous effects are negligible, which requires the magnetic and hydrodynamic Reynolds numbers to

be large. The ideal MHD approximation also requires that the plasma must be highly collisional, so it

can be treated as a continuum, and that the ion Larmor radius be small compared to the characteristic

length scales of the flow. To assess whether these conditions may be violated in the present flows

requires knowledge of the solutions. These will be discussed later.
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III. MHD SHOCK JUMP CONDITIONS

In the frame of reference in which the shock is stationary, the explicit MHD shock jump

conditions are

[

ρ u′
n

]

= 0, (8)

[

ρ u′2
n + p +

1

2
B2

t

]

= 0, (9)

[

ρ u′
n u′

t − Bn Bt

]

= 0, (10)

[

ρ u′
n

2

(

u′2
n + u′2

t

)

+
γ u′

n p

γ − 1
+ u′

n B2
t − u′

n u′
t Bt

]

= 0, (11)

[

u′
n Bt − u′

t Bn

]

= 0, (12)

where Bn and Bt are the reduced magnetic fields normal and tangential to the shock, respectively,

u′
n and u′

t are the fluid speeds normal and tangential to the shock, respectively, in shock-fixed co-

ordinates, γ is the ratio of specific heats, and [Q] represents the jump of Q across the shock. In the

present application we will consider a cylindrical shock imploding onto the axis at r = 0. Conditions

upstream of shock in the laboratory frame of reference will then be taken as u = 0, ρ0 = constant,

p0 = constant, and magnetic field B0(r), which is tangential to the shock and could be either Bθ , Bz

or some combination of these. In this configuration we will set Bn = 0, ut = u′
t = 0. For the normal

velocity the transformation from shock-fixed to laboratory co-ordinates is u = u′
n − US where u is

radial velocity, and Us > 0 is the shock speed. The tangential magnetic field Bt will again be either

Bθ or Bz. The shock jump conditions obtained below under these conditions will be referred to as

the restricted jump conditions.

From (4) the MHD wave speed ahead of the shock can be written as

c0(r )2 = a2
0 +

B2
0 (r )

ρ0

, a2
0 = γ

p0

ρ0

. (13)

The local shock Mach number and the ratio of the sound speed ahead of the shock to the single

MHD speed ahead of the shock are defined, respectively, by

M ≡
Us

c0

, ǫ ≡
a2

0

c2
0

. (14)

Since by (13), a strong magnetic field gives c0 ≫ a0, then this case will correspond to ǫ ≪ 1. It will

later be seen that presently, U = U(r, t), ǫ = ǫ(r).

With these definitions the local, restricted shock-jump conditions for density and pressure can

be determined from (8) to (12) as

η ≡
ρ

ρ0

=
−ǫ(2 − γ ) − (γ − 1)M2 − γ + G(ǫ, M2, γ )

2(1 − ǫ)(2 − γ )
, (15)

G(ǫ, M2, γ ) =
√

4(1 − ǫ)(2 − γ )(γ + 1)M2 +
(

ǫ(2 − γ ) + (γ − 1)M2 + γ
)2

, (16)

p

p0

= 1 +
1

2

(

1

ǫ
− 1

)

(

1 − η2
)

γ +

(

1 − 1
η

)

γ M2

ǫ
. (17)

From (15) it can be shown that η ≥ 1 requires that (ǫ − 1)(2 − γ )(M2 − 1) ≤ 0. Since 0 < ǫ

≤ 1, this is satisfied with 2 > γ , M2 > 1. In a frame of reference in which the upstream gas is
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stationary (laboratory frame), the gas speed and magnetic field immediately behind the shock can

be obtained as

u = −M c0

(

1 −
1

η

)

, Bt = B0 η, (18)

and we note that for the converging shock, u < 0. The sound speed and the MHD speed behind the

shock can be calculated from the other jump conditions using

a2 = γ
p

ρ
, c2 = a2 +

B2
t

ρ
. (19)

If B0 = 0 then ǫ = 1 and it can be shown that the restricted shock-jump conditions reduce to the

standard gas-dynamic jump conditions. We remark that care must be taken in this limit owing to the

singular denominator in the expression for the jump in density.

The form of the shock jump conditions for M − 1 ≪ 1 are

ρ

ρ0

= 1 +
4

3 − ǫ (2 − γ )
(M − 1) + O

(

(M − 1)2
)

, (20)

p

p0

= 1 +
4 γ

3
(M − 1) +

2 γ (8 γ − 7)

27
(M − 1)2

(21)

+
16 γ (γ − 1)

27

(M − 1)3

ǫ
+ O

(

(M − 1)4

ǫ

)

.

For M ≫ 1 we find that

ρ

ρ0

=
γ + 1

γ − 1
−

2 (γ + 1)

(γ − 1)3

1

M2
+ O

( ǫ

M2

)

, (22)

p

p0

=
1

ǫ

(

2 γ

γ + 1
M2 −

2 (γ 2 + 2 γ − 1)

(γ + 1) (γ − 1)2

)

+ O

(

1

M2

)

. (23)

We define a strong shock as p/p0 ≫ 1. This is obtained with either M ≫ 1 with ǫ = O(1) or by ǫ ≪
1 with M − 1 = O(1). That is, strong shock conditions can be achieved by either large Mach number

or by a strong magnetic field. The fourth term on the right-side of Eq. (21) contains a potential

distinguished limit (M − 1)3/ǫ when both M → 1 and ǫ → 0.

IV. GEOMETRICAL SHOCK DYNAMICS

An ordinary differential equation for the variation of the shock Mach number with (r, t) can

be obtained by applying Whitham’s8 GSD to the present system. We can derive the equations of

GSD by a linearization of the full equations in the region behind the collapsing shock. A far simpler

method is provided by the direct application to the present equation set of Whitham’s characteristic

rule. This states that

Write down the exact nonlinear differential relation for the C+ characteristics. Substitute

the expressions for p, ρ, u, a in terms of M from the shock jump conditions. The resulting

differential equation gives the variation of M with r.

This can be applied directly to Eq. (7), with all required shock conditions given explicitly by

Eqs. (15) and (17)–(19). In general the shock converges into a non-uniform medium in the sense that

c0 = c0(r) and ǫ = ǫ(r). This means that all shock jump conditions are functions of both M and r.

The ordinary differential equation for M(r, t) is then

d M

dr
=

1

r

ρ c

(u − c)

[

B2
θ

ρ
− u

(

a2

c
+

B2
z

ρ c

)]

−
(

∂p∗

∂r
− ρ c

∂u

∂r

)

∂p∗

∂ M
− ρ c

∂u

∂ M

, (24)
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p∗ = p +
1

2

(

B2
θ + B2

z

)

, (25)

where p∗ is the magnetic pressure and it is understood that all quantities on the right-hand side are

evaluated from the shock-jump conditions.

A. Gas-dynamics case

When Bz = Bθ = 0, then c = a, ǫ = 1 and the shock jump conditions for density and pressure

are

ρ

ρ0

=
(γ + 1) M2

2 + (γ − 1) M2
, (26)

p

p0

=
2 γ M2 − (γ − 1)

γ + 1
, (27)

together with jump conditions for u, c that depend only on γ and M. Then (24) and (25) reduce to

the strictly gas dynamics case8

d M

dr
= −

1

r

M2 − 1

M λ(M)
, (28)

λ(M) =
(

1 +
2

γ + 1

1 − μ2

μ

) (

1 + 2 μ +
1

M

)

, (29)

μ2 =
(γ − 1)M2 + 2

2 γ M2 − (γ − 1)
. (30)

Whitham gives an integral expression of the form r = r(M) for the general case for both cylindrical

and spherical convergence. For the cylindrical strong shock limit M ≫ 1, λ(M) → n, where

n = 1 +
2

γ
+

√

2 γ

γ − 1
, (31)

and then (28) may be integrated to give

M = M0

(

r

r0

)− 1
n

. (32)

For γ = 5/3, 1/n = 0.225425 compared to the exact Guderley solution where the exponent in (32) is

0.226054.4 The weak shock limit can be obtained when M − 1 ≪ 1. In this case λ(M) → 1 and, with

m = M − 1, the right-side of (28) is −m/(2 r) plus higher order terms. This gives the weak-shock

result

M − 1 ∼
(

r

r0

)− 1
2

. (33)

Hence a converging cylindrical, initially weak shock will always evolve towards the strong-shock

limit.

For non-zero magnetic field, when ǫ < 1, the right-hand side of (24) can be evaluated as an

algebraic function of M, ǫ but the result is extremely cumbersome and so will not be given explicitly.

Equation (24) can however be accurately solved numerically for a given set of parameters, and this

will be done presently. Asymptotic results can also be obtained when r ≪ 1.

B. Presence of a magnetic field

In what follows we consider a cylindrical shock initialized at r = r0 with Mach number M0. We

will presently consider two separate cases described below.
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1. Constant axial magnetic field

Here the magnetic field is uniform ahead of the shock,

Bθ ≡ 0, B0 ≡ Bz = constant, (34)

where B0 is constant. We non-dimensionalize B0 by
√

p0 and characterize the magnetic field strength

by the parameter

β ≡
2 p0

B2
0

, (35)

which is constant. Also, pressure, density, and velocity are non-dimensionalized, respectively, by

p0, ρ0, and
√

p0/ρ0. The constant MHD wave speed and ǫ are then

c2
0 = γ +

2

β
, ǫ =

β γ

β γ + 2
. (36)

In anticipation of a strong shock for small r, we consider the strong shock M ≫ 1. For a uniform

magnetic field ahead of the shock ǫ is constant and so the explicit r-derivatives in (24) vanish. The

only r-dependence on the right-hand side is then the r−1 pre-factor. Upon substituting the M ≫ 1

forms of the shock jump conditions into the right-hand side of (24) and obtaining the large M limit,

the shock-dynamic ordinary-differential equation (ODE) takes the form

d M

dr
= −

1

n

M

r
+

1

r

f (β, γ )

M
+ . . . , (37)

where n is given by (31) and

f (β, γ ) =
√

γ (γ + 1) q(β, γ )

4
(

γ 2 +
√

2(γ − 1)γ + γ − 2
)2

(βγ + 2)
, (38)

q(β, γ ) = (8β − 4)γ 7/2 − 4(5β − 3)γ 5/2 + 4(4β + 5)γ 3/2 +
√

2(5β − 2)
√

γ − 1γ 3 (39)

+
√

2(6 − 7β)
√

γ − 1γ 2 − 4(β + 3)
√

γ + 20
√

2
√

γ − 1γ − 4
√

2
√

γ − 1.

To leading order this gives

M = M0

(

r

r0

)− 1
n

+ O(r
1
n ). (40)

In the above, the function f(β, γ ) is bounded for all finite β and γ > 1. It can be noted that

Eq. (40) agrees with (32) for the gas dynamics case. Hence, to leading order shock-dynamics predicts

that the presence of a uniform, transverse magnetic field does not affect the power-law strengthening

of the shock in convergence onto the axis, in agreement with Refs. 19 and 20. Numerical solutions

of the full shock-dynamics ODE, not shown presently, confirm this result. It is expected that this

result will be valid for any axial field that is a function of r only and is bounded when r → 0.

2. Shock collapse onto a line current

A magnetic field ahead of the shock is generated by a line current I of infinite extent along the

axis r = 0. The true and reduced magnetic fields are azimuthal and can then be written as

B̂θ (r ) =
μ0 I

2 π r
, B0 ≡ Bθ (r ) =

√
μ0 I

2 π r
. (41)

A length scale or critical radius can be defined as R =
√

μ0/p0 I/(2 π ). We normalize B̂ by
√

p0 μ0,

ρ and p by ρ0, p0, respectively, r by R and keep the same symbols, (Bθ , r), for non-dimensional

quantities. The dimensionless magnetic field ahead of the shock is then

B0(r ) ≡ Bθ (r ) =
1

r
, Bz = 0. (42)
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Hence for r > R the field strength is weak but is strong for r < R. Further

c0(r )2 = γ +
1

r2
, ǫ =

γ

γ +
1

r2

, ǫ = γ r2 + O(r4), r ≪ 1. (43)

The right-hand side of (24) contains variables ρ, a, c, Bθ , p, ... together with the derivatives of both

p* and u with respect to r and M. The shock jump conditions provide values of the same variables

immediately behind the shock as functions of M, γ and also of r because ǫ = ǫ(r) given by the

second equation in (43). To obtain the GSD ODE in an explicit form, the derivatives ∂p*/∂M, ∂u/∂M,

∂p*/∂r, ∂p*/∂r are first obtained by differentiation of the relevant shock-jump conditions. These

quantities and the shock jump conditions themselves are then substituted directly into (24). Since

all quantities are now functions of M, γ , r, (24) is of the form

d M

dr
= −

1

r
F(M, γ, r ), (44)

where the F(M, γ , r) is a known function of its arguments. All algebraic constructions are done

symbolically using Mathematica-9 and so the final form of (44), which is not suitable for ex-

plicit reproduction presently, exists only within a Mathematica script. Nonetheless this allows both

asymptotic analysis and numerical solution.

Putting M = 1 + m, we explore the limit m ≪ 1 for r small. This can be done either using

the full symbolic form of (44), or, as was done presently by substituting (20)–(22) together with

corresponding approximations for the m ≪ 1 forms of other shock jump conditions into the right-

hand side of (24) and expanding the resultant approximate form of F(M, γ , r) in (44) as a Taylor

series for m ≪ 1, r ≪ 1, ensuring that the result does not depend on the order of the expansion. This

was done with Mathematica and the leading-order checked manually, with the result that the form

of the shock-dynamics ODE becomes

dm

dr
=

m

r

[

1 + m
4γ − 11

18
+ O(m2)

]

+ m r

[

γ (4γ − 17)

6
+ m

γ
(

40 γ 2 − 316 γ + 535
)

108
+ O(m2)

]

+ O(m2 r2). (45)

This suggests the asymptotic form, for m ≪ 1

dm

dr
=

m

r

[

1 +
∞

∑

n=1

an(γ ) mn

]

+
∞

∑

k=1

∞
∑

n=0

bkn(γ )r k mk+n. (46)

There is a regular singular point at r = 0 whose coefficient is independent of γ . Assuming that

the series in (46) converges to a function of r, m that is analytic near r = 0, m = 0, this gives the

leading-order solution for small r

M = 1 + A r + O(r2), (47)

where A is independent of γ and will generally depend on initial conditions. This result indicates that

any cylindrically converging shock, as it approaches the origin, weakens to approach a magnetosonic

wave. When r → 0, the wave speed diverges as 1/r.

Although the right-hand-side of (44) is unwieldy it is nonetheless straightforward to integrate

this equation numerically as a nonlinear, first-order ODE, for given γ and M(r = r0) = M0. In fact

while the shock trajectory has physical meaning only as a time-wise convergence towards the origin,

the GSD ODE can be reversibly integrated for either r decreasing or increasing from some initial

condition. All numerical integrations of (44) described presently were performed for γ = 5/3 using

the NDSolve command within Mathematica-9 for the numerical solution of ordinary differential

equations. Each numerical solution uses dynamically variable stepsize with a solution provided as

an interpolating polynomial over the range of r chosen. Several options including a desired accuracy

parameter were utilized to obtain confidence in the accuracy of solutions to six significant figures.

For given γ , all possible solutions to (44) conform to a one-parameter family for which a unique
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TABLE I. Eight shock-dynamics cases. Mach numbers at three radii: r =
106, r = 104; r = 1. Tc is shock collapse time from r = 106.

r = 106 r = 104 r = 1 Tc

35.42 100.0 630.41 1.7846 × 104

10.66 30.0 189.04 5.9357 × 104

3.65 10.0 62.76 1.7466 × 105

1.69 4.0 24.50 3.9393 × 105

1.16 2.0 11.06 6.1410 × 105

1.0109 1.1 2.23 7.5897 × 105

1.0010 1.01 1.448 7.7306 × 105

1.0000984 1.001 1.0682 7.7444 × 105

solution is defined by an arbitrary M = M0 > 1 at a defined reference radius r0. In the examples

shown presently we choose r0 = 104 and eight cases with M0 = 100.0, 30.0, 10.0, 4.0, 2.0, 1.1,

1.01, 1.001. For each of these initial conditions (44) was solved numerically as described over two

ranges; inward over 10−6 ≤ r ≤ 104 and also outward with 104 ≤ r ≤ 106. When joined at r = 104,

these provide composite solutions over 12 decades in radius.

For the eight cases Table I shows M at each of three radii r = 106, r = 104, r = 1. Figure 1(a)

shows M(r) while Figure 1(b) gives M − 1 versus r, both as log-log plots. Starting from r = 106 it

can be seen that, for all cases, M(r) increases to a maximum near r = 1 and then decreases toward the

origin. Three distinct regimes are visible in Figure 1(b). When r ≫ 1 and M − 1 ≪ 1, the magnetic

field is weak and the shock convergence behaves like the gas-dynamic weak-shock case with M − 1

∼ r−1/2. But if r ≫ 1 and M ≫ 1 this is clear evidence of gas-dynamic strong-shock behavior with

M ∼ r−0.2245. When r → 0, weak-shock linear behavior M − 1 ∼ r in agreement with (47) is seen

for all cases.

The variation of the shock radius Rs(t) for t < 0 is displayed in Figure 2 where the origin of time

is such that Rs → 0 when t → 0 from below. These were obtained by numerically integrating the

ODE dRs(t)/dt = M(r) c0(r) where M(r) is obtained from the shock-dynamics and c0(r ) =
√

γ + r−2.

In Figure 2 the initial shock strength at r0 decreases upward. The uppermost curve is a limit given by
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(a) (b)

FIG. 1. Mach number versus radius obtained from shock dynamics (GSD). (a) M(r), (b) M(r)−1. Solid lines: GSD results

obtained by specifying a given Mach number at r = r0. From top to bottom: M0 at r0 = 104 with M0 = 100, 10, 4, 2, 1.1,

1.01, 1.001. Dashed line: M − 1 ∼ r; dotted-dashed, gas-dynamic weak shock M − 1 ∼ r−1/2; dotted, gas dynamic strong

shock M ∼ r−0.2254 for γ = 5/3.
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FIG. 2. Shock radius versus −t, log-log. Solid lines: SD results obtained by specifying a given Mach number at r = r0.

From bottom to top: M0 at r0 = 104 with M0 = 100, 10, 4, 2, 1.1, 1.01, 1.001, 1 +. The M0 = 1 + case is the trajectory of

a magnetosonic wave. Dashed line: Rs ∼ −t; dotted-dashed, Rs ∼ (− t)1/2; dotted-dotted-dashed, gas-dynamic strong shock

Rs ∼ (− t)0.8161 for γ = 5/3.

the passage of a cylindrical magnetosonic wave defined by the ODE dRs(t)/dt = c0(r) with solution

Rs(t) =
[

((1 − γ t)2 − 1

γ

]1/2

, t ≤ 0. (48)

In Figure 2 all shock trajectories become asymptotic to the magnetosonic wave solution r =√
−2t + O((−t)3/2), t → 0. Also shown are the slope of the large −t magnetosonic asymptote

r = −√
γ t + O(1), t → −∞ and the gas-dynamic strong-shock approximation r ∼ (− t)0.8161.

Figure 3(a) shows p(r) with p(r) − 1 shown in Figure 3(b) while Figure 4(a) shows the variation

of the density ratio ρ/ρ0(r). It can be seen that the maximum in the pressure ratio moves progressively

towards the origin as M(r0 = 104) increases, and, generally, does not coincide with the Mach-number

maximum. For shocks for which M(r = 1) ≫ 1, the density ratio achieves its maximum ρ/ρ0|max

= (γ + 1)/(γ − 1) (which is 4 for γ = 5/3), a value which is not affected by the presence of the

magnetic field. But as the shock eventually weakens when r → 0, a roll-off in the density ratio

occurs at about the same position as the pressure maximum. The behavior of the pressure can be

attributed to the fourth term, of order (M − 1)3/ǫ on the right-side of the M − 1 ≪ 1 pressure-jump

expression, (22). It can be seen from (22) that with M − 1 ∼ r given by (47), and with, ǫ ∼ r2, r ≪
1, then (M − 1)3/ǫ ∼ O(r) when r ≪ 1. Therefore, the pressure jump becomes small when r → 0.

Hence, while (M − 1)3/ǫ ≪ 1 will eventually be reached for all cases, this occurs at smaller radius

for initially stronger shocks, an effect that can be clearly seen in Figure 4(b). In particular, for our

strongest shock case, p(r = 10−6)/p0 ∼ O(104) while from Figure 1(b), M(r = 10−6) − 1 ∼ O(10−2).

V. NUMERICAL SOLUTION OF ONE-DIMENSIONAL MHD EQUATIONS

A. Numerical method

In this section we describe the method used to obtain the numerical solutions to the ideal

MHD equations presented in this work. The scheme is based essentially on minor modifications of

the method described in detail in Samtaney et al.23 The original code is an unsplit adaptive mesh

conservative code for the resistive MHD equations. For the purposes of the 1D numerical simulations

presented in this paper, we switched off the “transverse predictor” of the unsplit method. Moreover,
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FIG. 3. Pressure ratio across shock from shock dynamics (GSD). (a) p(r) and (b) p(r) − 1. Solid line: GSD results. For key,

see Figure 1.

the diffusion terms are switched off. The other modifications include stretching the mesh in the radial

direction with an analytical stretching (exponential) function, and subtracting a curl-free part of the

magnetic field (see discussion below) in an approach similar to that described in Powell et al.24 The

MHD code utilized in this paper utilizes essentially the same code base, and the same routines for

the Riemann solver, slope limiting, etc., as the one in Samtaney et al., which has been amply tested

and verified. The verifications tests include: linear wave propagation tests, regular shock refraction

at a density interface in MHD (this example is truly a multidimensional verification of the solution

in the neighborhood of shock refraction and described in thorough detail in Wheatley et al.25),

and magnetic reconnection.23 Furthermore, convergence tests in a variety of contexts have been

presented in Wheatley et al.17, 26 For completeness, we present the equations and numerical method

below.

For the purposes of numerical solution, it is convenient to write the one-dimensional equations

in conservation form as follows:

∂U

∂t
+

1

r

∂(r F)

∂r
= S, (49)
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FIG. 4. (a) Density ratio across shock. (b) (M − 1)3/ǫ(r, γ ), γ = 5/3. For key, see Figure 1.
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where U = {ρ , ρ u , Bθ , Bz , e }T, where e is the total energy per unit volume. Note that here we

are using the energy equation in place of the entropy equation used in (1), which is equivalent for

inviscid, non-dissipative MHD. The flux F(U) and source S(U) are given by

F(U ) =
{

ρ u , ρ u2 + pt , Bθ u , Bz u , ( e + pt ) u
}T

,

S(U ) =
1

r

{

0 , pt − B2
θ , Bθ u , 0 , 0

}T
, (50)

where the magnetic pressure pt is given by (25). The total energy e is related to the pressure as

follows:

e =
p

γ − 1
+

1

2
ρu2 +

1

2
(B2

θ + B2
z ). (51)

Rewriting the azimuthal component of the magnetic field as Bθ = B0
θ + B1

θ , with B0
θ = 1

r
, allows

us to cancel terms proportional to r−3 in the radial momentum equation. Without this analytical

cancellation, large numerical errors occur close to the origin. The above equations are then rewritten

as

∂Ũ

∂t
+

ξ ′(r )

r

∂(r F̃)

∂ξ
= S̃, (52)

where the solution vector is modified as Ũ =
{

ρ , ρ ur , B1
θ , Bz , ẽ

}T
. In order to resolve flow

features more accurately near the origin, we employ an analytical mesh stretching function denoted

by ξ ≡ ξ (r). For the results presented in this paper, this stretching function is chosen to be exponential

to provide a much smaller mesh spacing near the origin. The modified flux and source terms are

F̃(U ) =
{

ρ u , ρ u2 + p̃t + B0
θ B1

θ , Bθ u , Bz u

(ẽ + p̃ + B0
θ B1

θ ) u
}T

,

S̃(U ) =
1

r

{

0 , p̃t − ( B0
θ + B1

θ ) B1
θ , 0 , Bθ u , 0 , 0

}T
, (53)

where p̃t = p + 1
2

(

(B1
θ )2 + B2

z

)

and ẽ = p

γ−1
+ 1

2
ρ u2 + 1

2

(

(B1
θ )2 + B2

z

)

.

Equation (52) is solved using a finite volume upwind method as described below. The radial

domain is discretized into finite volumes and each finite volume is index by i with faces at i ± 1
2
.

The numerical method is a predictor-corrector method wherein we first predict the solution at time

n + 1
2

at the finite volume faces. To achieve this, we first define a vector of primitive variables

W ≡ W (U ) = {ρ, u, Bθ , Bz, p}T . Rewriting the equations using W in quasilinear form, we get

∂W

∂t
+ A ξ ′(r )

∂W

∂ξ
= Sp, (54)

which is the same form as in (52).

A Taylor series yields the predicted primitive variables at the finite volume faces as follows:

W
n+ 1

2

i± 1
2
,S

= W n
i +

1

2
�t

(

∂W

∂t

)n

i

±
1

2
�ξ

(

∂W

∂ξ

)n

i

= W n
i −

1

2
�t

[

An
i ξ

′(ri )

(

∂W

∂ξ

)n

i

+ Sn
p,i

]

±
1

2
�ξ

(

∂W

∂ξ

)n

i

= W n
i +

1

2
�t Sn

p,i −
1

2

(

±I − An
i ξ

′(ri )
�t

�ξ

)

�W n
i , (55)

where (±, S) is either (+, L) or (−, R) with L (resp. R) indicating the left (resp. right) predicted state

at the cell interface. We fit linear profiles in each computational cell, and compute undivided slopes

�W which are subsequently limited in characteristic space using Van Leer slope limiting. This is
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achieved by replacing the final step above as follows:

W
n+ 1

2

i± 1
2
,S

= W n
i +

1

2
�t Sn

p,i −
1

2

(

±I − An
i ξ

′(ri )
�t

�ξ

)

P±(�W n
i ), (56)

whereP±(W ) =
∑

±λk>0(lk · W )rk , where λk are eigenvalues of A, and lk and rk are the corresponding

left and right eigenvectors. The left and right predicted states at every cell interface above constitute

a Riemann problem. A standard linearized solver is used to obtain the solution, denoted as W R P of

the Riemann problem as

W̃ R P = WL +
∑

λk>0

[lk · (WR − WL )]rk

= WR −
∑

λk<0

[lk · (WR − WL )]rk, (57)

where λk, lk, and rk are computed at the arithmetic average of WL and WR .

This is then used to compute the numerical fluxes and the solution updated in each finite volume

as

Ũ n+1
i = Ũ n

i −
�tξ ′(ri )

ri�ξ

(

ri+ 1
2
F̃

n+ 1
2

i+ 1
2

− ri− 1
2
F̃

n+ 1
2

i− 1
2

)

+ �t Sn
i , (58)

where F̃
n+ 1

2

i± 1
2

≡ F̃(W R P

i± 1
2

). The code has an optional explicit second-derivative artificial viscosity

term proportional to �ξ 2 to filter grid level oscillations should these occur.

B. Comparison of numerical solution with shock dynamics

Numerical simulations of the one-dimensional equations reported presently were performed

using an exponentially stretched grid with N = 16 × 103 grid points and γ = 5/3. A resolution

study of the convergence of solutions for shock properties is discussed below. The initial condition

was a shock initiated at r = r0 with given M0. Conditions ahead of the shock were quiescent with

post-shock conditions, calculated using the restricted shock jump conditions, painted uniformly in a

few cells behind the initial shock position. This generally resulted in a start-up transient but this was

always small. Four cases with initial conditions using M0 = 100, 10, 2, 1.1 at r0 = 102 were explored.

These are different to the previously described cases with M0 given at r = 104 because, even with a

large number of radial points, the numerical solutions of the full MHD equations cannot cover the

full radial domain used in the shock-dynamics calculations. For all the present cases, independent

shock-dynamics solutions were obtained.

Diagnostics obtained from the numerical solutions were the shock trajectory and the gas condi-

tions immediately behind the shock. The shock position Rs was found as an average of the front and

back of the shock profile. The front of the shock was located at the first deviation of density and ra-

dial velocity from pre-shock conditions; the back of the shock was calculated as the local maximum

in the squared perturbation magnetic field (B1
θ )2. Post-shock values of pressure and density were

calculated from a point immediately behind the back of the shock. The corresponding pressure and

density ratios across the shock were then used in the shock jump condition, (15)–(17) to calculate

the shock Mach number. For the line-current case, the value r = Rs was used in the second equation

of Eqs. (43) where ǫ(r) appears in the shock-jump conditions. The upstream magnetic field used for

this case was calculated using the radius defining the front of the shock.

The convergence of numerical solutions for shock quantities was explored using exponentially

stretch grids with N = 4 × 103, 8 × 103, 16 × 103 for the case with M0 = 2.0, r0 = 102. Plots of

M(r) for these grids showed differences of order the line thickness and so are not displayed. Instead

we discuss convergence of the maximum Mach number Mmax achieved. For N = 4 × 103, 8 × 103,

16 × 103 we obtained Mmax = 23.564, 23.795, 23.871, respectively. Richardson extrapolation based

on these values with variable order of convergence gives Mmax = 23.958 with order of convergence

0.90. This is consistent with the use of a shock-capturing method. The relative error on the finest

grid from Richardson extrapolation is 0.00446.
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(a) (b)

FIG. 5. Comparison of shock-dynamics and numerical solutions. (a) M(r) − 1 and (b) p(r) − 1. Solid lines: numerical;

dashed-dotted: shock dynamics. From top to bottom: M0 at r0 = 102 with M0 = 100, 10, 2, 1.1.

Figures 5 and 6 show comparison between the numerical and the shock-dynamics solutions and

also illustrate the range in radius achieved by the latter. In Figure 5(a), depicting M − 1 versus r,

the differences between the shock-dynamics and numerical solutions are generally of order a few

percent across almost the whole radial range of the latter except over the final half-decade where

the numerical solutions uniformly dip below the shock-dynamics predictions. This behavior occurs

because of a smearing of a shock profile for low r; this shock smearing causes the local maximum in

the perturbed field itself to smear, so that the various detected post-shock values may no longer be

representative of the true post-shock conditions. For further decreasing r, the local field maximum

becomes indistinct and eventually disappears, leading to failure of the detection method. Shock-

dynamics correctly calculates the qualitative variation of pressure jump with radius in Figure 5(b)

including the inward movement of the maximum pressure jump with increasing initial M0.

We quantify the differences between numerical and GSD results by considering both the pressure

and Mach number at their respective maxima for all cases. Table II shows these scaled against pmax

and Mmax obtained from the numerical solutions. The relative discrepancies �p/pmax and �M/Mmax

are small for M0 = 1.1 but the differences increase as M0 increases.

(a) (b)

FIG. 6. Comparison of shock-dynamics and numerical solutions. (a) Shock speed and (b) perturbation magnetic field behind

shock. Solid lines: numerical; dashed-dotted: shock dynamics. For key, see Figure 5.
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TABLE II. Relative pressure and Mach number discrepancies between nu-

merical and shock-dynamics solutions for four cases, each at its maximum

value.

M0
�p

pmax

�M
Mmax

1.1 0.00548 0.00534

2.0 0.0948 0.0348

10.0 0.135 0.0438

100.0 0.140 0.0439

For both the shock-dynamics and the numerical solutions, the shock speed Us in Figure 6(a) is

seen to accelerate with decreasing radius. For the three cases with M0 = 100, 10, 2, the imploding

shock at first follows closely the strong shock collapse profile while for M0 = 1.1 the maximum

Mach number achieved is M ∼ 1.5 and so a strong-shock phase is not achieved. For sufficiently

small radius, all profiles show asymptotic approach to the MHD sonic speed c0 ∼ r−1.

The tangential magnetic-field strength behind the shock is given by (18). Figure 6(b) shows the

perturbation magnetic field behind the shock, B1
θ = Bθ − B0

θ with B0
θ = 1/r . Equation (18) shows

that B1
θ = (ρ/ρ0 − 1)/r , and using Eq. (20) then gives that

B1
θ =

1

r

4

3
(M − 1) + . . . . (59)

Using (47) then gives B1
θ → 4 A/3 when r → 0, hence becoming asymptotically constant at a

strength that depends on the initial conditions. In Figure 6(b) both the numerical and shock-dynamics

calculations appear to confirm this although the regions over which this asymptotic state is reached

using the former decrease for decreasing M0. A similar calculation using the first equation of (18)

gives that the gas velocity immediately behind the shock in the laboratory frame of reference

approaches the finite value u → −4 A/3 when r → 0. These results are consistent with (12).

Figure 7 illustrates u − c characteristics obtained by integration of the equation dr/dt = u − c

using a range of initial conditions and with (u, c) obtained from the numerical solutions. The two

cases shown are M0 = 10, r0 = 100 and M0 = 100, r0 = 100. In both images, (negative) time

increases top to bottom and the shock trajectory towards the axis is shown by the black line. The

undisturbed region is to the upper left in both plots. The region to the lower-right lies behind the

shock. The characteristics that intersect the shock in this region are the families that form the basis

of the shock-dynamics approximation. In the images, the characteristic curves are distorted by use

of log (r) − log (−t) co-ordinates. Those to the extreme right of the shock will pass through t = 0

with finite r and will eventually intersect a reflected shock, which is not considered presently. There

(a) (b)

FIG. 7. u − c characteristics in (− t, r) plane for two different M0, r0 = 100.
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exists a last characteristic which will become tangent to the shock with dr/dt → 0 when t → 0.

For the case M0 = 100 in Figure 7(b), this can be expected to lie somewhere between the u − c

characteristic that can be seen intersecting the shock and the first characteristic to the lower right

that, in the plot, appears as almost vertical. This last characteristic is difficult to capture from the

numerical solutions.

We now comment on breakdown of the ideal MHD approximation. First, the shock thickness

scales with the mean free path; thus when the shock radius is of the order of the mean free path,

the shock thickness cannot be neglected and our assumptions breakdown. This also applies to

the hydrodynamic case.27 Second, for the hydrodynamic and magnetic Reynolds numbers we use

density, velocity, and length scales as those immediately downstream of the shock, ρ and u, and the

shock radius Rs, respectively. Both Reynolds numbers are proportional to the product of these three

scales. In all cases considered, ρ approaches a constant value as the shock converges, as does u for

the line current case. In the axial field case, u increases like R
−1/n
s in the strong shock limit where

from (31), 1 − 1/n > 0. Thus for both fields, the Reynolds numbers decrease with shock radius near

convergence. For any finite viscosity and resistivity, this implies that for sufficiently small shock

radii the Reynolds number will no longer be large, and hence viscous and resistive effects will

become important. Another potential cause for breakdown of the ideal MHD approximation is the

shock radius approaching the ion Larmor radius, which scales linearly with the velocity normal to

the magnetic field and inversely with B. In the axial field case, u grows large near convergence while

B asymptotes to a constant value. Thus the Larmor radius is speculated to increase, causing ideal

MHD to breakdown as Rs → 0. In the line current case, the increase in B balances the decrease in

r as the shock converges, while u asymptotes to a constant value. In this case, we speculate that the

Larmor radius does not approach the shock radius near convergence.

VI. CONCLUDING REMARKS

Presently we have investigated the implosion of a cylindrical shock wave within the framework

of ideal magnetohydrodynamics, for field configurations in which the magnetic field lines are

perpendicular to radially inwards particle paths behind the shock. Two approaches were explored.

The first is Whitham’s geometrical shock dynamics obtained by substituting the restricted shock-

jump conditions, obtained as a function of both shock Mach number and a parameter representing

the magnetic field strength ahead of the shock, into the state variables contained in the equation on

the characteristic entering the shock from behind. This leads to an ordinary differential equation

for the shock Mach number as a function of radius. This equation is cumbersome but does yield

leading-order asymptotic results for both large shock Mach number and for Mach number of order

unity. It can also be readily solved numerically. The second approach is the numerical solution,

using a shock-capturing method, of the one-dimensional ideal magnetohydrodynamic equation on a

radially stretched grid.

Two distinct magnetic field configurations were investigated: an axial field of constant strength

and an azimuthal field generated by a line current along the axis of shock convergence. For the

former, a large Mach number analysis of the shock-dynamics equation indicates that the presence of

a transverse axial field does not change the convergence as described by the Guderley3, 20 algebraic,

strong-shock intensification as M ∼ r−1/n(γ ) where n(γ ) is the same as for the strong-shock, pure

gas-dynamics case. Numerical solutions, not shown presently, confirm this behavior. Although not

proven presently, we expect this result to be typical of a more general axial field variation Bz(r)

provided that Bz(r = 0) is finite.

When the magnetic field is azimuthal with variation inversely proportional to radius as generated

by a line current, then both the shock dynamics and the numerical solutions show a very different

shock collapse scenario. A one-parameter family of shock collapse profiles exists characterized

by a specified supersonic Mach number at any fixed shock radius. Further, there exists a critical

radius R determined by the line-current strength and the ambient pressure and plasma permeability,

at which the normalized magnetic field is order one. For initial shock radius larger than R, there

ensues a competition between shock intensification owing to geometrical convergence and increasing

magnetic field strength. Initially convergence is dominant in the presence of a weak magnetic
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field where an epoch of strong shock gas-dynamic convergence can be seen. As the shock radius

decreases below R, the increasing magnetic field strength leads to a dominant Lorentz force and a

rapidly increasing fast magnetosonic speed ahead of the shock. This effect overpowers geometrical

convergence with the result that the shock Mach number reaches a maximum followed by decreasing

linearly with shock radius towards a limiting magnetosonic state. The shock speed, however continues

to accelerate approaching the increasing magnetosonic speed. Past the critical radius, the shock

pressure jump may continue to increase reaching a large maximum at a radius smaller than R that

depends on the initial shock strength, followed by subsequent decrease. In fact for initially strong

shocks, very large pressure and therefore temperature ratios can be achieved across shocks whose

Mach number differs by order 1% from unity.

As discussed in Sec. I, interest in the present shock convergence properties is motivated by the

application of seed magnetic fields in ICF experiments. The proposed application of a magnetic field

generated by a seed current through an axial thin wire to further enhance electron confinement in ICF

experiments18 is similar to the present line-current case. Our results indicate that this magnetic field

has the potential to weaken the shock when it is close to convergence, limiting the temperature and

pressure achieved at the center of the implosion. Somewhat surprisingly, even though shock strength

eventually decays for the line-current case, strong pressure jump conditions can still be achieved at

quite small shock radius. Thus there is the potential to mitigate this effect through a careful choice

of experimental parameters.
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