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We propose a new approach to the determination of accurate electronic energies that are equiva-
lent to the results of high-level coupled-cluster (CC) calculations. The approach is based on merging
the CC(P ;Q) formalism, which corrects energies obtained with an arbitrary truncation in the cluster
operator, with the stochastic configuration interaction and CC ideas. The advantages of the pro-
posed methodology are illustrated by molecular examples, where the goal is to recover the energetics
obtained in the CC calculations with a full treatment of singly, doubly, and triply excited clusters.
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One of the goals of electronic structure theory is to
precisely describe increasingly complex polyatomic sys-
tems. It is generally accepted that size extensive meth-
ods based on the exponential wave function ansatz [1, 2]
of coupled-cluster (CC) theory [3–7], |Ψ〉 = eT |Φ〉, where

T =
∑N

n=1 Tn is the cluster operator, with Tn repre-
senting its n-particle–n-hole (npnh) component and N
the number of correlated electrons, and |Φ〉 is the refer-
ence determinant defining the Fermi vacuum, are excel-
lent candidates for addressing this goal. Indeed, when
applied to molecular properties and chemical reaction
pathways, the CC hierarchy, including CCSD, where T
is truncated at T2 [8, 9], CCSDT, where T is truncated
at T3 [10, 11], CCSDTQ, where T is truncated at T4

[12, 13], etc., rapidly converges to the limit of the ex-
act, full configuration interaction (FCI) diagonalization
of the Hamiltonian [14] (we adopt commonly accepted
quantum chemistry acronyms, where S, D, T, and Q
stand for single (1p1h), double (2p2h), triple (3p3h), and
quadruple (4p4h) excitations). One of the key challenges
is to incorporate Tn components with n > 2, needed
to achieve a quantitative description, without running
into prohibitive computational costs of CCSDT and sim-
ilar schemes, while eliminating failures of the more prac-
tical perturbative approximations of the CCSD(T) [15]
type in multi-reference situations, such as bond breaking
[14, 16, 17]. A similar challenge applies to other areas
of many-body theory, such as nuclear physics, where CC
methods enjoy renaissance [18–20].

In this letter, we propose a new way of obtain-
ing accurate energetics equivalent to high-level CC cal-
culations, even when electronic quasi-degeneracies and
higher–than–two-body clusters become significant, at the
small fraction of the computational cost, while preserving
the black-box character (minimum input information) of
conventional single-reference computations. The key idea
is a merger of the deterministic methodology, abbreviated
as CC(P ;Q) [21–24], with the stochastic FCI Quantum
Monte Carlo (FCIQMC) [25, 26] and CC Monte Carlo

(CCMC) [27–30] approaches. As shown in Figs. 1–3
and the Supplemental Material [31], where one aims at
recovering the CCSDT results, the stochastic CC(P ;Q)
calculations, using FCIQMC or CCMC to identify the
leading determinants or cluster amplitudes in the wave
function and the a posteriori CC(P ;Q) corrections to cap-
ture the remaining correlations, rapidly converge to the
target energetics based on the information extracted from
the early stages of FCIQMC or CCMC propagations.
We begin by summarizing the most essential ingre-

dients of CC(P ;Q), FCIQMC, and CCMC methodolo-
gies. In the CC(P ;Q) formalism, the ground-state en-
ergy of a N -electron system is determined in two steps.
In the first step, abbreviated as CC(P ), we solve the
CC equations in the subspace of the N -electron Hilbert
space H , designated as H (P ) and referred to as the
P space, which is spanned by the excited determinants
|ΦK〉 = EK |Φ〉 that together with the reference determi-
nant |Φ〉 dominate the wave function |Ψ〉 of interest (EK

is the elementary particle-hole excitation operator gener-
ating |ΦK〉 from |Φ〉). This means that we approximate
the cluster operator T by T (P ) =

∑
|ΦK〉∈H (P ) tKEK and

determine the cluster amplitudes tK by solving the sys-
tem MK(P ) = 0, |ΦK〉 ∈ H (P ), obtained by projecting
the Schrödinger equation for the CC wave function with
T = T (P ) on H (P ) [14]. Here, MK(P ) = 〈ΦK |H̄(P )|Φ〉

where H̄(P ) = e−T (P )

HeT
(P)

, are moments of the P -space
CC equations [32]. Once T (P ) and the corresponding
ground-state energy E(P ) = 〈Φ|H̄(P )|Φ〉 are determined,
we calculate the non-iterative correction [21, 22]

δ(P ;Q) =
∑

|ΦK〉∈H
(Q)

ℓK(P ) MK(P ) (1)

to E(P ), which accounts for the many-electron correlation
effects captured by the second subspace of H , referred
to as the Q space and designated as H (Q) (H (Q) ⊆
(H (0) ⊕H (P ))⊥, where H (0) is a one-dimensional sub-
space spanned by |Φ〉). The ℓK(P ) coefficients are de-
fined as ℓK(P ) = 〈Φ|(1+Λ(P ))H̄(P )|ΦK〉/DK(P ), where
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Λ(P ) =
∑

|ΦK〉∈H (P ) λK(EK)† is the hole-particle deex-

citation operator that generates the bra state 〈Ψ̃(P )| =

〈Φ|(1 + Λ(P ))e−T (P )

matching the CC(P ) ket state

|Ψ(P )〉 = eT
(P )

|Φ〉 and DK(P ) = E(P ) − 〈ΦK |H̄(P )|ΦK〉.
The final CC(P ;Q) energy is calculated as

E(P+Q) = E(P ) + δ(P ;Q). (2)

We distinguish between full CC(P ;Q) using the Epstein–
Nesbet denominator DK(P ) entering the ℓK(P ) ampli-
tudes, as described above, abbreviated as CC(P ;Q)EN,
and the CC(P ;Q)MP framework using the Møller–Plesset
form of DK(P ) [23].
The CC(P ;Q) formalism can be used in several ways.

For example, if H (P ) is spanned by all |Φa1...an

i1...in
〉 deter-

minants with the excitation rank n ≤ L, where i1, i2, . . .
(a1, a2, . . .) are the spin-orbitals occupied (unoccupied)
in |Φ〉, and H (Q) by those with L < n ≤ M , where
M ≤ N , one obtains the completely renormalized CC hi-
erarchy [21, 33, 34]. The resulting and related [16, 32, 35–
37] approaches improve poor performance of CCSD(T) in
bond breaking situations, but like CCSD(T) they decou-
ple the higher-order Tn components, such as T3 or T3

and T4, from their lower-order T1 and T2 counterparts.
There are important problems, such as the automeriza-
tion of cyclobutadiene discussed later, where this can be
detrimental to the resulting potential energy surfaces and
activation energies [21–24]. One can address this concern
by including selected triply or triply and quadruply ex-
cited determinants, in addition to all singles and doubles,
in the P space, as in the active-space considerations [17],
while using corrections δ(P ;Q) to account for the remain-
ing T3 or T3 and T4 cluster amplitudes [21–24], but this
requires the a priori knowledge of the dominant 3p3h or
3p3h and 4p4h excited determinants for the inclusion in
the P space, which are system dependent and subjec-
tively chosen by the user. Questions arise if there is an
automated way of determining P spaces reflecting on the
nature of states being calculated, while using corrections
δ(P ;Q) to capture the remaining correlations of inter-
est, and if this can be done such that the resulting elec-
tronic energies rapidly converge to their high-level (e.g.,
CCSDT) parents, even when higher–than–two-body clus-
ters become large, at the small fraction of the computa-
tional effort and with an ease of a black-box computation.
This letter shows that both questions have positive

answers if we fuse the deterministic CC(P ;Q) method-
ology with the stochastic FCIQMC and CCMC ideas.
The main idea of FCIQMC, originally introduced in [25],
is that of a stochastic population dynamics of a set of
walkers, which simulates the underlying imaginary-time
Schrödinger equation in the many-fermion Hilbert space
spanned by Slater determinants. The walkers, which can
carry positive or negative signs, inhabit the Slater deter-
minant space and evolve according to simple rules that
include spawning, birth or death, and annihilation. Once
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FIG. 1. Convergence of the CC(P ) (red filled circles and
dashed lines) and CC(P ;Q)EN (black open squares and solid
lines) energies toward CCSDT for the F2/cc-pVDZ molecule
in which the F–F distance R was set at (a) Re, (b) 1.5Re,
(c) 2Re, and (d) 5Re, where Re = 2.66816 bohr is the equi-
librium geometry. The P spaces consisted of all singles and
doubles and subsets of triples identified during the i-FCIQMC
propagations with δτ = 0.0001 a.u. (depicted by the green
lines representing the corresponding projected energies). The
Q spaces consisted of the triples not captured by i-FCIQMC.
All energies are errors relative to CCSDT in millihartree and
the insets show the percentages of triples captured during the
i-FCIQMC propagations.
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FIG. 2. Same as Fig. 1 except that the subsets of triples
included in the CC(P ) calculations are now identified by the
i-CCSDT-MC simulations and the corresponding Q spaces
consist of the triples not captured by i-CCSDT-MC.
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a critical number of walkers is reached, one begins to sta-
bilize their population using suitable energy shifts. Upon
convergence, the FCIQMC propagation produces a FCI-
level state and energy without any a priori knowledge
of the nodal structure of the wave function needed in
traditional QMC. Several ideas have been explored to
improve the original FCIQMC scheme and accelerate its
convergence [26, 38–41], including the initiator FCIQMC
(i-FCIQMC) approach, where only those determinants
that acquire walker population exceeding a preset value
(na) are allowed to spawn new walkers onto empty deter-
minants [26]. FCIQMC can be extended to truncated CI
and other many-body schemes [27, 42], including high-
level CC theories, resulting in the corresponding CCMC
(CCSDT-MC, etc.) methodologies, in which one samples
the space of excitation amplitudes (amplitudes of “exci-
tors”) by “excips,” whose population dynamics converges
to the desired CC solution [27–30]. As in FCIQMC, one
can use the initiator CCMC (i-CCMC) algorithm [29].

The FCIQMC and CCMC methodologies are useful
to us, since one can start the corresponding propaga-
tions by placing a certain, sufficiently large, number of
walkers on a single determinant, which in this letter is
the restricted Hartree-Fock (RHF) state, and let the
FCIQMC walker or CCMC excip population dynamics
capture other determinants, including those that corre-
spond to higher–than–double excitations needed to set
up meaningful P spaces in CC(P ;Q) considerations. Al-
though one may need longer propagation times τ to sta-
bilize walker (FCIQMC) or excip (CCMC) populations
to achieve the desired wave function and energy conver-
gence using purely stochastic means, the most important
determinants or cluster amplitude types, which signifi-
cantly contribute to the wave function in the end, are
captured in the early propagation stages, which require
small computational effort relative to the target CC cal-
culation. This is illustrated in Figs. 1 and 2 using the
challenging F2 molecule, as described by the cc-pVDZ
basis set [43], as an example [33, 34, 44]. We stretch
the F–F bond length R from the equilibrium geometry
Re = 2.66816 bohr, where the electronic wave function
is dominated by large dynamic correlations and where
T3 effects, measured as the difference of the CCSDT and
CCSD energies, amount to 9.485 millihartree, to 5Re,
where F2 is essentially dissociated and characterized by
large non-dynamic correlations, and where T3 effects of
49.816 millihartree exceed the depth of the CCSDT po-
tential well (the difference between the CCSDT energies
at R = 5Re and R = Re is 44.210 millihartree; see
[33, 34, 44] and the Supplemental Material [31]). Using
a time step δτ = 0.0001 a.u. and na = 3, and plac-
ing 100 walkers/excips on the RHF determinant to initi-
ate the MC propagations, the green curves “behind” the
CC(P ) and CC(P ;Q) results, which represent the appro-
priately projected i-FCIQMC (Fig. 1) and i-CCSDT-
MC (Fig. 2) energies, remain quite noisy up to about

100,000 of such time steps (called iterations), suggest-
ing that the walker populations at various determinants
and the excip populations corresponding to cluster ampli-
tudes still significantly fluctuate (we used HANDE code
[45] to perform the i-FCIQMC and i-CCSDT-MC com-
putations). At the same time, the CC(P ) calculations

using T (P ) = T1+T2+T
(MC)
3 , i.e., the CCSDT-type cal-

culations with all singles, represented by T1, all doubles,
represented by T2, and subsets of triples identified during
the i-FCIQMC and i-CCSDT-MC propagations (triples
having at least one positive or negative walker/excip on

them), represented by T
(MC)
3 , stabilize rather quickly,

reaching sub-millihartree accuracy levels relative to the
deterministic CCSDT calculations in 30,000–50,000 iter-
ations (see Table I in the Supplemental Material [31]; all
deterministic CC runs used our codes). This suggests
that one should be able to rely on the early stages of
i-FCIQMC or i-CCMC propagations to create lists of
determinants defining P spaces for CC(P ) calculations
and then use the CC(P ;Q) correction δ(P ;Q) to capture
the remaining correlation effects missing in the P -space
CC calculations. If our goal is to reproduce the CCSDT
energetics, we solve the CC(P ) equations with T (P ) =

T1+T2+T
(MC)
3 , as described above, and then use δ(P ;Q)

to correct the resulting P -space energy E(P ) for the re-
maining triples that were not captured by i-FCIQMC
or i-CCSDT-MC at the time the list of P -space excita-
tions was created. If our target is CCSDTQ, we solve the

CC(P ) equations with T (P ) = T1 + T2 + T
(MC)
3 + T

(MC)
4

and correct the resulting P -space energy E(P ) for the
triples and quadruples not captured by i-FCIQMC or
i-CCSDTQ-MC. One can extend this recipe to higher-
order CC methods with T5, T6, etc. Assuming that
the E(P+Q) energies based on the lists of P -space ex-
citations extracted from the early stages of i-FCIQMC
or i-CCMC propagations rapidly converge with τ , we
can significantly reduce the computational time of the
CCSDT, CCSDTQ, etc. calculations, while practically
avoiding the numerical noise associated with the vary-
ing walker/excip populations. The CPU time reduction
originates from three factors. First, the CPU times as-
sociated with the early stages of i-FCIQMC or i-CCMC
dynamics are very short compared to the converged prop-
agations. Second, CC(P ) calculations offer significant
speedups compared to their parent approaches, when
small fractions of triples, triples and quadruples, etc. are
involved. For example, if the total number of triples is
D and the number of triples in the stochastically deter-
mined P space is d, the speedup relative to full CCSDT

offered by CC(P ) using T (P ) = T1 + T2 + T
(MC)
3 , when

the most expensive 〈Φabc
ijk |[H,T3]|Φ〉 term in the CCSDT

equations is examined, is (d/D)2. Third, the computa-
tional cost of determining the CC(P ;Q) correction is less
than the cost of a single iteration of the target CC cal-
culation. For example, the CPU time required to deter-
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mine the δ(P ;Q) correction due to the remaining triples
outside the stochastically determined P space scales no
worse than ∼ 2n3

on
4
u, where no (nu) is the number of

orbitals occupied (unoccupied) in |Φ〉. This should be
compared to the n3

on
5
u scaling of each iteration of the

target CCSDT calculation, and one typically needs 20–
40 iterations to converge to a microhartree level.

All of the above is observed in our numerical tests
aimed at recovering full CCSDT energetics. We dis-
cuss two molecular examples, where CCSDT is an ade-
quate theory level to obtain highly accurate information
[21, 22, 33, 34, 44], namely, the F–F bond dissociation in
F2, summarized in Figs. 1 and 2 and the Supplemental
Material [31], and the automerization of cyclobutadiene,
using the cc-pVDZ basis set in both cases. We also show
the results for F2 using the larger cc-pVTZ [43] and aug-
cc-pVTZ [46] bases (see Fig. 3 and the Supplemental Ma-
terial [31]). As already explained, the CC(P ) calculations
with singles, doubles, and subsets of triples extracted
during i-FCIQMC and i-CCSDT-MC runs smoothly con-
verge to CCSDT, but the convergence is not as fast as de-
sired. The situation changes when the CC(P ) results are
corrected for the triples outside the P spaces generated
with i-FCIQMC and i-CCSDT-MC. In the case of the
F2/cc-pVDZ molecule, even whenR = 2Re or 5Re, where
T3 effects are 45.638 and 49.816 millihartree, respectively,
exceeding the dissociation energy, the CC(P ;Q) correc-
tion, especially CC(P ;Q)EN, achieves remarkable, 0.1–0.3
millihartree accuracies relative to CCSDT with only 8–
10 % (i-FCIQMC) or 12–20 % (i-CCSDT-MC) of triples
in the P space, or after about 20,000 i-FCIQMC or i-
CCSDT-MC δτ = 0.0001 a.u. iterations, reached in 8–10
wall time seconds on a quad-core Dell Precision T-1700
workstation used in our calculations. The total times
(including MC, CC(P ), and δ(P ;Q) steps) required by
the i-FCIQMC-based CC(P ;Q) calculations giving these
high accuracy levels vary between 13 seconds at R = Re

and 15 seconds in the R = 2Re − 5Re region, with the i-
CCSDT-MC-based calculations being similarly inexpen-
sive. With 30,000 MC iterations, which capture 15–21 %
of triples in the i-FCIQMC case and 19–34 % of triples
in the case of i-CCSDT-MC, we need ∼ 30 − 40 sec-
onds to complete the CC(P ;Q) calculations, recovering
the CCSDT energetics to within a few or a few tens of
microhartree. This should be compared to about 3–4.5
wall time minutes needed to solve conventional CCSDT
equations for the F2/cc-pVDZ molecule to a microhartree
level using codes compatible with our CC(P ;Q) imple-
mentation (the wall times vary due to varying numbers
of CC iterations at different R values). Compared to the
purely stochastic calculations, we do not have to stabi-
lize walker/excip populations with energy shifts, since the
convergence of CC(P ;Q) energies is achieved in the early
stages of i-FCIQMC or i-CCMC propagations. This con-
vergence is equally rapid when the cc-pVDZ basis set is
replaced by cc-pVTZ and aug-cc-pVTZ (see Fig. 3 and

0 20 40 60 80 100 120
Iterations (×103)

−5

0

5

10

15

20

Er
ro

r r
el

. t
o 

CC
SD

T 
(m
E h

) (a)

0 20 40 60 80 100 120
Iterations (×103)

(b)

0 40 80 120
Iterations (×103)

0

20

40

60

80

100

%
 o

f T
rip

le
s

0 40 80 120
Iterations (×103)

0

20

40

60

80

100

%
 o

f T
rip

le
s

FIG. 3. Same as Fig. 1 for the F2 molecule with R set at 2Re

using the (a) cc-pVTZ and (b) aug-cc-pVTZ basis sets.

the Supplemental Material [31]). For example, when the
F2/aug-cc-pVTZ molecule at R = 2Re is examined, the
differences between the CC(P ;Q)EN and CCSDT energies
after 30,000, 40,000, and 50,000 i-FCIQMC iterations,
which capture 4, 10, and 23 % of all triples, are 0.454,
0.093, and 0.002 millihartree, respectively. The speedups
offered by CC(P ;Q) relative to the deterministic CCSDT
calculation are about 90, 30, and 10, respectively.

Our final example is the automerization of cyclobuta-
diene (C4H4), examined by CCSDT and other methods
in [22]. In this case, T3 effects, estimated as the differ-
ence of the CCSDT and CCSD energies, are not only
large, but also difficult to balance. When the cc-pVDZ
basis set is employed, they are 26.827 millihartree for the
reactant and 47.979 millihartree for the transition state.
The CCSDT/cc-pVDZ activation energy is 12.155 milli-
hartree or 7.6 kcal/mol, in good agreement with other
reliable estimates [22]. This should be compared to poor
values, of about 16–17 kcal/mol, provided by CCSD(T)
and other triples corrections to CCSD [22]. The stochas-
tic CC(P ;Q) calculations reach a 1 kcal/mol (so-called
“chemical”) accuracy level, which is largely determined
by the results for the challenging multi-reference transi-
tion state, after 50,000 δτ = 0.0001 a.u. MC steps. We il-
lustrate this by i-FCIQMC-based CC(P ;Q)EN computa-
tions. Already after 40,000 i-FCIQMC iterations, which
capture 15–22 % of triples, the CC(P ;Q)EN approach re-
covers the reactant and transition state CCSDT energies
and the CCSDT activation energy to within 0.489 and
3.235 millihartree and 1.7 kcal/mol, respectively. The
wall times needed to perform such calculations on the
aforementioned quad-core workstation are 0.4–0.6 hours
in the i-FCIQMC part and 0.6–1.3 hours to complete the
CC(P ) and δ(P ;Q) calculations, as compared to 19.2–
21.9 hours required to obtain the converged CCSDT solu-
tions. After 50,000 i-FCIQMC iterations, which capture
31–41 % of triples, the CC(P ;Q)EN calculations require
3.1–5.9 hours (including MC, CC(P ), and δ(P ;Q) steps)
to recover the CCSDT reactant and transition state en-
ergies and activation energy to within 0.198 and 1.171
millihartree and 0.6 kcal/mol, respectively.
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In summary, we showed that by combining the stochas-
tic FCIQMC and CCMC methodologies with the deter-
ministic CC(P ;Q) framework one can recover high-level
CC energetics based on the information extracted from
the early stages of FCIQMC or CCMC propagations,
even when electronic quasi-degeneracies become substan-
tial. Although more studies are needed at the various
CC and MC theory levels, we believe that the proposed
stochastic CC(P ;Q) approach opens up new possibilities
in the way high-level CC calculations are carried out,
being a logical step in exploring FCIQMC and CCMC
concepts. Paraphrasing the title of [25], the stochastic
CC(P ;Q) formalism is a “game of life, death, and anni-
hilation,” but based on the results in this letter one may
avoid playing much of it and yet know the outcome.
Supported by the U.S. Department of Energy under

the Grant No. DE-FG02-01ER15228. Piotr Piecuch
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