
Choices are often made on the basis of multiple attri-
butes of an object or objects. An important question in 
this context is what happens to people’s capacity for in-
formation processing as workload—the number of to-be-
processed stimuli—increases. Workload capacity is com-
monly measured using the redundant-target detection task 
(e.g., Miller, 1982, 1991; Townsend & Nozawa, 1995). 
In this task, participants are presented with two targets 
(denoted as the redundant-target or “AB” condition), one 
target (either A or B), or no targets. Typically, the order of 
display conditions (i.e., no, one, or two targets) is random-
ized within blocks of trials, and participants are asked to 
respond positively if they detect either target and nega-
tively if they observe neither target. Workload capacity 
can be assessed by comparing the time to make positive 
responses in the redundant- and single-target conditions.

Standard analyses, such as mean response time (RT) 
comparisons, provide ambiguous evidence about whether 
adding additional targets (i.e., increasing workload) re-
duces, improves, or has no effect on the efficiency of pro-
cessing. For example, in a system where each stimulus is 
processed in parallel by separate and independent chan-
nels, mean RT reduces as the number of target stimuli 
increases, apparently indicating an increase in capacity, 
when capacity is in fact unlimited in the sense that pro-
cessing in each channel is unaffected by processing in 
other channels.1 To avoid such ambiguities, Townsend and 
Nozawa (1995) developed systems factorial technology, a 
set of nonparametric analyses based on the entire distri-
bution of RTs for correct responses (for applications, see 
Eidels, Townsend, & Algom, 2010; Eidels, Townsend, & 
Pomerantz, 2008; Wenger & Townsend, 2001).

Here we elaborate a parametric model of rapid choice, 
the linear ballistic accumulator (LBA; Brown & Heath-

cote, 2008), to provide an alternative perspective on work-
load capacity. Brown and Heathcote (2008) showed that 
the LBA provides a comprehensive account of benchmark 
phenomena in single-target rapid-choice tasks. Moreover, 
the LBA is a psychologically plausible process model, 
with interpretable parameters that account for the quality 
of sensory input and for participants’ response strategy. 
Because of its mathematical simplicity, the LBA has al-
ready been applied in areas ranging from the neural basis 
of rapid choice (e.g., Ho, Brown, & Serences, 2009) to eye 
movements (Ludwig, Farrell, Ellis, & Gilchrist, 2009). We 
take advantage of that simplicity to extend the LBA to the 
redundant-target task. We show that nonparametric and 
parametric approaches have complementary advantages 
that together provide converging evidence about workload 
capacity in cognitive systems.

The Capacity Coefficient:  
A Nonparametric Measure

Townsend and Nozawa’s (1995) capacity coefficient, 
C(t), compares a measure of the entire distribution of RT 
for correct responses in the double-target condition and 
the single-target conditions. The measure is based on the 
survivor function, S(t) 5 1 2 F(t), where F(t) is the cu-
mulative density function, the probability of a response 
occurring before time t. For an OR redundant-target task, 
where one or the other target is sufficient for a positive 
response,
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If C(t) 5 1 for all values of t, a system of parallel channels 
has unlimited capacity, such that processing in a given 
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A Parametric Measure of Capacity

As with most models of rapid choice, the LBA assumes 
that evidence about a decision is accumulated until it ex-
ceeds a threshold that controls response caution. Figure 1 
illustrates a single LBA evidence accumulator. On each 
trial, the initial level of evidence in an accumulator is 
drawn from a uniform distribution with a zero minimum 
and a maximum determined by the parameter A.3 The ac-
cumulator’s drift rate is drawn from a normal distribution 
with mean v and standard deviation s. Evidence in the ac-
cumulator increases linearly, at a speed given by the drift 
rate, until it reaches a response threshold determined by 
parameter b. RT is the time taken for the evidence to reach 
threshold plus base time, which we model as a constant, t0. 
Hence, the behavior of each accumulator is controlled by 
five parameters, θ 5 (b, A, v, s, t0). Closed-form solutions 
for the cumulative density, F(t | θ), and density, f (t |θ), of 
the time taken for a single accumulator to reach threshold 
are given in Brown and Heathcote (2008).

To model a choice between N alternatives, the LBA uses 
N independent accumulators. The predicted choice (and 
RT) is given by whichever accumulator reaches threshold 
first. The density functions ( f and F ) can be combined to 
obtain the joint density over response choices and times: 
The likelihood that response i occurs at time t is given by 
the product of the probability that no other accumulator 
has reached its threshold before t,

	 1 − ( ) ≠∏ F t jj i | ,θθ  
and the density at time t for accumulator i.

LBA Redundant-Target Task Model
The same approach can be used to apply the LBA to 

the redundant-target task, but there is a complication: 
Decisions about the two targets (A and B) require four 
accumulators, but there are only two responses (“neither 
target present” or “either target present”). The four ac-
cumulators collect evidence about whether (1) Target A 
is present, (2) Target A is absent, (3) Target B is present, 
and (4) Target B is absent. We denote these accumulators 
A, ~A, B, and ~B. To resolve the complication, we pro-
pose a model in which a negative response occurs if both 
accumulators ~A and ~B reach threshold while both A 
and B are below threshold.4 The probability that both A 
and B are below threshold is given by the product of their 
survivor functions. The likelihood that ~A terminates at 
t after ~B has already terminated is given by the product 
of their corresponding density and cumulative density, 
respectively, and similarly for the likelihood that ~B ter-
minates at t after ~A has already terminated. Summing 
the likelihoods for these two mutually exclusive scenarios 
produces the overall likelihood of a negative response: 

	 L(NO, t) 5 SA(t)  SB(t)

	  [ f~A(t)  F~B(t) 1 f~B(t)  F~A(t)].	 (2)

A positive, “either target present” response occurs if 
either A or B reaches threshold while ~A, ~B, or both re-
main below threshold. Hence, the likelihood of a positive 
response at time t is again the sum of the likelihoods of 

channel is unaffected by the increase in the number of tar-
gets. If C(t) , 1, capacity is limited, such that increasing 
the number of targets takes a toll on each channel’s per-
formance. If C(t) . 1, the system has super capacity: The 
processing efficiency of individual channels increases 
with increased workload. Typically, a plot of C(t) is made 
for a middle range of t (since the measure is unstable at 
the extremes), and overall capacity is judged subjectively, 
perhaps with the aid of a confidence region. 

The capacity coefficient is very generally applica-
ble, because its derivation does not rely on an assumed 
parametric form for correct RT distribution. However, 
in practice, the capacity coefficient may be confounded 
by differences in “base time” (i.e., the time to complete 
early sensory and response preparation and execution pro-
cesses) and speed–accuracy trade-off between conditions 
contributing to C(t). Townsend and Honey (2007) inves-
tigated base time effects and concluded that they are un-
likely to be problematic.2 Similarly, the design used in the 
OR redundant-target task, where double- and single-target 
conditions are randomized within blocks of trials, makes 
confounding from speed–accuracy trade-off unlikely, 
since it is usually assumed that participants can change 
trade-off strategies only if they can anticipate upcoming 
conditions (Ratcliff, 1978).

In the next section, we introduce the standard LBA 
model and show how it can be extended to the redundant-
target task in terms of parameters quantifying the effi-
ciency or rate of information processing, base time, and 
response caution, which controls speed–accuracy trade-
off. The latter two parameters allow us to account for 
effects that might confound the nonparametric capacity 
measure. Although such confounding is unlikely in the 
particular paradigm we examine here, the protection of-
fered by modeling these effects could be useful in other 
paradigms. We then propose a measure of workload ca-
pacity based on rate parameters from double- and single-
target conditions. A second advantage of our parametric 
approach is that it provides an objective method of identi-
fying whether capacity is limited, unlimited, or super.

Figure 1. Illustration of a single linear ballistic accumulator.
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pants were presented with four possible forms, illustrated 
in Figure 2, which occurred equally often over trials: One 
form contained both target line segments (redundant tar-
gets), two forms contained only one of the targets, and one 
form contained neither target.

To avoid bias in drift-rate estimates and, hence, in our 
parametric capacity measure, it is important to consider 
whether LBA parameters other than drift rate vary with 
the number of targets. For example, the stimulus encoding 
component of base time might decrease with two targets 
versus one target due to perceptual factors. To account for 
such possibilities, we estimated separate base time param-
eters for the double-, single-, and nontarget conditions—
t0DT, t0ST, and t0NT, respectively. In contrast, following the 
convention used since Ratcliff (1978), we assumed equal 
response criteria for the single- and double-target condi-
tions because their order was randomized within blocks 
of trials. Trials requiring a positive response were more 
common (75%) than trials requiring a negative response, 
so participants may be biased toward making positive re-
sponses. To model this, we estimated one threshold pa-
rameter common to both target accumulators (bT) but a 
different common parameter for the nontarget accumula-
tors (bNT).

Because there are four accumulators (one for the pres-
ence and one for the absence of Target A, and similarly 
for Target B) and four experimental conditions (redun-
dant target, AB; single target, A~B or ~AB; and no target, 
~A~B), there could be up to 16 drift-rate (v) parameters. 
As illustrated in Table 1, simplifying assumptions re-
duced the 16 possible drift rates to just five free param-
eters. These assumptions result in the simplest reason-
able model that still allows for the estimation of capacity 
within a redundant-target task. First, we assumed that drift 
rates were equivalent for A and B stimuli and for ~A and 
~B stimuli. This assumption need not be true, but when 
we repeated our analyses dropping this assumption where 
possible, we found similar results.5 Two free parameters 
describe the drift rates when a target is absent: one pa-
rameter for the nontarget accumulator, v~NT, and one for 

two scenarios (i.e., A reaches threshold and B has not, and 
vice versa):

	 L(YES, t) 5 [1 2 F~A(t)  F~B(t)]

	  [ fA(t)  SB(t) 1 fB(t)  SA(t)].	 (3)

Equations 2 and 3 are used to evaluate the likelihood of 
all responses for a given set of parameters for each condi-
tion, enabling the most likely parameter set to be found by 
an optimization algorithm. Note that these estimates are 
constrained by all aspects of the data, including accuracy 
and error RTs, not just correct RTs as is the case for the 
nonparametric capacity measure. 

We propose that workload capacity can be measured by 
comparing drift rates for single- and double-target condi-
tions. This approach assumes that potential interactions 
between stimulus-processing channels, which determine 
capacity, occur before the decision stage and influence the 
drift-rate input to the LBA. Capacity is called “unlimited” 
if each accumulator operates at the same rate regardless 
of whether a signal is presented for processing by other 
accumulators. If the accumulation rate decreases or in-
creases as more signals are added, capacity is considered 
limited or super, respectively. We test this new definition 
for workload capacity, based on the relative magnitude of 
single- versus double-target drift rates, by comparing it 
with C(t) measures for individual participants in Eidels 
et al.’s (2008) Experiment 3.

Application

In their third experiment, Eidels et al. (2008) presented 
their participants with line segments that, when presented 
together, created an open or closed form (e.g., “L” and “\” 
together form a closed triangle). Of the four line segments 
used, two were designated as targets. For example, “/” and 
a backward “L” might be labeled A and B, whereas “\” 
and “L” might be labeled ~A and ~B, respectively. Partici-

Table 1 
Summary of the Mapping Between Possible Linear Ballistic 

Accumulator Drift-Rate Parameters in a Redundant-
Target Task (Left-Hand Side) and the Simplified Set of Five 

Parameters Used in Estimation (Right-Hand Side)

Target A

    Presented (A)  Not Presented (~A)

vA|AB 5 vDT vA|~AB 5 v~T

Presented (B)
v~A|AB 5 vNT v~A|~AB 5 v~NT
vB|AB 5 vDT vB|~AB 5 vST

Target B
v~B|AB 5 vNT v~B|~AB 5 vNT

vA|A~B 5 vST vA|~A~B 5 v~T

Not Presented (~B)
v~A|A~B 5 vNT v~A|~A~B 5 v~NT
vB|A~B 5 v~T vB|~A~B 5 v~T
v~B|A~B 5 v~NT v~B|~A~B 5 v~NT

Note—For the redundant-target task, subscripts indicate the correspond-
ing accumulator and experimental condition. For example, vA|A~B is the 
drift rate for the accumulator that detects the presence of Target A when 
Target A was presented but Target B was not. Subscripts for the simpli-
fied set of five parameters are explained in the main body of the article.

Stimuli used
by Eidels et al.
(2008), Exp. 3

Target (A) Distractor (~A)

Target (B) a

Redundant
targets

b

Single target B

Distractor (~B) c

Single target A

d

No target

Figure 2. The stimuli used by Eidels, Townsend, and Pomerantz 
(2008) in their Experiment 3.
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bias in favor of positive responses. Base time did not dif-
fer much between one- and two-target displays, but was 
systematically smaller for displays with no targets.

Figure 3 shows that this method for grouping partici-
pants produced plausible data patterns and model predic-
tions. To create the figure, participants were first grouped 
according to their capacity classification, and data from 
all participants in each of the groups were combined such 
that three collective data sets were created, for limited, 
unlimited, and super capacity. Empirical RT distributions 
(histograms) were estimated using the combined data, and 
model predictions were generated, using average param-
eter values for each group. All participants, regardless of 
their observed capacity, made more errors and responded 
slower in the single-target condition than in the double-
target condition. The difference between single- and 
double-target conditions, however, increased as partici-
pants exhibited higher capacity. In particular, participants 
classified as having limited capacity were slightly faster 
with double targets than with single targets (observed 
mean RTs were 0.50 and 0.56 sec, respectively), whereas 
participants classified as having super capacity were sub-
stantially faster with double targets than with single targets 
(0.48 vs. 0.66 sec). Response accuracy results followed a 
similar pattern. Participants with unlimited capacity sat 
between limited- and super-capacity participants in terms 
of the speed and accuracy of their responses, results con-
sistent with what is known about the effects of workload 
capacity on performance.

The classification of participants on the basis of 
the relative magnitude of drift rates in the double- and 
single-target conditions also mostly agrees with results 
calculated using Townsend and Nozawa’s (1995) capac-
ity coefficient. Of the 27 participants, only 3 showed a 
discrepancy between the classifications provided by drift-
rate difference and C(t). All 3 showed the same discrep-
ancy: limited capacity based on drift difference and super 
capacity based on C(t). This disagreement may arise from 
summarizing the continuous C(t) function with a single 
number, given that the misclassified participants showed 
super capacity for relatively short ranges of t.

Figure 4 shows observed C(t) plots for the remaining 
24 participants, using the same groups as in Figure 3. Par-
ticipants classified as limited capacity show C(t) , 1 for 
a substantial portion of their C(t) function. As expected, 
participants classified as unlimited capacity on the basis 
of drift rate tended to have C(t) values close to unity. Simi-
larly, participants classified as super capacity on the basis 

the target accumulator, v~T. Subscripts T and NT denote 
whether the rate corresponds to a target or a nontarget ac-
cumulator, and the ~ indicates that either ~A or ~B was 
presented. Three parameters set the drift rates when targets 
were present: one for the nontarget accumulators, vNT, and 
two for the target accumulators, depending on whether 
the display contained one (single-target condition, vST) or 
both (double-target condition, vDT). We used the relative 
magnitudes of vDT and vST as a measure of capacity. If the 
drift rate is larger in the double- than in the single-target 
condition, super capacity is indicated; if vDT is smaller 
than vST, limited capacity is indicated; and if the two are 
equal, unlimited capacity is indicated.

The final 2 parameters specify the trial-to-trial variabil-
ity in starting points (A) and drift rate (s). We estimated a 
single value of A across all responses and conditions. The 
s parameter was treated as a scaling parameter and arbi-
trarily fixed at s 5 1 (see Donkin, Brown, & Heathcote, 
2009). Overall, 11 free parameters were used to fit RT 
distributions for correct and error responses for the four 
stimulus conditions. Maximum likelihood parameter esti-
mates were found separately for each participant.

Results
Participants were grouped as having super (7 par-

ticipants), unlimited (8), or limited (12) capacity, on the 
basis of drift-rate estimates. We first determined whether 
or not each participant demonstrated unlimited capacity 
by fitting two versions of the LBA model: one in which 
drift rate was equal in both single- and double-target con-
ditions (i.e., vDT 5 vST) and another in which the two pa-
rameters were allowed to differ. We then used the Bayes-
ian information criterion (Schwarz, 1978)—a selection 
tool that determines the best model, taking into account 
both fit and model complexity—to determine which 
model was more appropriate, the one with one or the one 
with two drift-rate parameters. Any participant for whom 
one rate parameter was more appropriate was deemed to 
have unlimited capacity (since the speed of evidence ac-
cumulation was equal in both single- and double-target 
conditions). Anyone requiring separate parameters for 
double- and single-target responses was classified as hav-
ing super capacity (if vDT . vST) or limited capacity (if 
vDT , vST).

Table 2 contains average parameter estimates for each 
of the three groups of participants. As expected, the 
threshold estimates were greater for nontarget accumula-
tors than for target accumulators, reflecting a response 

Table 2 
Average Parameter Values for the Super-Capacity (Based on Data From 7 Participants), 

Unlimited-Capacity (8), and Limited-Capacity (9) Participants, Grouped As Detailed in the Text

  A  t0DT  t0ST  t0NT  bT  bNT  vDT  vST  vNT  v~T  v~NT

Super 1.00 0.15 0.14 0.12 1.64 1.76 2.96 2.52 20.60 0.56 2.68
Unlimited 0.96 0.13 0.14 0.10 1.56 1.84 2.44 20.54 0.16 2.64
Limited 0.76 0.14 0.16 0.10 1.28 1.68 2.28 2.72 20.04 0.24 3.36

Note—Workload capacity is estimated via the difference between accumulation rates for double- and single-
target conditions. Positive, null, and negative values for vDT–vST imply super, unlimited, and limited capacity, 
respectively. For unlimited-capacity participants only, the model fit assumed vDT 5 vST, so only a single value 
is reported in the table.
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The nonparametric measure, C(t), is calculated by com-
paring the distribution of the time taken to make correct 
responses to displays with one versus two targets. Our 
parametric approach is based on an evidence accumula-
tion model of single-target choice tasks, the LBA (Brown 
& Heathcote, 2008), estimated on the basis of all responses 
in all conditions.

We first extended the LBA to model performance in 
the redundant-target task, then showed that the extended 
model provided an accurate account of the redundant-
target task data reported by Eidels et al. (2008) in terms 
of parameters that quantify base time, the drift rate (the 
rate of evidence accumulation), and the response thresh-
old (the amount of evidence required for a response). Im-
portantly, individual participants’ capacity determined by 
the LBA model’s drift-rate parameters in the single- and 
double-target conditions matched individual differences 
in estimates of C(t).

of drift rates all show C(t) . 1 for a substantial portion of 
their C(t) function.

As a final demonstration of the agreement between the 
parametric and nonparametric methods, Figure 5 plots C(t) 
estimates on the basis of predicted correct RT distributions 
from the LBA. To calculate the predicted C(t) values, we 
took each individual’s best-fitting parameters and simu-
lated a set of 100,000 observations for each condition. We 
then calculated C(t) for the simulated data, using the same 
methods as for the empirical data in Figure 4. Predicted 
and empirical C(t) values in the two figures agree closely.

Discussion

We proposed a parametric method of assessing work-
load capacity that complements Townsend and Nozawa’s 
(1995) nonparametric measure of capacity in the OR 
redundant-target task. In this task, participants respond 
positively if one or the other target stimulus is presented. 
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Figure 3. Results from fits of the linear ballistic accumulator to Experiment 3 data from Eidels et al. (2008). Histograms are empiri-
cally correct response time (RT) distributions, and thick black lines are model predictions. Plots are grouped into double- and single-
target conditions (top and bottom rows) and participants deemed to have limited, unlimited, and super capacity (left, center, and right 
columns) on the basis of accumulation rates. Each panel further indicates the proportion of correct responses and mean RT for the 
data and model.
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The LBA is one of several evidence accumulation mod-
els that provide an accurate account of benchmark phe-
nomena in single-target rapid-choice paradigms. Similarly 
comprehensive models include Ratcliff’s (1978) diffusion 
model and the stochastic (Usher & McClelland, 2001) and 
ballistic (Brown & Heathcote, 2005) leaky competing ac-
cumulator models. Any of these models could also be used 
to measure capacity analogously to the above methods. We 
used the LBA because it has closed-form analytic solutions 
that enable easy extension to the redundant-target task.

Assuming a particular evidence accumulation model 
makes our parametric approach less general than Townsend 
and Nozawa’s (1995) nonparametric estimate. However, 
Donkin, Brown, Heathcote, and Wagenmakers (2010) 
found a direct mapping between the LBA and diffusion 
model drift-rate and base time estimates when the response 
threshold did not differ between conditions, as is likely the 

As well as providing converging evidence about capac-
ity, the parametric approach has the advantage of a for-
mal method for classifying participants as having limited, 
unlimited, or super capacity. A further advantage applies 
in paradigms where the conditions that contribute to the 
nonparametric capacity measure differ in base time and/or 
response threshold. In the AND version of the redundant-
target paradigm, where a positive response is made only 
when both stimuli are targets, for example, different cor-
rect responses are required for single- and double-target 
conditions. Our results for the OR task (Table 2) indicated 
threshold and base time differences between accumulators 
responsible for collecting evidence for different types of 
responses. If this finding occurred in the AND task, the 
nonparametric C(t) measure might be confounded. In con-
trast, our parametric approach would not be confounded, 
because these differences are modeled. 
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Figure 4. Capacity coefficients calculated from each individual’s empirical response time (RT) distributions (top row of plots). Indi-
viduals have been grouped into limited, unlimited, and super capacity on the basis of the relative magnitudes of drift rates for double- 
and single-target conditions. Boxplots of the distribution of drift-rate differences for each group are also shown in the second row of plots. 
The numbers of participants classified into each capacity group are 7, 8, and 12 for super, unlimited, and limited capacity, respectively.
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case between single- and double-target conditions in the 
OR redundant-targets paradigm. Similarly, Van Ravenz-
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tween diffusion and (stochastic) leaky competing accumu-
lator parameter estimates. Hence, it seems likely that our 
LBA-based capacity estimate will be relatively general, at 
least within the class of evidence accumulator models.
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Notes
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work, the race model inequality is interpreted as a bound on capacity; its 
violation implies super capacity (Townsend & Wenger, 2004).

2. They showed that, assuming that base time is equal in distribu-
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biased when base time accounts for a substantial proportion of total RT 
variance. Our parametric approach assumes constant base times that 
may differ between conditions. We assumed a nonvarying time, because 
typically (and in the application reported here) variable base times do not 
much improve the fit of the LBA. Freely estimating separate base times 
for different conditions allowed us to check, rather than assume, equality 
between conditions.

3. Parameter A is italicized to distinguish it from a nonitalicized A 
used to denote an experimental stimulus.

4. The Appendix describes an alternative model. For the data analyzed 
here, both produced equivalent conclusions.
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and B stimuli are not identifiable.
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Appendix

In this Appendix, we derive the likelihoods for YES and NO responses in the redundant target paradigm under 
an alternative model that treats the accumulator pairs looking at the same target as a single unit. In the model 
presented in the main text, all four accumulators (A, B, ~A, ~B) race to a single logical decision gate. Alterna-
tively, one can model the same task as two subprocesses, each acting as a race between two accumulators. (1) Ac-
cumulators A and ~A race to one OR gate, to determine whether Target A is presented. (2) Accumulators B and 
~B race to another OR gate, to determine whether Target B is presented. As a consequence, once the activation 
of one pair member crosses its threshold, the state of the other member becomes irrelevant. The outcomes of the 
two subprocesses then race to a final gate. Both models are useful, so we tested the alternative model and found 
that it completely agrees with the fits of the first model. The average difference between drift-rate differences 
(on double- vs. single-target conditions) in the first and second models was a negligible 1.7%. Most importantly, 
the second model agrees with the first on the classification of individual participants to three capacity groups, 
for all 27 participants.

In the alternative model, there are four mutually exclusive ways that the system can make a YES response and 
two mutually exclusive ways that it can make a NO response, which together form an exhaustive set of potential 
outcomes.

Likelihood of a YES Response
Two of the ways that a YES response can be made require only the PDFs and CDFs on which Equations 2 

and 3 are based:
1. At time t, A is at threshold and all other accumulators are below threshold, with likelihood

	 L1(YES, t) 5 fA(t)  S~A(t)  SB(t)  S~B(t).	

2. At time t, B is at threshold and all other accumulators are below threshold, with likelihood

	 L2(YES, t) 5 fB(t)  S~B(t)  SA(t)  S~A(t).	

The remaining four cases require a new expression for the probability of events occurring in pairs of accumu-
lators treated as a single unit. The required expression is for the probability that one member of the pair (say, X) 
crossed its threshold at time x , t and that the other pair member (say, Y) had not crossed its threshold at time x, 
q(X, Y, t). For example, X might be the A accumulator and Y might be the ~A accumulator, with corresponding 
probability q(A, ~A, t). This probability is given by (numerically) integrating over x ∈ (0, x):

	
q t f x S x dx

t

( , , ) ( ) ( ) .X Y X Y= ∫
0 	

With this term in hand, we can now write out the likelihoods for the two remaining YES cases:
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3. At time t, A is at threshold, ~A is below, and ~B hit threshold before t ahead of B, with likelihood

	 L3(YES, t) 5 fA(t)  S~A(t)  q(~B, B, t).	

4. At time t, B is at threshold, ~B is below, and ~A hit threshold before t ahead of A, with likelihood

	 L4(YES, t) 5 fb(t)  S~B(t)  q(~A, A, t).	

The overall likelihood of a YES response is then

	 L(YES, t) 5 L1(YES, t) 1 L2(YES, t) 1 L3(YES, t) 1 L4(YES, t).	

Likelihood of a NO Response
For a NO response, the two cases are as follows:
1. At time t, ~A is at threshold, A is below threshold, and ~B hit threshold before t ahead of B, with 

likelihood

	 L1(NO, t) 5 f~A(t)  SA(t)  q(~B, B, t).	

2. At time t, ~B is at threshold, B is below threshold, and ~A hit threshold before t ahead of A, with 
likelihood

	 L2(NO, t) 5 f~B(t)  SB(t)  q(~A, A, t).	

The overall likelihood of a NO response is then

	 L(NO, t) 5 L1(NO, t) 1 L2(NO, t).	

(Manuscript received January 12, 2010; 
revision accepted for publication April 2, 2010.)
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