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Converging super-elliptic torsional shear waves
in a bounded transverse isotropic viscoelastic
material with nonhomogeneous outer boundary

Martina Guidetti,1 Diego Caratelli,2,a) and Thomas J. Royston1,b)
1Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago,

851 South Morgan Street, MC 063, Chicago, Illinois 60607, USA
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Abstract: A theoretical approach was recently introduced [Guidetti and
Royston, J. Acoust. Soc. Am. 144, 2312–2323 (2018)] for the radially
converging slow shear wave pattern in transverse isotropic materials
subjected to axisymmetric excitation normal to the axis of isotropy at the
outer boundary of the material. This approach is enabled via transforma-
tion to an elliptic coordinate system with isotropic properties. The
approach is extended to converging fast shear waves driven by axisym-
metric torsional motion polarized in a plane containing the axis of
isotropy. The approach involves transformation to a super-elliptic shape
with isotropic properties and use of a numerically efficient boundary
value approximation.
VC 2019 Acoustical Society of America
[JT]
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1. Introduction

Please refer to the authors’ recent publication in this journal1 for an extensive sum-
mary of the background and motivation for the coordinate transformation strategy
extended in the present article to the case of a torsionally-driven radially converging
fast shear wave front caused by oscillatory twisting motion of the outer cylindrical
boundary. Torsional excitation in this manner could provide an additional efficient
means of assessing transversely isotropic material properties, especially if the same
cylindrical container could be oscillated independently in axial and torsional directions
to drive slow and fast shear waves, respectively, in the same sample. Torsional wave
excitation has been explored in applications of ultrasound-based elastography.2

Continuous torsional oscillatory motion of a cylindrical boundary normal to
its axis generates converging angularly-polarized shear waves that can establish a
standing wave pattern in the bounded cylindrical region. While a theoretical solution
for the axisymmetric torsional shear wave pattern that is established in isotropic mate-
rials is easily obtained using Bessel functions,3 a solution for the case of anisotropic
materials that will produce a nonaxisymmetric shear wave pattern is not as easily
found. The configuration considered should result in the generation of only fast shear
waves whose phase propagation speed will depend on the angle their direction of prop-
agation makes with the axis of isotropy.

An efficient numerical approach is proposed for the super-elliptic shear wave
pattern observed in transverse isotropic materials subjected to axisymmetric excitation
parallel to a plane containing the axis of isotropy. The calculated solutions are validated
via numerical finite element analysis (FEA) case studies. The numerical approach is also
validated via comparison to FEA for the slow shear wave case introduced in Ref. 1.

2. Theory

Please refer to Sec. IIA of Ref. 1 for an introduction to the nomenclature and equa-
tions used for nearly incompressible isotropic linear viscoelastic material, and for an
orientation to the geometry considered in this study. In the present study the outer
boundary at r ¼ r0 is oscillated either in the vertical (z) direction as in Ref. 1 or in the
torsional (h) direction as shown in Fig. 1. In the case of transverse isotropy with the
y axis parallel to the axis of isotropy (along the fiber axis), axisymmetry (no dependence
on h) in either case is destroyed.

a)Also at Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
b)Author to whom correspondence should be addressed.
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Shear wave motion propagating in the r; h plane with polarization in the z
direction, parallel to the plane of isotropy, will have a direction-dependent phase speed
cs given by4

c2s ¼
l?
q

1þ /cos2 h½ �
� �

: (1)

The subscript s denotes that this is the “slow” shear wave. The terms l?, q, and / denote
the shear elasticity perpendicular to the axis of isotropy (fiber direction), the material den-
sity, and the shear anisotropy (/ ¼ ljjR=l?R � 1). And here, ljjR denotes the shear elastic-
ity parallel to the axis of isotropy, with subscript R indicating this is the real part.

Now consider a transformation to a new coordinate system created by distorting
distance in a directionally dependent way such that cs is no longer dependent on direction
of propagation: c2s ¼ l?=q. In other words, the material presents itself as isotropic. In the
new coordinate system, what was a distance r from the origin is now given by

r h½ � ¼ r= 1þ /cos2 h½ �
� �

: (2)

This transforms what was a circle of radius r into an ellipse as shown in Fig. 1(c).
Note, this transformation is what will be used for a purely elastic case or for the case
that the ratio of shear loss to storage moduli are the same in parallel and perpendicu-
lar directions: gl ¼ l?I=l?R ¼ ljjI=ljjR. Here, subscripts R and I denote the real and
imaginary parts, respectively, of the complex-valued shear moduli. For the more gen-
eral viscoelastic case when these ratios are not the same, the distortion can be adjusted
accordingly so that slow shear waves propagate at the same speed in any direction on
the r; h plane of the new coordinate system.

Shear wave motion propagating in the r; h plane with polarization in the r; h
plane will have a direction-dependent phase speed cf given by4

c2f ¼
l?
q

1þ /cos2 2h½ � þ fsin2 2h½ �
� �

: (3)

The subscript f denotes that this is the “fast” shear wave. The term f denotes the ten-
sile anisotropy (f ¼ Ejj=E? � 1). And here, Ejj and E? denote the Young’s modulus
parallel and perpendicular to the axis of isotropy, respectively. Note also that5

Ejj ¼ l?ð4fþ 3Þ; thus, there are only three independent elasticity parameters.

Fig. 1. (Color online) Transverse isotropic cylindrical sample with the x-z plane of isotropy (fibers in the y direc-
tion) subjected to a nonhomogeneous boundary condition: harmonic displacement in the # � z or h direction of
amplitude u#r0

at frequency f ¼ x=2p on its curved cylindrical outer boundary at r ¼ ro: (a) system diagram;
(b) viewed in the x-y plane; (c) after elliptic transformation for isotropic representation of slow shear waves; and
(d) after super-elliptic transformation for isotropic representation of fast shear waves.

Guidetti et al.: JASA Express Letters https://doi.org/10.1121/1.5134657 Published Online 26 November 2019

EL452 J. Acoust. Soc. Am. 146 (5), November 2019 Guidetti et al.

https://doi.org/10.1121/1.5134657


Now consider a transformation to a new coordinate system created by distorting
distance in a directionally dependent way such that cf is no longer dependent on direction
of propagation: c2f ¼ l?=q. In other words, the material presents itself as isotropic. In the
new coordinate system, what was a distance r from the origin is now given by

r h½ � ¼ r= 1þ /cos2 2h½ � þ fsin2 2h½ �
� �

: (4)

This transforms what was a circle of radius r into a super-ellipse as shown in Fig. 1(d).
Note, this transformation is what will be used for a purely elastic case or for the case
that the ratio of shear and Young’s loss to storage moduli are the same in parallel and
perpendicular directions: gl ¼ l?I=l?R ¼ ljjI=ljjR and gE ¼ E?I=E?R ¼ EjjI=EjjR. For
the more general viscoelastic case when these ratios are not the same, the distortion
will be adjusted accordingly so that fast shear waves propagate at the same speed in
any direction on the r; h plane of the new coordinate system.

Under isotropic and steady state harmonic conditions, shear wave motion
propagating in the r; h plane, regardless of polarization, can be expressed as
u#½r; h; t� ¼ u#½r; h�e

jxt, where # � z or h denotes the polarization direction. Consider
the inhomogeneous boundary condition of u#½r ¼ r0½h�; h� ¼ u#R

, where u#R
is a non-

zero constant.
For the case that # � z and taking r0½h� ¼ r0, a constant or in other words a

circular domain, the exact solution is as follows:

uz r; t½ � ¼ uzr0
J0 ksr½ �

J0 ksr0½ �
e jxt: (5)

Here, ks ¼ x=cs is the slow shear wave number and Jm is the mth order Bessel func-
tion of the first kind. Now consider that r0½h� is not a constant, though is continuous
on 0 < h < 2p with r0½0� ¼ r0½2p�. A solution for this boundary value problem can be
expressed as follows utilizing the convergence property of the Fourier series:6,7

uz r; t½ � ¼
X

1

m¼0

Jm ksr½ � Am cos mh½ � þ Bm sin mh½ �
� �

e jxt; (6)

with

X

1

m¼0

X
þ
n;m Y

þ
n;m

X
�
n;m Y

�
n;m

( )

Am

Bm

� �

¼ uzr0
dn;0

0

� �

; (7)

where

X6n;m ¼
�n
2p

ð2p

0

Jm ksr0 h½ �
� �

cos mh½ � cos nh½ �

sin nh½ �

� �

dh; (8)

Y6n;m ¼
�n
2p

ð2p

0

Jm ksr0 h½ �
� �

sin mh½ � cos nh½ �

sin nh½ �

� �

dh: (9)

Here dn;m denotes the Kronecker delta and �n denotes the Neumann’s symbol, equaling
1 if n ¼ 0 or 2 if n 6¼ 0. From the convergence property of Fourier series, we know
that the values of the coefficients in Eq. (6) will decrease with increasing m and an
approximate solution can be obtained by truncating the summation at some m ¼ M. If
r0½h� ¼ r0=ð1þ / cos2½h�Þ then Bm ¼ 0 and terms in Am will be nonzero only for even
values of m.

Now consider # � h and take r0½h� ¼ r0, a constant or, in other words, a circu-
lar domain. The exact solution is as follows, where 0 denotes @=@r,3

uh r; t½ � ¼ uhrh
J 0
0 kf r
� �

J 0
0 kf r0
� � e jxt ¼ uhrh

J1 kf r
� �

J1 kf r0
� � e jxt: (10)

Here kf ¼ x=cf is the fast shear wave number. This solution follows from the condi-
tion of axisymmetry established by the isotropic, homogeneous medium with symmet-
ric (nonzero at r0) boundary condition, thus eliminating the first derivatives of higher
order Bessel functions that will have h dependence.

Now consider that r0½h� is not constant, though is continuous on 0 < h < 2p
with r0½0� ¼ r0½2p�. A complication that arises with h polarization of the shear wave is
that, unlike in the case of z polarization, the imposed displacement on the outer
boundary is no longer tangential to the outer boundary surface. This will lead to some
error in the solution that will increase as the variation of r0½h� with respect to h
increases. Acknowledging this source of error, we approximate the solution as follows:
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uh r; t½ � �
X

1

m¼0

J 0
m ksr½ � Am cos mh½ � þ Bm sin mh½ �

� �

e jxt; (11)

with

X

1

m¼0

X
þ
n;m Y

þ
n;m

X
�
n;m Y

�
n;m

( )

Am

Bm

� �

¼ uhrh
dn;0

0

� �

; (12)

where

X6n;m ¼
�n
2p

ð2p

0

J 0
m ksr0 h½ �
� �

cos mh½ � cos nh½ �

sin nh½ �

� �

dh; (13)

Y6n;m ¼
�n
2p

ð2p

0

J 0
m ksr0 h½ �
� �

sin mh½ � cos nh½ �

sin nh½ �

� �

dh: (14)

Note, A1 ¼ B1 ¼ 0 since uh½r ¼ 0; t� ¼ 0. And, for r½h� ¼ r=ð1þ / cos2½2h� þ f sin2½2h�Þ,
values of Am and Bm will be nonzero only when m ¼ 0; 4; 8; ….

3. Numerical validation case studies

The Fourier-based approach described in Sec. 2 was implemented for specific case stud-
ies in MATLAB Version R2019a (Mathworks Inc., Natick, MA). To validate the theoreti-
cal approach, predictions from it were compared to those from computational FEA.

The case study configuration is based on an experimental setup used by some
groups8,9 to conduct magnetic resonance elastography on biological tissue and phan-
tom material specimens, utilizing geometrically converging shear wave excitation, as
summarized in Ref. 1. Geometry and physiologically-relevant material property values
for the cases are provided in Table 1, and are consistent with values used previously.1

For the slow shear wave simulation (axial z polarization), a numerical structural
solid mechanics finite element (FE) study using harmonic analysis (steady state response
equivalent to particular solution in the frequency domain) was conducted using COMSOL

Multiphysics Version 5.4 software (COMSOL Inc., Stockholm, Sweden). The automati-
cally meshed cylindrical model (8mm in diameter and 20mm in axial height) contained
46 724 vertices, 267 162 quadratic tetrahedral elements (0.004 to 0.4mm in size), 9152 tri-
angular elements, 328 edge elements, and 8 vertex elements. The minimum and average
element qualities were 0.176 and 0.662, respectively. The element volume ratio was
0.0565 and the mesh volume was 1004mm3. (Mesh resolution was decided upon when
further increases had a negligible effect on the solution.) Typical computation times for
the single frequency harmonic analysis were about 30min using a 64-bit operating sys-
tem, �64 based processor, IntelVR XeonVR CPU E5-2609 (Intel, Santa Clara, CA) 0 with
a clock speed of 2.40GHz, and 256 GB RAM. For the fast shear wave simulation (cir-
cumferential h polarization), a numerical structural solid mechanics FE study using har-
monic analysis was conducted using ANSYS Mechanical APDL 2019 R1 software. The
direct mesh-generated cylindrical model (8mm in diameter and 0.38mm in axial height)
contained 21 504 8-node solid185 brick elements with consistent node spacing less than
0.1mm. (Mesh resolution was decided upon when further increases had a negligible
effect on the solution.) Typical computation times for the single frequency harmonic
analysis were about 20 s using a 64-bit operating system, �64 based processor, IntelVR

XeonVR CPU I7-8850H with a clock speed of 2.60GHz, and 32 GB RAM. The Fourier-
based numerical approach introduced in Sec. 2 used to calculate the results for both
types of polarization presented below took �0.25 or �0.75 s for slow or fast shear
waves, respectively, in MATLAB.

Table 1. Geometrical and material parameter values for case study.

Parameter Nomenclature Value(s)

Cylinder outer radius r0 4mm

Shear storage modulus in plane of isotropy l?R 2.77 kPa

Ratio of shear loss to storage moduli g ¼
l?I

l?R

¼
ljjI

ljjR
0.15

Shear anisotropy / 0.3

Tensile anisotropy f 0

Density q 1000 kg
m3

Frequency f 1 kHz
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In Fig. 2 we see a comparison of the Fourier and FE solutions for z polariza-
tion on an axial slice (x-y plane) with the displacement excitation for the material
parameter values in Table 1. Specifically, in Figs. 2(a) and 2(b) we see the in and out
of phase (with respect to the excitation) Fourier-based responses, respectively. The
steady state (harmonic analysis) FE solution, in and out of phase, is shown in Figs.
2(c) and 2(d), respectively.

For the FE model, the slice location is at the mid-height level (10mm).
In Fig. 3, line profiles of the Fourier numerical and FE solutions within the slice in
Fig. 2 and along the x and y axes, in and out of phase, are plotted to provide a more
direct comparison of the complete theoretical and numerical FE results. The percent dif-
ference along the x or y axis, Dx% or Dy%, between theoretical and FE solutions is cal-
culated for plots shown in Fig. 3 by taking the mean of the absolute values of the differ-
ences in the displacement profiles divided by the root-mean-square of the theoretical
displacement profile.1 These percent differences are provided in the figure captions.

In Fig. 4 we see a comparison of the Fourier and FE solutions for h polariza-
tion on an axial slice (x-y plane) with the displacement excitation for the material
parameter values in Table 1. Specifically, in Figs. 4(a) and 4(b) we see the Fourier-
based in and out of phase (with respect to the excitation) responses, respectively. The
steady state (harmonic analysis) FE solution, in and out of phase, is shown in Figs.
4(c) and 4(d), respectively.

For the FE model the slice location is at the mid-height level (0.19mm). In Fig.
5 line profiles of the Fourier numerical and FE solutions within the slice in Fig. 4 and
along the y ðh ¼ 0 �Þ and x ¼ y (h ¼ 45 �) axes, in and out of phase, are plotted to pro-
vide a more direct comparison of the complete theoretical and numerical FE results. The
percent difference along the y or x-y axis, Dy% or Dxy%, between theoretical and FE solu-
tions is calculated for plots shown in Fig. 4 by taking the mean of the absolute values of
the differences in the displacement profiles divided by the root-mean-square of the theoret-
ical displacement profile.1 These percent differences are provided in the figure captions.

Fig. 2. (Color online) Normalized z direction displacement ðuzr=uzr0 Þ on the x-y plane for z-polarized slow shear
waves using the Fourier numerical method [(a) in phase, (b) out of phase] and the FE model [(c) in phase,
(d) out of phase]. (See Ref. 10 supplementary material for animations of the Fourier-based numerical solution
and FEA solution, respectively, through a complete phase cycle.)
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4. Discussion

In all cases, there is expected to be some small level of error in the numerical FE simula-
tion; it is an approximation. Additionally, neglecting the effect of finite boundaries on the
top and bottom of the cylindrical phantom introduces a small amount of error into the
theoretical solution for z polarization. Both of these sources of error are thought to be
independent of anisotropy. To quantify the combined effect of error in both the FE
and theoretical approach independent of anisotropy, the case studies of Sec. III but with
/ ¼ 0 (isotropic case) were conducted. Percent differences between the FE and theoretical
solutions were calculated the same way. Percent differences, in and out of phase for z
polarization, were less than 2.5%, and for h polarization less than 0.9% and 9.0%, in

Fig. 3. Normalized z direction displacement ðuzr=uzr0 Þ for z-polarized slow shear waves using the Fourier-based
numerical method (solid line) and the FE model (dashed line): (a) along the y (fiber) axis in phase: Dy ¼ 1:10%;
(b) along the y (fiber) axis out of phase: Dy ¼ 1:59%; (c) along the x axis in phase: Dx ¼ 1:43%; (d) along the x
axis out of phase: Dx ¼ 0:87%.

Fig. 4. (Color online) Normalized h direction displacement ðuhr=uhr0 Þ on the x-y plane for h-polarized fast shear
waves using the Fourier-based numerical method [(a) in phase, (b) out of phase] and the FE model [(c) in phase,
(d) out of phase]. (See Ref. 10 for animations of the Fourier-based numerical solution and FEA solution, respec-
tively, through a complete phase cycle.)
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phase and out of phase, respectively, providing target limits for accuracy in the aniso-
tropic cases.

For the anisotropic case with / ¼ 0:3, the z polarization percent differences
(Fig. 3) were all less than 1.6%. Thus, in this case, the Fourier-based approach yields a
solution with accuracy that is at least within the limits of precision of the numerical
(FE) approach. For h polarization, percent differences (Fig. 5) ranged from 10.4% to
15.5% and thus exceeded differences found in the isotropic case. This suggests a mea-
surable error in the Fourier-based approach. It is hypothesized that the source of this
error is mainly due to the fact that, as the geometry is distorted, the h-polarized dis-
placement input at the outer curved boundary is no longer perfectly tangential to that
boundary at all values of h. This is a distinct difference from the z polarization, which
is always tangent to the outer curved boundary no matter the level of distortion (varia-
tion of outer radius R as a function of h). Increasing differences between FEA and
the Fourier-based approach with increased values of / (four error values reported in
Fig. 5 averaging to 5.1%, 12.9%, and 39.0% for / ¼ 0:1; 0:3; and 1:0, respectively)
support this hypothesis and highlight a limitation of the Fourier-based approach.
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