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Abstract
We apply the recently proposed Context-Dependent Deep-
Neural-Network HMMs, or CD-DNN-HMMs, to speech-to-text
transcription. For single-pass speaker-independent recognition
on the RT03S Fisher portion of phone-call transcription bench-
mark (Switchboard), the word-error rate is reduced from 27.4%,
obtained by discriminatively trained Gaussian-mixture HMMs,
to 18.5%—a 33% relative improvement.

CD-DNN-HMMs combine classic artificial-neural-network
HMMs with traditional tied-state triphones and deep-belief-
network pre-training. They had previously been shown to re-
duce errors by 16% relatively when trained on tens of hours of
data using hundreds of tied states. This paper takes CD-DNN-
HMMs further and applies them to transcription using over 300
hours of training data, over 9000 tied states, and up to 9 hidden
layers, and demonstrates how sparseness can be exploited.

On four less well-matched transcription tasks, we observe
relative error reductions of 22–28%.
Index Terms: speech recognition, deep belief networks, deep
neural networks

1. Introduction
Since the early 90’s, artificial neural networks (ANNs) have
been used to model the state emission probabilities of HMM
speech recognizers [1]. While traditional Gaussian mixture
model (GMM)-HMMs model context dependency through tied
context-dependent states (e.g. CART-clustered crossword tri-
phones [2]), ANN-HMMs were never used to do so directly.
Instead, networks were often factorized, e.g. into a monophone
and a context-dependent part [3], or hierarchically decomposed
[4]. It has been commonly assumed that hundreds or thousands
of triphone states were just too many to be accurately modeled
or trained in a neural network. Only recently did Yu et al. dis-
cover that doing so is not only feasible but works very well [5].

Context-dependent deep-neural-network HMMs, or CD-
DNN-HMMs [5, 6], apply the classical ANN-HMMs of the
90’s to traditional tied-state triphones directly, exploiting Hin-
ton’s deep-belief-network (DBN) pre-training procedure. This
was shown to lead to a very promising and possibly disruptive
acoustic model as indicated by a 16% relative recognition error
reduction over discriminatively trained GMM-HMMs on a busi-
ness search task [5, 6], which features short query utterances,
tens of hours of training data, and hundreds of tied states.

This paper takes this model a step further and serves sev-
eral purposes. First, we show that the exact same CD-DNN-
HMM can be effectively scaled up in terms of training-data size
(from 24 hours to over 300), model complexity (from 761 tied
triphone states to over 9000), depth (from 5 to 9 hidden lay-

ers), and task (from voice queries to speech-to-text transcrip-
tion). This is demonstrated on a publicly available benchmark,
the Switchboard phone-call transcription task (2000 NIST Hub5
and RT03S sets). We should note here that ANNs have been
trained on up to 2000 hours of speech before [7], but with much
fewer output units (monophones) and fewer hidden layers.

Second, we advance the CD-DNN-HMMs by introducing
weight sparseness and the related learning strategy and demon-
strate that this can reduce recognition error or model size.

Third, we present the statistical view of the multi-layer per-
ceptron (MLP) and DBN and provide empirical evidence for
understanding which factors contribute most to the accuracy im-
provements achieved by the CD-DNN-HMMs.

2. The Context-Dependent
Deep Neural Network HMM

A deep neural network (DNN) is a conventional multi-layer per-
ceptron (MLP, [8]) with many hidden layers, optionally initial-
ized using the DBN pre-training algorithm. In the following,
we want to recap the DNN from a statistical viewpoint and de-
scribe its integration with context-dependent HMMs for speech
recognition. For a more detailed description, please refer to [6].

2.1. Multi-Layer Perceptron—A Statistical View

An MLP as used in this paper models the posterior probabil-
ity Ps|o(s|o) of a class s given an observation vector o, as a
stack of (L + 1) layers of log-linear models. The first L layers,
� = 0...L − 1, model posterior probabilities of hidden binary
vectors h� given input vectors v�, while the top layer L models
the desired class posterior as

P �
h|v(h�|v�) =

N�∏
j=1

ez�
j(v�)·h�

j

ez�
j(v�)·1 + ez�

j(v�)·0 , 0 ≤ � < L

P L
s|v(s|vL) =

ezL
s (vL)

∑
s′ ezL

s′ (v
L)

= softmaxs(z
L(vL))

z�(v�) = (W �)T v� + a�

with weight matrices W � and bias vectors a�, where h�
j and

z�
j(v

�) are the j-th component of h� and z�(v�), respectively.
The precise modeling of Ps|o(s|o) requires integration over

all possible values of h� across all layers which is infeasi-
ble. An effective practical trick is to replace the marginaliza-
tion with the “mean-field approximation” [9]. Given observa-
tion o, we set v0 = o and choose the conditional expectation
E�

h|v{h�|v�} = σ
(
z�(v�)

)
as input v�+1 to the next layer,

where σj(z) = 1/(1 + e−zj ).
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MLPs are often trained with the error back-propagation
procedure (BP) [10] with stochastic gradient ascent

(W �, a�) ← (W �, a�) + ε
∂D

∂(W �, a�)
, 0 ≤ � ≤ L,

for an objective function D and learning rate ε. If the objective
is to maximize the total log posterior probability over the T
training samples o(t) with ground-truth labels s(t), i.e.

D =
T∑

t=1

log Ps|o(s(t)|o(t)), (1)

then the gradients are
∂D

∂W �
=

∑
t

v�(t) · (e�(t))T ; ∂D

∂a�
=

∑
t

e�(t)

eL(t) = (log softmax)′(zL(vL(t)))

e�−1(t) = W � · e�(t) · diag
(
σ′(z�(v�(t))

)

with error signals e�(t), the component-wise derivatives
σ′j(z) = σj(z) · (1 − σj(z)) and (log softmax)′j(z) =
δs(t),j − softmaxj(z), and Kronecker delta δ.

BP, however, can easily get trapped in poor local optima for
deep networks. This can be somewhat alleviated by growing
the model layer by layer, or more effectively by using the DBN
pre-training procedure described next.

2.2. DBN Pre-Training

The deep belief network (DBN), proposed by Hinton [11], pro-
vides a new way to train deep generative models. The layer-
wise greedy pre-training algorithm developed in DBN was later
found to be also effective in training DNNs.

The DBN pre-training procedure treats each consecutive
pair of layers in the MLP as a restricted Boltzmann machine
(RBM) [11] whose joint probability is defined as

Ph,v(h, v) =
1

Zh,v
· evT Wh+vT b+aT h

for the Bernoulli-Bernoulli RBM applied to binary v with a sec-
ond bias vector b and normalization term Zh,v , and

Ph,v(h, v) =
1

Zh,v
· evT Wh+(v−b)T (v−b)+aT h

for the Gaussian-Bernoulli RBM applied to continuous v. In
both cases the conditional probability Ph|v(h|v) has the same
form as that in an MLP layer.

The RBM parameters can be efficiently trained in an
unsupervised fashion by maximizing the likelihood L =∏

t

∑
h Ph,v(h, v(t)) over training samples v(t) with the ap-

proximate contrastive divergence algorithm [11, 12]. We use
the specific form given in [12]:

∂ logL
∂W

≈
∑

t

v(t) ·Eh|v{h|v(t)}T−
∑

t

v̂(t) ·Eh|v{h|v̂(t)}T

∂ logL
∂a

≈
∑

t

Eh|v{h|v(t)} −
∑

t

Eh|v{h|v̂(t)}

∂ logL
∂b

≈
∑

t

v(t)−
∑

t

v̂(t)

with v̂(t) = σ(Wĥ(t) + b), where ĥ(t) is a binary random
sample from Ph|v(·|v(t)).

To train multiple layers, one trains the first layer, freezes it,
and uses the conditional expectation of the output as the input
to the next layer and continue training next layers. Hinton and
many others have found that initializing MLPs with pretrained
parameters never hurts and often helps [11].

2.3. Integrating DNNs with CD-HMMs

Following the traditional ANN-HMMs of the 90’s [1], we re-
place the acoustic model’s Gaussian mixtures with an MLP
and compute the HMM’s state emission likelihoods po|s(o|s)
by converting state posteriors obtained from the MLP to likeli-
hoods:

po|s(o|s) =
Ps|o(s|o)

Ps(s)
· const(s). (2)

Here, classes s correspond to HMM states, and observation
vectors o are regular acoustic feature vectors augmented with
neighbor frames (5 on each side in our case). Ps(s) is the prior
probability of state s.

However, unlike earlier ANN-HMM systems, we model
tied triphone states directly. It had long been assumed that the
thousands of triphone states were too many to be accurately
modeled by an MLP, but [5] has shown that doing so is not
only feasible but works very well. This is a critical factor in
achieving the unusual accuracy improvements in this paper. The
resulting model is called the Context-Dependent Deep Neural
Network HMM, or CD-DNN-HMM.

3. Training CD-DNN-HMMs
In this section, we will describe the process and some practical
considerations in training CD-DNN-HMMs.

3.1. Basic Training Process

DNN model learning begins with the DBN pre-training (sec-
tion 2.2), using one full sweep through the 309 hours of train-
ing data for all hidden layers but the first, where we use two full
sweeps. Slight gains may be obtained if the pre-training proce-
dure sweeps the data additional times. However, this seems to
be not critical [5]. RBMs are not scale-invariant, so the training
corpus is normalized to zero mean and unit variance [13].

After pre-training, the DNN is fine-tuned using BP
with state labels obtained through forced alignment. The
model structure (phone set, HMM topology, tying of context-
dependent states) and the HLDA transform are inherited from
our best GMM-HMM model ML-trained on the same data,
which is also used to initialize the state alignment s(t) (Eq. (1)).
The alignment is updated once during training.

3.2. Gradient Ascent

The gradient ascents are done in mini-batches. The mini-
batch size trades off noisy gradients with slow convergence. In
our case, around 1000 frames generally worked best for back-
propagation (except for the first mini-batches, where we re-
duced it by a factor of 4), and 100-300 for pre-training.

For pre-training, we used a learning rate ε ≈ 1 per minute
of speech, and for early BP iterations about 1 per 3 seconds
which was reduced 40-fold after 3 sweeps. Following the orig-
inal BP paper [10], we also smoothe the gradients with a first-
order low-pass (“momentum,” time constant ≈ 25 seconds).
The minibatch size and learning rates used in this work are very
close to what have been used in other tasks [5, 6].
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Table 1: Standard GMM-HMM vs. CD-DNN-HMM for single-pass speaker-independent recognition on five speech-to-text test sets.
Also shown are our group’s best-ever GMM-HMM result for three of the test sets. Transcription word-error rates are given in %.

acoustic model & training recognition mode RT03S Hub5’00 voicemails tele-
FSH SW SWB MS LDC conf

GMM 40-mix, ML, SWB 309h single-pass SI 30.2 40.9 26.5 45.0 33.5 35.2
GMM 40-mix, BMMI, SWB 309h single-pass SI 27.4 37.6 23.6 42.4 30.8 33.9
CD-DNN 7 layers x 2048, SWB 309h, this paper single-pass SI 18.5 27.5 16.1 32.9 22.9 24.4

(rel. change GMM BMMI→ CD-DNN) (-33%) (-27%) (-32%) (-22%) (-26%) (-28%)
GMM 72-mix, BMMI, Fisher 2000h multi-pass adaptive 18.6 25.2 17.1 - - -

Gradient ascent with small mini-batches cannot be mean-
ingfully parallelized across multiple servers. Instead, we utilize
multiple NVidia Tesla GPGPU devices connected to a single
host. With mini-batches, much of the algorithm can be writ-
ten as operations on large matrices, for which GPGPUs are an
excellent match [11]. To reduce data transfer, the model param-
eters (W, a, b, related accumulators) are stored distributed in
disjoint stripes across the GPGPU devices, while node values
are scattered/gathered during computation. The speed-up from
using GPGPUs is so large that even seemingly simple opera-
tions like tracking the training likelihood notably impact run-
time if they are not also moved to the GPGPU.

Gradient ascent in mini-batches works best if data is pre-
sented in random order, but that is problematic because relevant
speech corpora do not fit into RAM. As a compromise, we limit
randomization to within a rolling window of 48 hours of data
which is held in RAM.

3.3. Weight Sparseness

Enforcing weight sparseness is equivalent to incorporating L0
and approximate L1 regularizations to the training criterion.
We have found, however, that enforcing sparseness during pre-
training or at the early stage of BP is harmful. The strategy
adopted in this paper, which proved to be effective, is to fine-
tune the models without sparseness constraint until the weights
are relatively stable. In our experiments, we started enforcing
sparseness after sweeping the data at least four times. The strat-
egy is to force all weights smaller than a threshold to be 0, and
to continue fine-tuning the model with BP while keeping all
weights smaller than half of the threshold to be 0. This is to
prevent reappearance of small weights while avoiding sudden
removal of weights that shrink below the original threshold.

4. Experimental Results
4.1. Setup and Core Results

We evaluate the effectiveness of CD-DNN-HMMs on the task
of speech-to-text transcription using the 309-hour Switchboard-
I training set [14]. The system uses 13-dimensional PLP fea-
tures with windowed mean-variance normalization and up to
third-order derivatives, reduced to 39 dimensions by HLDA.
The speaker-independent crossword triphones use the common
3-state topology and share 9304 CART-tied states.

The GMM-HMM baseline system has 40 Gaussian mix-
tures trained with maximum likelihood (ML) and refined dis-
criminatively with the boosted maximum-mutual-information
(BMMI) criterion. Using more than 40 Gaussians did not im-
prove the ML result.

The CD-DNN-HMM system replaces the Gaussian mix-
tures with likelihoods derived from the MLP posteriors
(Eq. (2)), while leaving everything else the same. One question

was whether a softmax layer for 9304 tied states would work,
which to our knowledge has never been tried before.

The primary test set is the FSH half of the 6.3h Spring 2003
NIST rich transcription set (RT03S), while the 1831-segment
SWB part of the NIST 2000 Hub5 eval set was used for system
development. The trigram language model was trained on the
2000h Fisher-corpus transcripts and interpolated with a written-
text trigram. Test-set perplexity with the 58k dictionary is 84.

Recognition is done in a single-pass without any speaker
adaptation. Table 1 shows the core result: The word-error rate
(WER) is reduced from the GMM-HMM’s 27.4% (BMMI) to
CD-DNN-HMM’s 18.5%—a 33% relative reduction, which is
quite significant. Note that even with our best CD-DNN-HMM
system, the average frame level state error rate is only slightly
below 60%, and the average log posterior probability is -1.76.

The 309-hour CD-DNN-HMM system also outperforms
our best speaker-adaptive multi-pass system (18.6%, last row),
which uses additional acoustic training data (the 2000h Fisher
corpus), VTLN, and ROVER, by 0.1% absolute. For compar-
ison, [7] reports around 17% on this task, and results on more
recent but similar test sets are around 17-18% [15].

Much of the gain also carries over to four less well-matched
test sets—the cell-phone SW portion of RT03S, 110 in-house
voice-mails, 249 LDC voicemails from [16], and a 55-minute
in-house set of wideband recordings of teleconferences. The
relative improvements are 22–28% over BMMI using the same
acoustic and language models (except for voice-mails, where
the LM includes additional domain data).

4.2. Influence of Layers and Training Procedures

Table 2 shows the effect of layers and training procedures for
our development set (Hub5’00). The ANNs were trained using
state alignments generated from the GMM-HMM ML model
(whereas in Table 1, alignments were updated with CD-DNN-
HMMs after 7 passes through the data). Increasing from 1 to
9 layers (2048 hidden nodes at each layer) reduces WER from
24.2% to 17.0% if DBN pre-training is exploited. The same
WER is reached by a five-layer model with 3072 hidden nodes,
whereas a 9-layer model with only 1024 nodes reaches 17.9%.

Pure BP training (random initialization without DBN pre-
training) is nearly 2 percentage points worse for 2 and 3 layers,
but the gap reduces to below 1 point for 4, 5, and 7 layers. The
gap is smaller for layer-growing BP (LBP, replacing the respec-
tive top layer after BP convergence with a new random hidden
layer). It stays within 0.5 points and reaches the DBN for 4
layers, at a cost of an O(L) times larger training time.

Our results seem to suggest that although pre-training helps,
it is not critical for up to 5 hidden layers. Even without pre-
training, CD-DNN-HMMs with two or more hidden layers eas-
ily outperform the discriminatively trained GMM-HMMs. We
believe that direct modeling of tied triphone states is the enabler
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Table 2: Comparing different number of layers/hidden nodes
and training algorithms: BP with DBN pre-training, pure back-
propagation (BP), and layer-wise BP-based model growing
(LBP). Shown are word-error rates in % for Hub5’00 SWB.

L×N � DBN BP LBP 1×N1 DBN
1×2k 24.2 24.3 24.3 1×2k 24.2
2×2k 20.4 22.2 20.7 - -
3×2k 18.4 20.0 18.9 - -
4×2k 17.8 18.7 17.8 - -
5×2k 17.2 18.2 17.4 1×3772 22.5
7×2k 17.1 17.4 17.4 1×4634 22.4
9×2k 17.0 - - - -
9×1k 17.9 - - - -
5×3k 17.0 - - - -
- - - - 1×16k 22.1

of the superior performance of CD-DNN-HMMs.
The right column in Table 2 shows that a single-hidden

layer model with the same number of parameters as the deep
network performs significantly worse, and even a significant in-
crease of hidden nodes to 16k cannot make good on the differ-
ence. This suggests that the deep models’ additional factoriza-
tion by means of intermediate layers is indeed important.

4.3. Other Influence Factors

Table 3 shows the system development for a CD-DNN-HMM
with 7 hidden layers to illustrate the impact of several factors.
Starting with a 1-hidden-layer MLP with about as many param-
eters as the 7-hidden-layer CD-DNN-HMM, we see that the use
of context frames yields a 14% relative improvement, nearly
twice than what is achieved using neighbor frames with GMM-
HMMs (LDA, fMPE). The effective exploitation of neighbor
frames is one of the DNN’s strengths.

Rearranging the parameters from 1 into 7 layers shows the
modeling power of intermediate layers: Errors are reduced by
24% relative. Updating the state alignment using the CD-DNN-
HMM yields another 4% relative reduction.

Finally, moderate sparsification of the weight matrices that
zeroes about two thirds of the weights yields a small improve-
ment of 0.3 points. Trade-offs can be further made between the
size of the model (and thus the decoding time).

The WER results presented may further be improved by
tuning transition parameters [6].

5. Conclusion
In this paper, we have scaled up CD-DNN-HMMs [5, 6] to large
data sets for speech-to-text transcription. We have shown feasi-
bility of converting state posteriors to emission likelihoods for
a softmax layer of over 9,000 nodes, and of training a DNN on
hundreds of hours of data using multiple GPGPUs. We have
demonstrated that recent improvements from using CD-DNN-
HMMs on smaller tasks [5, 6] do carry over to large corpora and
speech-to-text transcription, achieving up to 33% relative WER
reduction over a discriminatively trained GMM-HMM.

Our results suggest that the three critical factors that con-
tribute to the remarkable accuracy gains from the CD-DNN-
HMMs are (1) the direct modeling of tied triphone states
through the DNN; (2) the effective exploitation of neighbor
frames by the DNN; and (3) the efficient and effective model-
ing ability of deeper networks. DBN pre-training leads to best

Table 3: Comparing different influence factors on CD-DNN-
HMM accuracy. ‘nz’ means ’non-zero.’ Word-error rates in %
for Hub5’00 SWB.

acoustic model #params WER (r. chg.)
GMM 40 mix, BMMI 29.4M 23.6
CD-DNN 1 layer×4634 nodes 43.6M 26.0 (+10%)
+ 2×5 neighbor frames 45.1M 22.4 (-14%)
CD-DNN 7 layers×2048 nodes 45.1M 17.1 (-24%)
+ updated state alignment 45.1M 16.4 (-4%)
+ sparsification 66% 15.2M nz 16.1 (-2%)

results, but only by a margin below 1 point for relevant setups.
The two main challenges we are facing are to improve effi-

ciency of the training to scale up further to thousands of hours
of data, and to develop effective speaker-adaptation techniques
for CD-DNN-HMMs.
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