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CONVERSES FOR WRITE-UNIDIRECTIONAL MEMORIES 

Frans M.J. Willems* 

ABSTRACT : First we show that we can transform a WUM channel into a 

channel that behaves identical in even and odd cycles. For this derived channel we 

then prove that the average-error capacity cannot exceed log2«1+.f5)/2) = 

0.69424· .. For the average-error capacity of the derived channel in the situation 

where both encoder and the decoder are uninformed, we find an even better upper 

bound (0.54588· .). In this case however we assume that in all cycles the same code is 

used. 

1. Introduction 
In 1985, researchers at Philips Research Laboratories were interested in the 

capacity aspects of a magnet~ptical recording system [1]. In this system a laser 

beam is used to heat up a spot on an optical disc. Depending on the orientation of the 

magnetic field, either a zero or a one will be written on this spot. The magnetic field 

is generated by an electromagnet. An optical effect makes it possible to retrieve the 

information stored in a spot. 

A problem arises when we want to record information at high speed. The 

inductivity of the electromagnet will prevents us from reversing the current too often. 

Therefore the following strategy is proposed. Suppose a new disc contains only zeros. 

During the first cycle we can store information on the disc by changing some of the 

zeros into ones by switching the laser on and off, without having to change the 

polarity of the current through the electromagnet. In the second cycle we reverse the 

polarity and we restrict ourselves to writing only zeros, again by switching the laser 

on and off, and keeping the remaining components unchanged. In the third cycle we 

write only ones, etc. 

An additional feature of the described recording system is that before each cycle 

the writer knows the state of the disc. This side information may be used to the 

increase efficiency of the coding process. The reader however is assumed not to be 

aware of the previous state of the disc. 

Philips researchers developed simple (time-sharing) codes that achieved a rate of 

0.5 bit per spot and were interested in codes with higher rates. In the "Applications"-

* Eindhoven University of Technology, Faculty of Electrical Engineering, Information 
Theory Group, P.O. Box 513, 5600 MB Eindhoven, The Netherlands. 
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session at the Seventh Symposium on Information Theory in the Benelux in 1986 

Willems and Vinck [2] presented the first article in this field. They found a simple 

code with a rate of 0.51699 bit/spot, thereby beating the 0.5 barrier. Willems and 

Vinck noted that there was a connection between the magneto-optical recording 

channel and the Blackwell broadcast channel (see e.g. Gel'fand [3] and Pinsker [4]), 

and recognizing this, they stated (however without proof) that log2«1+f.»)/2) = 

0.69424 is the average-error capacity of the magneto-<>ptical recording channel. 

In 1986 Borden [5] investigated a slightly different system which he named 

"Write-Unidirectional Memory (WUM)". Instead of zeros in even cycles and ones in 

odd cycles, in Borden's model the encoder is allowed in each cycle, after having 

inspected the (previous) state of the disc, to choose to write either zeros or ones. 

Borden showed that 0.69424 bit/spot is the capacity of the WUM-channel in the 

zero-error case. 

Subsequently Simonyi [6] generalized the WUM-model by observing that both 

the writer and the reader could be either "informed" or "uninformed" of the previous 

state of the channel (disc). In this way he obtained four different models. He assumed 

that the current through the electromagnet is reversed at the beginning of each new 

cycle as in Willems and Vinck [1]. For the "classical" WUM-channel (encoder 

informed, decoder uninformed) Simonyi generalized the code of Willems and Vinck 

and found a code with a rate of 0.53254 bit/spot. 

In this report we will give the weak converses for the four models that are 

described by Simonyi. We assume that the error probability concept is the average­

error concept. The current trough the electromagnet is assumed to be reversed each 
cycle. 

2. Definitions 

Let N E 1,2"" . A WUM of block length N consists of N components yN := 

(Yl'Y2"" 'YN)' Each component Yn' n E {1,2,. .. ,N} may assume a value from {0,1}. 

A decoder can inspect the components of the memory. An encoder is a device 

that can alter them. 

A cycle (indexed by k E 1,2,.·· ) is a time interval that starts when the k-th 

"message" is stored in the WUM and that ends when message k+1 is about to be 

stored. During odd cycles the encoder can decide to leave a component unchanged, we 

say the encoder writes a "?" or to write a "1". In an even cycle a component can 

remain unaltered, a "?" is written, or can be set equal to "0". The tables below give 
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the updated value Yn(k) of a WUM-component given its previous value yn(k-1) and 

the "input" f (k). n 

f(k) y(k-l) y(k) f(k) y(k-l) y(k) Table l. 
Yfk) as a function of 

? 0 0 0 0 0 y k-1) and the input f(k) 
? 1 1 0 1 0 for both odd and even k 
1 0 1 ? 0 0 (n fixed). 
1 1 1 ? 1 1 

k odd k even 

At the beginning of cycle k we denote the state of the WUM by yN(k) 

(Y1(k)'Y2(k), .. "YN(k)). An information source generates the message w(k) E 

{O,l,.· .,M-1}. We assume that Pr{W(k)=m} = 11M for m E {O,1, ... ,M-1}. The 

encoder maps the message w(k) into a "prescription" fN(k) := (f1(k),f2(k),. .. ,fN(k)). 

When k is odd fn(k) E {?,1}, when k is even fn(k) E {O,?}. Yet we will see that the 

distinction between odd and even cycles is artificial. Therefore we introduce the 

random variables Gn(k) and Zn(k) for k = (0,)1,2,· .. When we define 

if Fn(k) = ?, 

else, 

{ 
1-Y n(k) for k odd, 

Z (k) := 
n Y n(k) for keven, 

for k = 1,2,··· and 

for k = 0,1,2,· .. , 

(la) 

(lb) 

we see that the mapping that determines a component zn(k) from the zn(k-l) and 

gn(k) does not depend on k anymore (see table 2). 

g(k) z(k-l) I~ 

m· 0 If i 1 0 
rOO 
r 1 0 

Table 2. 
z(k) as a function of 
z(k-l) and the input g(k) 
(n fixed). 

As can be seen in the table, the combination (zn(k),zn(k-1)) = (1,1) never 
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occurs. From now on we consider a WUM as a channel, where for each component 

there is an input g(k) E {i,r}, state z(k-l) E {O,l} and an output z(k) E {O,l} that 

depends on g(k) and z(k-l) as in table 2. 

We say that an encoder is "uninformed" when the previous state of the channel 

is not used in the determination of gN(k), hence 

gN(k) := E(w(k),k). (2a) 

The encoder is "informed" when 

(2b) 

Likewise a decoder is said to be "uninformed" when 

• N 
w(k) := D(z (k),k), (3a) 

and "informed" when 

• N N 
w(k) := D(z (k),z (k-l),k). (3b) 

Note that both the encoder and decoder are allowed to use codes that depend on the 

cycle index k. For practical reasons however, we assume that there exists a "period" 

T E {1,2,. .. } such that E(. ,k) = E(·,k mod T) or E(·,. ,k) = E(·,.,k mod T) and 

D(· ,k) = D(·,k mod T) or D(.,. ,k) = D(·,·,k mod T). The entire coding scheme is 

now referred to as a "period-T" code. E.g. if we use one odd-cycle code and one 

even-cycle code we have a period-2 code. 

By combining (2a) or (2b) with (3a) or (3b) we find four different cases. For 

each of these cases we can design codes. The (average-) error probability of a code is 
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defined as 

(4) 

where we assume that zN(O) = ON. 

A rate R is said to be T -achievable if for every 0 > 0 there exist for all N large 

enough period-T codes with k"log(M) ~ R - 0 and error probability P e < O. The 

capacity C(T) is defined as the maximum of all T -achievable rates. 

It will be clear now that there are four different WUM-capacities, possibly 

depending on the period T, if we consider the average-error concept. 

The binary entropy function h(" ) is defined as 

h(o:) := -o:"log(o:) - (l-o:) "log(l-o:), for 0 ~ 0: ~ 1. (5) 

Throughout this report we assume that the basis of the logarithm is 2. 

3" Results 

In this report we prove two converses: 

Lemma 1 : For the WUM with informed encoder and informed decoder for arbitrary 

period T 

Cinformed,informed(T) ~ log((1+(5)/2). o 

Lemma 2 : For the WUM with uninformed encoder and uninformed decoder for 

period T = 1 

Cunin£ormed uninformed(T=l) ~ max (l-!3)"h(f3/(1+f3)). 0 , f3 

From Lemma 1 we immediately obtain 
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Corollary 1 : For the WUM with only the encoder or only the decoder informed and 

arbitrary period T 

Cuninformed informed(T) $ log«1+{5)/2), and 0 , 
Cinformed uninformed(T) $ log«1+{5)/2). 0 , 

4. Proof of Lemma 1 
For k = 1,2,· .. the Fano-inequality yields 

. 
H(W(k) I W(k» $ ¢(P e(k», where 

¢(p) := h(p) + p.log(M-l), for 0 $ p $ 1. 

Note that ¢(p) is convex-n in p and that ¢(p)/N 1 0 when p 1 0 (M constant). 

Now for k = 1,2, ... 

log(M) = H(W(k» = H(W(k) I ZN(k-1» 

= I(W(k);ZN(k)IZN(k-l» + H(W(k)IZN(k),ZN(k-l» 

(!\(W(k);ZN(k) I ZN(k-l» + H(W(k) I ZN(k),ZN(k-l),W(k» 

$ H(ZN(k)I ZN(k-l» + H(W(k)IW(k» 

(6a) 

(6b) 

(b) 
$ H(ZN(k)IZN(k-l» + ¢(Pe(k». (7) 

Here (a) follows from the fact that ~(k) is determined by zN(k) and zN(k-l) as 

stated in (3b), and (b) is Fano's inequality. Next we find 
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(8) 

where (c) follows from the convexity of tP(·), and where ZI and Zn are random 

variables with 

Now note that 

Pr{ (ZI'Zn)=(l,l)} = 0, and that 

lim k Pr{zI=z} = lim k pr{zn=z} for Z f {0,1}. 
K~ro K~ro 

(lOa) 

(lOb) 

Therefore assume that lim k Pr{(ZI,Zn)=(O,l)} = lim k Pr{(ZI'Zn)=(l,O)} = 0:, 
K~w K~w 

and lim k Pr{(ZI'Zn)=(O,O)} = 1-20:, for some 0: with 0 $ 0: $ 1/2. Hence, taking 
K~ro 

limits for K ~ ro, we obtain from (8) 

~.log(M) $ (l-o:).h(o:/(l-o:)) + ~·tP[ lim k· L Pe(k)). 
K~ro k=l,K 

(11) 

Therefore for any T-achievable rate R for all (small enough) Ii> 0 there exists an 0 $ 

0: $ 1/2 such that 

1 1 R -Ii $ Wlog(M) $ (l-o:).h(O:/(l-o:)) + WtP(li), (12) 

hence we can conclude that for all T 
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(d) 
C. rd· r d(T) < max (l-a)oh(a/(l-a» = log((1+{5)/2). (13) lOtOrme ,1OtOrme - a 

Equality (d) follows from simple analysis. 

50 Proof of Lemma 2 
For k = 1,2,000 we have that 

log(M) = H(W(k)) = I(W(k);ZN(k» + H(W(k)IZN(k» 

(e) N N • 
= I(W(k);Z (k» + H(W(k) I Z (k),W(k» 

(f) 
~ I(W(k);ZN(k» + 4>(P e(k» 

= L I(W(k);Z (k) I Zn-1(k)) + 4>(P (k» 
n-1 Nne - , 

= L [H(Z (k)IZn-\k)) - H(Z (k)IZn- 1(k),W(k»] + 4>(Pe(k», (14) 
n=l N n n , 

where (e) follows from (3a), and where (f) is Fano's inequality. Next consider 

H(Zn(k) I Zn-1(k),W(k» 

~ H(Zn(k) I Zn-1(k),W(k),Gn(k),Zn-1(k-1)) 

= Pr{G (k)=i}oH(Z (k)IZn- 1(k),W(k),G (k)=i,Zn-1(k-1» n n n 

= Pr{ G (k)=i} 0 H(Z (k-1) I Zn-1(k),W(k),G (k)=i,Zn-1(k_1» n n n 

(!)pr{G (k)=i}oH(Z (k_1)IZn- 1(k_1», (15) 
n n 

where (g) follows from 

P [Zn-\k-1),Zn(k-l),W(k),gn(k),zn-l(k)) 

= p[zn-\k-1),Zn(k-1)) oP[w(k),gn(k)) op[zn-\k)lzn-1(k_l),W(k)) 

= p[zn-l(k_l)) oP[zn(k-l)lzn- 1(k-1)) op [w(k),gn(k),zn-l(k) Izn- 1(k-1)). (16) 
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From (14) and (15) we conclude that 

log(M) - ¢!(P e(k)) 

~ L [H(Z (k)IZn- 1(k)) -PriG (k)=i}.H(Z (k-l)IZn-\k-l))]. (17) 
n=1 N n n n , 

This implies that (note that (h) follows from the convexity of ¢!(. )) 

&.log(M) - &·¢![kk~/e(k)J) 
, 

(h) 1 1 ~ 
~ Wlog(M) - -K N· La. ¢!(P (k)) 

. k-l K e - , 

~ K~N· L L [H(Z (k)IZn- 1(k))-Pr{G (k)=i}.H(Z (k-l)IZn- 1(k_l))] 
k=1 K n=1 N n n n , , 

= Nl. L K1 . L [H(Z (k)IZn- 1(k))-Pr{G (k)=i}.H(Z (k-l)IZn- 1(k-l))] 
n=I,N k=I,K n n n 

~ max K1 . L [H(Z (k)IZn- 1(k)) - PriG (k)=i}·H(Z (k-l)IZn- 1(k_l))] 
n k=1 K n n n , 

~ max k· [ L (I-Pr{G (k)=i}).H(Z (k-l)IZn- 1(k_1)) + 1J 
n k=2,K n n 

~ k· [ L (1-Pr{G(k)=i}).H(Z(k-1)) + IJ, (18) 
k=2,K 

for some set of random variables (Z(O), G(l),) Z(l), Z(K-l), G(K) with 

distribution 

p[Z(O),g(1),Z(l), ... ,Z(K-l),g(K)] = p[z(O)] .p[g(1)] .p[z(I)lz(O),g(1)] .... 

. P [g(k-l)J . P [Z(K-l) I Z(K-2),g(K-1)J . P [g(k)J . (19) 

From the fact that T = 1 we obtain that there must exist a (3, 0 ~ (3 ~ 1, such that 

Pr{G(k)=i} = (3, for k = 1,2,··· . (20a) 
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Note that the right side of (18) is equal to 11K when fl = 1. Therefore we assume in 

what follows that fl < 1. We will now determine lim Pr{Z(k)=I}. Define 

then 

k-+oo 

'Yk:= Pr{Z(k)=I}, k = 0,1,2,. 0 0 • 

'Yo = 0 and 

'Yk = Pr{Z(k)=I} = Pr{Z(k-l)=O}oPr{G(k)=i} 

= (I-Pr{Z(k-l)=I})oPr{G(k)=i} 

= (1-'Yk_l)ofl, k = 1,2,. 0 0 • 

Define r := fll(1+fl) and ok := 'Ik - r. Then 

(20b) 

(21) 

(22) 

Therefore IOk+1 1 < 1<\1 and lim 'Yk = fll (1 +fl). Now taking in (18) the limit for 
k-+oo 

K_ at both sides we find that 

1 
Wlog(M) 

$ lim ko [ L (I-Pr{G(k)=i})oH(Z(k-l)) + 1] + hoI im ¢[k L Pik)] 
K-+oo k=2,K K-+oo k=I,K 

= (l-fl)oh(fll(1+fl)) + h o ¢[ lim * L P e(k)]). (23) 
K-+oo k=I,K 

Note that in the limit for K-+<D, (23) holds for both fl < 1 and fl = 1. 

Therefore for any I-achievable rate R for all (small enough) ° > 0 there exists a 

o $ fl $ 1 such that 

R - 0$ kolog(M) $ = (l-fl)oh(fll(1+fl)) + ~o ¢(o). (24) 
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From this we can conel ude that 

C . r d 'r d(T=l) < max (1-,8) . h(i3/(1+i3)). (25) umn,orme ,um,orme - i3 

Numerical computation shows that max (l-i3).h(i3/(1+i3)) = 0.54588·· is achieved 
i3 

for i3 = 0.2887· '. 

6. Conclusion 
We have shown that also in the average-error case log2«1+[5)/2) is an upper 

bound for the T-eapacities in all four (Simonyi-) situations. In addition we found an 

upper bound for the average-error 1-eapacity in the case where both the encoder and 

the decoder are uninformed. 

Wyner and Ozarow [7] independently found an upper bound for the 

average-error capacity in the uninformed-uninformed case. Their proof is more 

concise than ours, but not detailed as far as the limiting behavior (for K-+ro) is 

concerned. Berger [8] informed the author about the existence of this unpublished 

material. 

Van Overveld [9] demonstrated that also the 2-eapacity is upper-bounded by 

0.54588·· in the uninformed-uninformed case. It is still unknown however whether 

this holds for all T-eapacities or not. 
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