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Conversion Matrix Method of Moments for
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Abstract—A conversion matrix approach to solving network
problems involving time-varying circuit components is applied
to the method of moments for electromagnetic scattering anal-
ysis. Detailed formulations of this technique’s application to
the scattering analysis of structures loaded with time-varying
circuit networks or constructed from general time-varying me-
dia are presented. The computational cost of the method is
discussed, along with an analysis of compression techniques
capable of significantly reducing computational cost for partially
loaded systems. Several numerical examples demonstrate the
capabilities of the technique along with its validation against
conventional methods of modeling time-varying electromagnetic
systems, such as finite difference time domain and transient
circuit co-simulation.

Index Terms—Time-varying systems, method of moments,
computational electromagnetics

I. INTRODUCTION

T IME-VARYING or nonlinear (non-LTI) electromagnetic
structures are capable of exhibiting unique behaviors

beyond the capabilities of their linear time-invariant (LTI)
counterparts. Examples of non-LTI antenna systems include
the use of active and non-Foster matching [1]–[3], direct
antenna modulation [4]–[6], and time-varying loading whose
modulation rate is comparable to the carrier or antenna res-
onant frequency (as opposed to the symbol rate) [7]–[11].
The aforementioned methods all involve locally time-varying
or nonlinear loading, though the effects of distributed time-
variation, i.e., space-time modulated materials, have also been
explored [12]–[19].

Most modeling of time-varying electromagnetic structures
relies on time-domain techniques such as the finite difference
time domain method (FDTD), transient circuit co-simulation,
and time-domain method of moments [20]. While these tech-
niques are accurate and extremely general, they have certain
disadvantages that motivate the development of alternative
modeling strategies [21]. For example, full-wave transient
analyses have few opportunities for partial simulation re-use
between variations of time-varying properties. Additionally,
these methods do not directly represent frequency domain
phenomena frequently employed in the design of LTI systems
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(e.g., steady state radiated power, network parameters), though
these can be obtained via Fourier transformations. By contrast,
frequency-domain techniques often afford significant oppor-
tunities for partial simulation re-use and their formulations
naturally align with many common frequency domain metrics.
In particular, the direct connection between the method of
moments (MoM) and the dyadic Green’s function makes it
favorable in applications such as modal current analysis [22],
[23], automated design synthesis [24]–[26], and the devel-
opment of fundamental bounds on LTI system performance
[27], [28]. Connecting these benefits to a method compatible
with the analysis of linear, time-varying systems may greatly
accelerate the study of non-LTI electromagnetic structures in
similar application areas.

Our approach to meeting this need is to hybridize MoM
with existing frequency-domain methods developed for time-
varying circuit analysis. Specifically, we use conversion ma-
trices to transform a MoM-based scattering problem into
one involving an LTI N -port network interfaced with time-
varying subcircuits. Previous work in hybridizing MoM with
conversion matrix solvers exists, but is relatively limited to
special cases focused on sparse lumped loading. In [29],
[30], well-known time-varying and non-linear circuit analysis
techniques (conversion matrices and harmonic balance) were
used to model a single load at the feed point of an antenna.
By collapsing the antenna to a lumped impedance, this method
is extremely efficient, though it constrains loading to a single
location. In [31], a periodic structure with periodically time-
varying loads is treated by a similar conversion matrix / MoM
(CMMoM) hybridization but again with a focus on sparse
lumped loading. While these methods are useful and reflect
a common practical implementation of time-varying systems
through local time-varying elements, they do not directly
allow for generalization to systems involving multiple loads or
distributed time-varying properties. Modeling of time-varying
material properties has been studied in an analytical context
equivalent to CMMoM, but this treatment is limited to the
analysis of conducting cylinders [32].

Based in part on preliminary studies in [33], here, we
develop a generalized CMMoM method allowing for multiple
lumped and distributed spatiotemporal loading of electromag-
netic structures of arbitrary shape. A core component of this
method is the use of conversion matrices, a well known
technique in time-varying circuit analysis. Because this tech-
nique is less common in electromagnetics communities, we
review its fundamentals in Sec. II and establish notation used
throughout the paper. In Sec. III, we describe the integration
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of conversion matrices with MoM for lumped and distributed
loading, followed by a discussion of the source-frequency and
harmonic-frequency power quantities in Sec. IV. In Sec. V
we discuss issues of computational cost and compression and
in Sec. VI, we present three examples to illustrate the range
of problems that may be analyzed by this technique. We
conclude in Sec. VII with discussion of potential applications,
limitations, and extensions of the presented method.

II. CONVERSION MATRIX METHODS

Conversion matrices enable frequency-domain modeling
of systems with time-varying components by describing the
coupling between voltages and currents at multiple frequen-
cies [34]. Their use in circuit design is well documented, but
these techniques are rarely applied to electromagnetic scatter-
ing problems. Here we review the fundamentals of conversion
matrix methods on multiport networks in preparation for their
application to open, distributed electromagnetic systems via
MoM.

A. Lumped time-varying elements
When a time-varying voltage is impressed across a time-

varying load, the spectral content of the resulting current
corresponds to a mixing of the applied voltage with the
time-variation of the load. This can be seen by applying the
convolution theorem to Ohm’s law, as in

i(t) = v(t)g(t) (1)

and
I(ω) =

∫ ∞

−∞
V (ω − ω′)G(ω′)dω′ (2)

where i(t), v(t), and g(t) are the time-domain current, voltage,
and conductance of the load, and I(ω), V (ω), and G(ω) are
their Fourier transforms. In an LTI system, the conductance
has only a static component G(ω) ∼ δ(ω), and the current
can only contain frequencies that are present in the voltage
excitation. When the conductance g(t) is not static, the result-
ing current includes sum and difference mixing products of
the voltage and load frequency content.

The preceding discussion is valid for loads with arbitrary
time dependence. If the load’s time variation is periodic, it
may be represented by a Fourier series, as in

g(t) =

K∑

k=−K
Gkejkω0t (3)

and

G(ω) =

K∑

k=−K
Gkδ(ω − kω0), (4)

where g(t) is the time-varying conductance of the load, Gk is
the kth Fourier coefficient, ω0 is the fundamental frequency
of the time-varying component, and K is large enough to
contain sufficient frequency-domain content. Similarly, we
may expand the voltage in terms of a series of ω0 harmonics
centered about a reference frequency ωc,

v(t) =

K∑

k=−K
Vkej(ωc+kω0)t (5)

ω

F (ω)

0

G0

kω0

Gk

−kω0
ωc

V0

I0

ωc + kω0

Vk

ωc − kω0

V−k

Ik
I−k

Fig. 1. Frequency convention used throughout this paper. Time-varying loads
are represented in Fourier series of the fundamental frequency ω0, e.g., {Gk},
while current and voltage indexing centers around a modulation frequency ωc.

and

V (ω) =

K∑

k=−K
Vkδ(ω − ωc − kω0) (6)

so long as the baseband representation of the driving voltage
is periodic in the fundamental frequency ω0. If the voltage
is not periodic in ω0, then the excitation can be decomposed
into multiple problems with different center frequencies. In
this paper, we focus on single frequency excitation, where this
condition is naturally satisfied as Vk = 0 for all k 6= 0. As
a consequence of centering the harmonics about a reference
frequency ωc, as in (6), the negative frequency components
of the excitation signal are ignored. Instead we focus on the
upper sideband as shown in Fig. 1. If desired, contributions
from negative frequencies may be calculated by a secondary
calculation [34].

Adopting the same expansion and notation for the current
i(t), the conductance relationship in (2) may be written as

Ik =

L∑

`=−L
Vk−`G` (7)

and in matrix form as


I−K
I1−K

...
IK


 =




G0 G−1 . . . G−2K
G1 G0 . . . G1−2K
...

...
. . .

...
G2K G2K−1 . . . G0







V−K
V1−K

...
VK


 (8)

or more compactly
Î = ĜV̂ (9)

where Ĝ is the conversion matrix representation of the time-
varying conductance g(t). This matrix models the modulating
effect of the time-varying component, where the kth element
of the current vector contains contributions from every GpVq
product that satisfies p+ q = k.

An expression similar to (8) can be derived using a time-
varying resistance, rather than conductance [34]. This illus-
trates an inverse relationship between resistive and conductive
conversion matrices, similar to that of their LTI counterparts,

R̂ = Ĝ−1. (10)

Conversion matrices may also be generated for time-varying
inductors and capacitors, with the general structure

Î = jΩ̂ĈV̂ and V̂ = jΩ̂L̂Î (11)
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(b)

fK

f−K

f1−K
Ẑ...

(a)

ZKfK

...
...

Z−Kf−K

Z1−Kf1−K

N ports

Fig. 2. Diagram of LTI multiport system (a) and periodically time-varying
multiport system (b) as represented by a conversion matrix. Double slash
across port symbol denotes N physical ports. Each physical port supports
voltages and currents at each of the 2K + 1 harmonic frequencies. An LTI
system with 2K + 1 frequencies can be represented by 2K + 1 independent
linear systems, or a block diagonal conversion matrix, because there is no
conversion between frequencies.

where

Ω̂ =




ω−K 0 . . . 0
0 ω1−K . . . 0
...

...
. . .

...
0 0 . . . ωK


 , ωk = ωc + kω0, (12)

and the matrices Ĉ and L̂ are capacitance and inductance
conversion matrices of the form of the matrix Ĝ in (8).
The conversion matrices of conductances Ĝ, resistances R̂,
capacitances Ĉ, and inductances L̂, can be treated as basic
lumped components and combined into larger networks by
following usual series and parallel circuit rules [34]. For
real-valued time-varying circuit elements, the matrices Ĝ,
R̂, L̂, and Ĉ are naturally Hermitian symmetric. However,
multiplication of Ĉ or L̂ by the frequency matrix Ω̂ or its
inverse, as in (11), breaks the Hermitian symmetry of the
impedance conversion matrices of time-varying inductive or
capacitive elements.

B. Loaded multi-port networks

The time-domain representation of an LTI, N -port network
with time-varying resistors on each port may be written as

vα(t) = iα(t)rα(t) +

N∑

β=1

zαβ(t) ? iβ(t) (13)

where vα(t), iα(t), and rα(t) are the time-varying voltage,
current, and resistance across port α, and zαβ(t) is the open-
circuit impedance impulse response between ports α and β.
This translates to a frequency-domain representation

Vα(ω) =

∫ ∞

−∞
Iα(ω − ω′)Rα(ω′)dω′

+

N∑

β=1

Zαβ(ω)Iβ(ω) (14)

where Vα(ω), Iα(ω), Rα(ω), and Zαβ(ω) are the frequency
domain forms of the parameters in (13).

After manipulations closely resembling those in (4) and (6),
we obtain the equation

Vα(ωc + kω0) =

L∑

`=−L
Iα(ωc + (k − `)ω0)Rα(`ω0)

+

N∑

β=1

Zαβ(ωc + kω0)Iβ(ωc + kω0), (15)

and after including the frequency notation from (8) as super-
scripts, the previous expression may be rewritten as

V kα =

L∑

`=−L
Ik−`α R`α +

N∑

β=1

ZkαβI
k
β . (16)

Equations of this form can be collected into a matrix form by
grouping the port voltages and currents at each frequency. The
resulting system of equations reads



V−K

V1−K

...
VK


 =




R0 R−1 . . . R−2K

R1 R0 . . . R1−2K

...
...

. . .
...

R2K R2K−1 . . . R0







I−K

I1−K

...
IK




+




Z−K 0 . . . 0
0 Z1−K . . . 0
...

...
. . .

...
0 0 . . . ZK







I−K

I1−K

...
IK


 (17)

and has a similar structure to the conversion matrices of (8),
with the key difference that every element within each matrix
or vector is replaced by a submatrix or subvector of dimension
N . The submatrices and subvectors take the forms

Rk =




Rk1 0 . . . 0
0 Rk2 . . . 0
...

...
. . .

...
0 0 . . . RkN


 , (18a)

Zk =
[
Zkαβ

]
, Vk =

[
V kα
]
, Ik =

[
Ikα
]
. (18b)

Thus, Rk is a diagonal matrix consisting of the k-th harmonic
of the time-varying resistances at all N ports, Zk is the open-
circuit impedance matrix of the N -port LTI network at the k-th
harmonic centered about ωc, and Vk and Ik contain voltages
and currents existing on all N ports at the k-th harmonic, as
illustrated in Fig. 2(b). The system of equations in (17) may
be expressed in a more compact form as

V̂ =
(
R̂ + Ẑ

)
Î. (19)

For the case of purely LTI loading, we have R̂k 6=0 = 0 and
the matrices in (17) reduce to a block diagonal matrix as
shown in Fig. 2(a). As a result, the system is represented by
2K + 1 decoupled matrix equations at each harmonic. While
reciprocal LTI networks lead to symmetric conversion matrices
Ẑ, the conversion matrices for real-valued loads are Hermitian
symmetric based on the conjugate symmetry of their Fourier
representations. Thus, unless loads are selected specifically to
have real-valued Fourier spectra, the system conversion matrix
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Ẑ + R̂ is neither symmetric nor Hermitian. Representations
similar to (19) may be constructed for arbitrary networks of
time-varying resistances, capacitances, and inductances using
the forms in (10) and (11) along with standard circuit element
combination rules [34].

If desired, the multi-port conversion matrix can be grouped
by port rather than by frequency [34]. This arrangement would
lead to an overall matrix structure that resembled an open-
circuit impedance matrix, with each element in the matrix
replaced by a small conversion matrix, i.e.,




V̂1

V̂2

...
V̂N


 =




Ẑ11 Ẑ12 . . . Ẑ1N

Ẑ21 Ẑ22 . . . Ẑ2N

...
...

. . .
...

ẐN1 ẐN2 . . . ẐNN







Î1
Î2
...

ÎN


 (20)

where V̂α, Îα, and Ẑαβ are conversion matrix parameters as
defined in (8), but specific to the α and β ports of the N -port
network. The matrices in (17) and (20) share the same ele-
ments, but are re-ordered to emphasize different relationships.
While other work in multiport conversion matrices use a port-
wise arrangement [34], [35], this work uses the format of (17)
to facilitate compatibility with standard MoM techniques, as
will be discussed in the next section.

III. METHOD OF MOMENTS AND CONVERSION MATRICES

A broad class of LTI electromagnetic scattering problems
may be recast as LTI network problems through the use of the
method of moments (MoM) [36]. Here we consider problems
involving a perfectly conducting (PEC) surface Ω supporting
surface currents J , as shown in the left panel of Fig. 3. To
solve for the surface currents induced by a monochromatic
incident field Ei, we may expand the surface current into
an appropriate basis {ψn} in order to convert Maxwell’s
equations into a matrix form of the electric field integral
equation

V(ω) = Z(ω)I(ω) (21)

where V and I are vectors containing coefficients related to
the incident field and induced current, respectively, ω is the ex-
citation frequency, and Z is the impedance matrix representing
the scattered field operator L(J) [36]. Throughout this paper
we assume Galerkin testing is applied such that the impedance
matrix is transpose symmetric. The frequency dependence of
all quantities, to be dropped in all future expressions, explicitly
describes the LTI nature of the scatterer and indicates that
currents will only exist at the excitation frequency. Induced
currents due to multi-tone excitation can be analyzed by
direct superposition of weighted monochromatic solutions, i.e.,
Fourier series or transforms.

A. Loading

When the chosen basis is sufficiently localized, e.g., when
pulse [38], or RWG basis functions [37] are used, the elements
of the vectors V and I may be interpreted as voltages and
currents present at discrete locations, or ports, on the structure,
as shown in the right panel of Fig. 3. For example, in the
case of RWG basis functions, each port corresponds to one

Ω

Ei

[Ei − L(J)]tan = 0

J

ψα

V = ZI

ψβ

Fig. 3. Discretization of a structure Ω (left) into finite elements supporting
localized basis functions {ψn} (right). RWG basis functions [37] are de-
picted, with each basis function centered on one mesh edge and spanning two
adjacent triangles.

edge within the triangularized mesh created from the original
structure Ω.

With the aforementioned network interpretation of the elec-
tromagnetic scattering problem in Fig. 3, lumped loading at
any combination of the scatterer’s ports is straightforward to
model via the addition of a diagonal loading matrix to the
impedance matrix ZL,

Z→ Z + ZL, (22)

whose elements are related to the lumped element loading
at each port [39]. Loads of finite size spanning multiple
basis functions may also be modeled through the use of non-
diagonal loading matrices [40]. An identical approach also
allows for the modeling of non-PEC surfaces, which may be
inhomogeneous and/or anisotropic, characterized by surface
impedance Zs through a non-diagonal loading matrix related
to the Gram matrix of the chosen basis [27], [39].

B. Lumped time-varying loads

The techniques outlined in Secs. III-A and II-B may be
combined to model time-varying lumped elements loading any
or all ports of a MoM network representation of the structure
Ω. The resulting conversion matrix system takes on precisely
the same form as (17)–(19), where V̂ and Î are stacked vectors
containing fields and currents at all harmonic frequencies and
R̂ and Ẑ are the dynamic (associated with time-varying load-
ing) and static (associated with the underlying LTI structure)
conversion matrices, respectively.

Here we again note that the static conversion matrix Ẑ is
block diagonal and contains impedance matrices representing
the structure Ω at each harmonic frequency. The individual
blocks Rk of the dynamic loading matrix R̂ are diagonal for
localized bases, with off diagonal blocks Rk 6=0 representing
Fourier components of each element’s time variation. In the
special cases when the structure is unloaded or if all loading
elements are static, the system becomes LTI and the system
conversion matrix becomes block diagonal, reducing to a set
of 2K + 1 decoupled matrix equations, each involving only
quantities at a single frequency. Generalization to capacitive
and inductive loads follows the form of (12), and again
combinations of LTI and/or time-varying components may be
synthesized by standard circuit analysis rules [34].
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C. Distributed space-time loading

Like the extension of lumped LTI loading concepts to the
modeling of LTI distributed material parameters (e.g., surface
impedances), conversion matrix methods can also be applied
to model time-varying distributed material parameters within a
MoM framework. Following the examples discussed in Sec. II,
we begin with a description of this approach for resistive
material properties and then extend the method to reactive
behavior at the end of this section.

Consider a structure Ω constructed of a material with space-
time varying anisotropic surface resistivity ¯̄rs(r, t). The time-
domain surface current j(r, t) is determined by the total
tangential field etan(r, t) via the boundary condition

¯̄rs(r, t)j(r, t) = etan(r, t), r ∈ Ω (23)

where the anisotropic resistivity tensor may be written as

¯̄rs(r, t) =

[
ruus ruvs
rvus rvvs

]
(24)

with u and v representing a two dimensional local coordinate
system on the surface being considered. Note that in the spe-
cial case of zero surface resistivity this equation reduces to the
electric field integral equation for PEC surfaces. Separating the
total tangential field into incident and scattered components,
we may write (23) in the frequency domain as

n̂×Einc(r, ω) =

n̂×
[

¯̄Rs(r, ω) ? J(r, ω) + Lω(J)(r)
]
, r ∈ Ω. (25)

where the linear operator Lω returns the negative scattered
field from the current distribution at frequency ω [36], n̂
is a unit vector normal to the surface of Ω, and the tensor
convolution is understood to represent four scalar convolutions
according to standard matrix multiplication rules.

As carried out in previous sections, we assume that the
temporal variation of the surface resistivity is representable
via a Fourier series in the fundamental frequency ω0, i.e.

¯̄Rs(r, ω) =

K∑

k=−K

¯̄Rk
s (r)δ(ω − kω0). (26)

Substituting this representation into (25), expanding the sur-
face current at all frequencies into the basis {ψα} and applying
Galerkin testing, we obtain the linear system

V kα =
∑

β

L∑

`=−L
R`s,αβI

k−`
β +

∑

β

ZkαβI
k
β (27)

where

Rks,αβ =

∫

V

ψα(r′) · ¯̄Rk
s (r′) ·ψβ(r′) dV, (28)

and the quantities V kα and Zkαβ are exactly those used to
construct the incident field vector and impedance matrix within
the MoM matrix equation (21) at frequency ωk = ωc + kω0.
We recognize the above expression as a generalization of the
multi-port network relation (16), where now the time-varying
elements are allowed to relate currents and voltages across

multiple ports. Adapting the notation of (17), (18b), and (19),
we arrive at the conversion matrix system

V̂ =
(
R̂s + Ẑ

)
Î, (29)

where the key differentiating feature, as compared to the
multi-port network in (18a), is that the block matrices Rk

s

comprising the dynamic conversion matrix R̂s are no longer
strictly diagonal. When the surface resistance is isotropic and
spatially homogeneous, (28) becomes a prescription for a
scaled form of the Gram matrix of the chosen basis {ψα},
with the nature of off-diagonal terms dependent solely on the
extent of non-orthogonality of the basis.

In the frequency domain, lossy reactive polarization is
represented by a complex resistivity or complex susceptibility.
It is beyond the scope of this work to explore the dynamics and
possibilities of how lossy reactive media might be made time-
varying. However, we can note that a simple damped oscillator
model of a polarization process, i.e., the Lorentz-Drude model,
gives rise to a boundary condition of the form

α(r, t)
∂

∂t
j(r, t) + β(r, t)j(r, t)

+ κ(r, t)

∫ t

−∞
j(r, t′)dt′ = etan(r, t) (30)

where α, β, and κ are space-time-varying material parameters.
Here we have opted to not use the standard physical parameters
(e.g., damping constant, plasma frequency) of the Lorentz-
Drude model since it is not known how individual parameters
may be made time-varying and what the physical implications
of those variations might be. Applying the method of moments
and conversion matrix techniques used in previous sections, we
find that this system reduces to the form

V̂ =
(

jΩ̂Â + B̂− jK̂Ω̂−1 + Ẑ
)

Î. (31)

The above expression, unsurprisingly, resembles that of an N -
port network loaded with time-varying series RLC oscillators;
the primary difference being basis function overlap terms
leading to non-diagonal matrices Â, B̂, and K̂. Any of the
parameters α, β, and κ may be made anisotropic, leading to
matrix elements of the form of (28).

IV. INTERPRETATION OF POWER QUANTITIES

Much like in the study of LTI antennas or circuit networks,
many physically relevant quantities can be obtained through
linear or quadratic forms of terminal currents and voltages
using conversion matrix methods for time-varying networks.
Consider an LTI structure with conversion matrix Ẑ loaded
with time-varying elements represented by the conversion
matrix Ẑtv, i.e.,

V̂ =
(
Ẑ + Ẑtv

)
Î. (32)

Due to the orthogonality of sinusoids at dissimilar frequencies,
cross-frequency voltage-current products do not contribute to
time-average power flow. Thus, power quantities within the
system have the same form as in standard LTI problems, and
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may be written as a sum of the individual harmonic powers
P k, e.g.,

P =
1

2
Re{ÎHV̂} =

K∑

k=−K
P k, (33)

where
P k =

1

2
Re{Ik,HVk}. (34)

We may interpret the power P as the total power removed
from the incident field, i.e., extinction power or that supplied
by the excitation field [41], [42]. For single-frequency sources,
only the source frequency may contribute to this power, as all
elements of V̂ are zero except for the source frequency term
V0, and therefore P = P 0.

By (32), the power P may also be written

P =
1

2
ÎH(R̂ + R̂tv )̂I, (35)

where R̂ and R̂tv are the Hermitian parts of Ẑ and Ẑtv,
respectively. By the block diagonal nature of the static con-
version matrix Ẑ, the total power dissipated in the LTI portion
of the structure may be interpreted as a linear sum of powers
dissipated by currents at each frequency, i.e.,

PLTI =
1

2
ÎHR̂Î =

K∑

k=−K
P kLTI (36)

where
P kLTI =

1

2
Ik,HRkIk. (37)

Assuming the LTI portion of the system is passive, the matrix
R̂ is positive semidefinite, as are its submatrices Rk at
every harmonic frequency, and P kLTI ≥ 0 for all k. Note
that dissipation at each frequency in the LTI portion of this
system can be decomposed into contributions from thermal
losses (absorption) and radiation (scattering), each with a
corresponding quadratic form similar to (37), see [27], [43].

Similarly, the power dissipated in the time-varying portion
of the structure is

Ptv =
1

2
ÎHR̂tvÎ

=
1

2

K∑

k=−K
Ik,H

K∑

`=−K
Rk−`

tv I` =

K∑

k=−K
P ktv. (38)

In this case, the matrix R̂tv may be indefinite, and off-diagonal
blocks prevent the writing of the power Ptv as a sum of
quadratic forms in each harmonic current Ik, as was possible
for LTI dissipation in (36)-(37). In problems with single-
frequency sources at the k = 0 harmonic, P ktv = −P kLTI for
k 6= 0 and P 0

tv may be either positive or negative. Thus, the
time-varying element must supply power at intermodulation
frequencies, while at the source frequency, it may either accept
or supply power [44].

V. COMPRESSION AND COMPUTATIONAL COST

A typical MoM solution of an N -port network requires
inversion of an N -dimensional matrix, resulting in a naı̈ve1

1In practice, advanced algorithms and the structure of a matrix itself can
often be exploited to accelerate inversion to O(Nα), with 1 ≤ α ≤ 3. For
brevity, here we consider only the nominal worst-case scenario of α = 3.

computational cost of O(N3). The MoM-conversion matrix
method proposed in this work increases the size of the
matrix to be inverted by the number of calculated harmonics
Nf = 2K + 1, leading to a significantly increased inversion
cost of the order O(N3N3

f ).
However, often the problem of interest involves an LTI

system that is loaded with a small number of time-varying
loads Nl � N . In this case, it is useful to compress the system
into the smallest number of degrees of freedom possible before
inverting the system matrix.

A. Compression Techniques

We begin by partitioning the single frequency impedance
matrix representing the LTI portion of the system as

[
Vu

Vl

]
=

[
Zuu Zul

Zlu Zll

] [
Iu
Il

]
(39)

where the subscripts l and u denote the ports to be loaded or
left unloaded. Rearranging the top line of the above expression
into the form

Iu = Z−1uu (Vu − ZulIl) (40)

shows that the current on the unloaded portions of the structure
can be written in terms of only the excitation Vu and loaded
port currents Il. Substituting (40) into the bottom line of (39)
gives

(
Zll − ZluZ−1uu Zul

)
Il = Vl − ZluZ−1uu Vu, (41)

or more compactly,

ŽlIl = V̌l, (42)

where ˇ represents a compressed quantity. The system of
equations in (42) serves as a compressed Nl-dimensional
representation of the loaded portion of the system at a single
frequency. The “hidden” degrees of freedom associated with
the unloaded ports may be easily recovered via (40) once the
compressed system is solved. At this point, conversion matrix
methods from Sec. II-B may be applied to the compressed
system and combined with a loading matrix R̂ representing
time-varying loads on the ports associated with the loaded
currents Il, leading to

(
ˆ̌Zl + R̂l

)
Îl = ˆ̌Vl. (43)

The compressed conversion matrix system is now of di-
mension NlNf , leading to considerably lower inversion cost
than the uncompressed NNf -dimensional system. This is
particularly true when a high-dimensional LTI system has a
comparatively small number of time-varying elements, i.e.,
Nl � N . Compression of this form in the extreme case of
a single load amounts to collapsing the LTI portion of the
system into a one-port impedance, equivalent to the approach
taken in [29].
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Fig. 4. Conversion matrix solution times with and without compression as
a function of the number of frequencies Nf for varying numbers of loaded
ports Nl. Note that in this experiment we observe inversion costs scaling
approximately as O(Nα), with α ≈ 2.75.

B. Computational Cost Analysis

Two stages determine the total cost of using the previously
described compression technique: construction of the com-
pressed system matrix and its inversion. In constructing the
system matrix ˆ̌Zl, compression at each harmonic is carried out
via (41), resulting in a total cost of O(2NfNlN

2
u + NfN

3
u).

Once constructed, the system matrix ˆ̌Zl has a dimension of
NlNf resulting in a naı̈ve inversion cost of O(N3

l N
3
f ). Clearly,

the total cost depends on the relative numbers of loaded ports
and frequencies.

To examine computational speedup afforded by this method
of compression in a variety of scenarios, we compute the time2

taken to invert a matrix of dimension NfN with no compres-
sion applied. Additionally, we solve the same system using
compression by constructing and inverting the compressed
system matrix ˆ̌Zl for several ratios of loaded ports Nl/N .
Measured times from both methods are shown in Fig. 4.

In all cases studied, compression leads to significantly
reduced computational cost, though the magnitude of this
reduction depends on the relative time spent on construction
versus inversion. The computational cost of inverting the
system matrix ˆ̌Zl is dominant when the number of frequency
points is relatively high, while construction costs dominate
when the number of frequency points is low. This relationship
is modulated by the relative number of loaded ports, as seen
in the moving intersection of inversion and construction costs
across all panels of Fig. 4.

In the case of dominant construction costs, compression
yields a speedup proportional to Nα−1

f , where α = 3 corre-
sponds to nominal naı̈ve inversion complexity, see footnote 1.

2Inversion is carried out by the MATLAB function inv with N = 128.
In all timing experiments, random dense matrices are used and median times
are recorded based on 100 sequential trials.

100 101 102

100

101

102

103

∼ Nα−1
f

Nf

sp
ee
d
u
p

Nl/N = 1/128

Nl/N = 1/8

Nl/N = 1/4

Nl/N = 1/2

Fig. 5. Speed up afforded by compression, as calculated by the quotient of
total solution times recorded in Fig. 4.

Conversely, when inversion costs dominate the speedup is
independent of the number of frequencies and on the order
of (N/Nl)

3. Both of these trends are visible in Fig. 5, where
the speedup (as defined by the quotient of the uncompressed
and compressed computational times) is plotted using the data
presented in Fig. 4.

VI. EXAMPLES

In this section, we present a selection of example problems
solved using the hybridized conversion matrix method of
moments (CMMoM) technique. Like conventional method of
moments, the proposed method is capable of modeling a
broad range of practical antenna and scattering problems. The
examples included here highlight the method’s application to
scattering, transmission, and reception using structures with
both lumped and distributed time-varying loads.

A. Scattering from a singly-loaded bowtie dipole

We begin with the analysis of a bowtie antenna loaded at
its center by a time-varying switch, as shown in the inset of
Fig. 6. The bowtie length ` is 36 mm and the angle α between
the two arms is 155◦. The central switch is modeled by

RL(t) =

{
r0 tL/2 ≤ t− ntL < tL

0 else
(44)

with an off-resistance r0 of 10 kΩ and switching frequency
fL = 1/tL of 10 MHz.

The excitation is an incident plane wave from broadside at
3 GHz co-polarized with the long dimension of the bowtie and
is defined as

einc(t, r) = ẑE0 sinωinct, ∀ r = ŷy + ẑz (45)

in the plane of the bowtie antenna (x = 0) where t is
the same time variable shared by the load. Fig. 6 shows
the monostatic backscatter produced by this system. Note
that while the excitation in this example is monochromatic,
the scattered fields consist of multiple harmonics due to the
time-varying load. Similar to polarization-specific scattering
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TABLE I
COMPARISON OF BACKSCATTER (DBSM) DATA FROM FIG. 6

Static Time-varying
k = 0 −2 −1 0 1 2

Co-sim -21.5 -66.9 -31.6 -27.4 -31.6 -67.2
CMMOM -21.5 -63.0 -31.5 -27.7 -31.5 -63.3

FDTD -21.1 -68.4 -30.7 -27.5 -30.8 -68.6

analysis, here we adopt the following notation for multi-
harmonic backscatter,

Ψ(ωinc, ωobs) = lim
r→∞

4πr2
|Esc(ωobs)|2
|Einc(ωinc)|2

(46)

where Einc and Esc are incident and backscattered fields, r
is a distance from the scattering object, and ωinc and ωobs are
the incident and observation angular frequencies, respectively.

A CMMoM model of the bowtie example structure was
constructed with 170 triangles, 220 RWG basis functions,
and 201 harmonic frequencies. Fig. 6 shows the agreement
between CMMoM, a commercial FDTD code [45], and
transient circuit co-simulation [46]. CMMoM results from a
static bowtie with no time-varying load are also included for
comparison. The CMMoM, FDTD, and circuit co-simulation
results of the time-varying bowtie model agree within 0.3 dB
at the zeroth harmonic (incident frequency) and 0.9 dB at the
first-order harmonics. There is larger relative (dB) error in
the higher order harmonics, though the linear magnitudes of
these differences are relatively small due to the much smaller
absolute magnitude of these higher order harmonics.

We observe that the backscatter spectrum contains primarily
odd-numbered harmonics of the 500 MHz square wave switch-
ing waveform, which is to be expected since the Fourier series
of a square wave contains only odd numbered harmonics.
It should be noted that physical systems with linear time-
varying loads contain only intermodulation frequencies of
the excitation signal and time-varying loading waveform. By
definition, CMMoM produces output only at these discrete
harmonic frequencies, which are known a priori. Time domain
methods, on the other hand, can produce additional, spurious
spectral content due to transient and windowing effects.

Figure 7 shows the normalized backscattered power as a
function of declination angle θ due to an excitation field
incident from θ = 90◦. The pattern of the reflected field for
each harmonic has the shape of a center-fed dipole, with nulls
in endfire directions and peaks at broadside. The magnitude
of each harmonic pattern at broadside corresponds to the peak
values in Fig. 6 and the values listed in Table I.

B. Harmonic generation in a multiply-loaded transmit system

As a second example, we consider a square wire loop
antenna loaded on opposite sides by two sinusoidally-varying
time-varying loads, selected either as time-varying resistors
or time-varying capacitors. The loop has a side length ` of
82.8 mm and a radius of 1 mm. The time-varying loads are
defined by

RL(t) = R0 (1 + γ cosωLt) , (47)
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Fig. 6. Cross-frequency backscatter spectra from CMMoM, transient circuit
co-simulation, FDTD, and measurement, compared to backscatter from LTI
bowtie. Inset schematic.
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CM-MoM vs. declination angle θ in the xz plane for the frequencies of
greatest returned power.

and
CL(t) = C0 (1 + γ cosωLt) , (48)

where
R0 = 150 Ω, C0 = 5 pF, (49)

and the frequency of the loads is set to fL = ωL/(2π) =
30 MHz. The modulation coefficient γ prevents the resistance
and capacitance from reaching zero, which would lead to
divergent Fourier representations of the conductance and elas-
tance. In this example, the modulation coefficient γ is set to
0.95. The excitation is a voltage gap feed at 1 GHz located
next to one of the loads and defined as

vinc(t) = V0 cosωinct (50)

where V0 = 1 V and t is the same time variable shared by the
loads. The voltage source location, as well as the locations of
the resistive and capacitive loads, are shown in Fig. 8.

The CMMoM model of the square loop is constructed with
66 rooftop basis functions with 191 harmonic frequencies. The
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schematic.

radiated electric field in the direction normal to the loop for
a 1 GHz excitation is shown in Fig. 8. Similar to the bowtie
example, the excitation frequency is modulated by the load
frequency to produce harmonics, but in this case both even and
odd harmonics are prominent because of the sinusoidal load
waveform. The capacitive loads show more radiated power
compared to the resistive loads, which are lossy by nature.

C. Scattering due to distributed surface resistance

As an example of computations involving distributed time-
varying material parameters, we consider a rectangular plate
with time-varying surface resistivity Rs(r, t). For simplicity,
we set this resistance to be isotropic and spatially homoge-
neous and assign the following time variation

Rs(t) = R0 (1 + γ cosαωct) . (51)

The plate has an aspect ratio of 2 : 1 and an electrical size of
ka = 0.5 relative to the incident plane wave of frequency ωc.
The excitation is incident from the broadside direction and is
co-polarized with the long dimension of the plate. The plate
is meshed with 198 RWG basis functions and impedance and
Gram matrices were produced using AToM [47].

Conversion matrix systems of the form of (29) are generated
for a variety of values of R0 with fixed parameters γ = 0.95
and α = 0.1 using K = 20 for a total of 41 harmonics3

Fig. 9 shows the normalized total scattering, extinction, and
absorption for this structure at all harmonic frequencies as
a function of the time-varying surface resistance magnitude
R0. For comparison, we also compute and plot all quantities
for the case of a static surface resistivity Rs(t) = R0. The
reference extinction power P ref

ext used for normalization is that
produced by a static PEC system with R0 = 0 Ω. Interestingly,
we observe in this example that scattered harmonic genera-
tion is maximized roughly near values of R0 that maximize

3All reported quantities were well converged for K > 10 in this particular
example.
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Fig. 9. Scattered and extincted powers for a rectangular plate with 2 : 1 aspect
ratio and time-varying surface resistance Rs(t) = R0(1 + γ cosαωct) with
γ = 0.95 and α = 0.1 illuminated at broadside by a plane wave of frequency
ωc polarized along the long dimension of the plate. The plate has an electrical
size of ka = 0.5 at the excitation frequency. Quantities obtained in the case of
static surface resistance Rs(t) = R0 are shown as solid lines for comparison.

absorption in the LTI case. In this regime, the net scattered
power over all harmonics

∑
k 6=0 P

k
rad outweighs scattered

power in the fundamental frequency P 0
rad by approximately

one order of magnitude. A breakdown of how individual
harmonic frequencies contribute to the total scattered power
is shown in Fig. 10, where it is clear that in the small loading
(R0 � 1) regime harmonic scattered powers grow as even
powers of the parameter R0. Additionally, we see that in
the large loading regime (R0 � 1) the scattered powers
from many individual harmonics are comparable to the power
scattered at the fundamental excitation frequency.

In Fig. 11, we examine the single case of R0 = 1000 Ω
and plot the scattered power and current distribution over a
range of harmonic frequencies centered about the fundamental
electrical size ka = 0.5. The scattered powers correspond
roughly to the square relative current magnitudes as all plotted
harmonic currents have roughly the same distribution, with
slight edge confinement observed in the higher order cases. We
note that, at all plotted harmonics, the structure is electrically
small, justifying the somewhat consistent current distributions
at each frequency. In contrast to previous examples, in this cal-
culation no cost-reducing compression may be applied as the
entire system is loaded with a time-varying surface resistivity.
This leads to very large computational cost for even modest
mesh densities, cf Sec. V. Studying the structure at higher
frequencies where harmonic currents may vary significantly in
their distribution naturally requires an increased mesh density,
leading to further increased computational cost.

VII. CONCLUSION

In this paper we present a hybridized conversion matrix-
MoM (CMMoM) technique capable of modeling periodically
time-varying linear loads on arbitrarily shaped structures. We
formulate the method for both lumped time-varying loads
and distributed space-time modulated materials. Numerical
results from several examples demonstrate the flexibility of
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the proposed method and verify its accuracy against general
purpose time-domain solvers.

The hybridized CMMoM method allows flexible frequency-
domain analysis of a wide class of structures, but is not
without limitations. First, while this method can be applied
to small-signal analysis of nonlinear loads operated under lo-
cally linear conditions, it cannot model large-signal nonlinear
effects. Second, very large distributed time-varying structures
with large numbers of harmonics quickly lead to systems of
equations requiring enormous computational effort to solve.
Finally, while the study of matrix operators generated for LTI
MoM structures can be informative and physically significant,
CMMoM matrices lack many inherent symmetry properties
and the physical interpretation of CMMoM matrix properties
is less immediately clear.

Despite these limitations, the method has a variety of
uses in the modeling of electromagnetic problems ranging
from direct antenna modulation to spatiotemporally modulated

materials. With high opportunity for pixelized partial matrix
reuse, we expect it to support development of new automated
design methods for non-LTI electromagnetic structures. Its
impedance-based formulation may also admit new theoretical
analyses, e.g., the derivation of physical bounds, leading to
the improved understanding of time-varying electromagnetic
systems.
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