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Abstract

An imbalanced dataset is commonly found in at least one class, which are typically exceeded by the other ones. A
machine learning algorithm (classifier) trained with an imbalanced dataset predicts the majority class (frequently
occurring) more than the other minority classes (rarely occurring). Training with an imbalanced dataset poses
challenges for classifiers; however, applying suitable techniques for reducing class imbalance issues can enhance
classifiers’ performance. In this study, we consider an imbalanced dataset from an educational context. Initially, we
examine all shortcomings regarding the classification of an imbalanced dataset. Then, we apply data-level
algorithms for class balancing and compare the performance of classifiers. The performance of the classifiers is
measured using the underlying information in their confusion matrices, such as accuracy, precision, recall, and F
measure. The results show that classification with an imbalanced dataset may produce high accuracy but low
precision and recall for the minority class. The analysis confirms that undersampling and oversampling are effective
for balancing datasets, but the latter dominates.
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Introduction

The output of data from various fields has increased enor-

mously. Dataset classification is a unique data mining

(DM) technique, whose objective is to determine the tar-

get class belonging to a specific object in an unknown

class. The result of a classification algorithm is generally

related to data characteristics. One example of such an al-

gorithm is a support vector machine (SVM) [1], which

possesses numerous special advantages in solving classifi-

cation problems, such as low sample numbers, nonlinear-

ity, and high-dimensional pattern recognition. Moreover,

the classification accuracy of the minority class is often

more valuable. In the case of imbalanced data, the major-

ity class examples will have a greater influence on the clas-

sifier, causing its classification weight to be in favor of the

majority class and then seriously affecting the

classification hyperplane distribution. Thus, classification

approaches should be improved at the algorithm or data

level to solve the imbalanced classification of data, which

is currently a common problem in the field of DM re-

search. Organizations are keen to process collected data

and derive constructive information that can support their

decision making [2]. DM [3] aims to collect, organize, and

process huge amounts of data to identify useful unseen

patterns. The Internet, being a vital tool of communica-

tion and information, is offering exclusive benefits to edu-

cators and students. Classification is one of the significant

application fields in DM wherein the instances (records)

in a dataset are grouped in more than one class. The clas-

sification can be a success or failure in the pedagogical en-

vironment or classifying flowers in different types [4]. The

classifier gains knowledge from a prearranged training

dataset; henceforth, to classify the instances from the un-

seen dataset, the class imbalance problem appears in data-

sets with an exceedingly unfair ratio between the classes

[5]. This factor poses challenges for data mining and clas-

sification processes. Classifiers trained with an imbalanced

dataset tend to predict the majority class (frequently
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occurring) more than the minority class (rarely occurring)

[6]. This is due to the fact that standard classifiers are de-

signed to concentrate on minimizing the overall classifica-

tion error regardless of the class distribution. Thus, the

classifier cannot easily learn from the class with a fewer

number of instances.

Attention has been focused on the classification of im-

balanced data. In recent years, many researchers have

examined classification algorithms based on imbalanced

data. Study approaches to the classification of imbal-

anced data by the SVM are currently primarily divided

into two categories: improvements of approaches at the

algorithm and data levels. The weighted SVM of the

penalty coefficient C is used at the algorithm level to

control the various costs of the misclassification errors

of various classes. The minority class is generally

charged a high cost of error classification, and the ma-

jority class is charged a low cost of misclassification. In

addition, AdaBoost algorithm, the integrated multi-

classifier algorithm and an enhancing kernel space-based

algorithm, has been widely utilized. Two key approaches

are present at the data level: oversampling of the minor-

ity specimens and undersampling of the majority speci-

mens. The oversampling technique uses approaches to

balance class distributions, such as the duplication of the

minority example or artificial synthesizing of new minor-

ity class examples using certain algorithms. In addition

to oversampling, undersampling is a common method of

managing unbalanced datasets. In particular, undersam-

pling balances the distribution of data classes with the

elimination of majority class examples, such as the

Tomek link algorithm [7].

The major contribution of this experimental research

is to draw attention toward the misclassification issues,

which result from training a classifier with a dataset

where the instances in the class are not balanced, herein-

after collectively referred as the “imbalanced dataset”.

This research clarifies that higher accuracy may not be

enough to rank classifiers. This work proposes that clas-

sifiers’ performance can be enhanced with the imple-

mentation of sampling algorithms that eradicate the

class imbalance problem. For the experiment, we con-

sider a dataset from an educational institute where the

majority of the attributes have real values [8].

In this study, we extracted underlying information

from the confusion matrix and compared the classifier’s

performance for the majority and minority classes. This

analysis shows that accuracy may not appear as rigid

evaluation criteria; rather, the focus should be on the

classifier performance for minority and majority classes.

Related work

Numerous solutions, either at the data or algorithm

level, have been proposed to solve the class imbalance

problem. At the data level, the proposed algorithms use

various forms of re-sampling techniques, such as under-

sampling and oversampling. At the algorithm level, solu-

tions include cost-sensitive learning, fine-tuning of the

probabilistic estimation at the tree leaf (in decision tree

implementation), adjusting the decision threshold, and

preferring recognition-based learning rather than

discrimination-based (in two-class) learning [9].

Educational DM [10] mines significant patterns in the

data, collected from a pedagogical domain, to optimize

the learner and learning environment. The classification

models in a pedagogical environment forecast the

learner’s expected academic outcome. Such a prediction

model forecasts the final result (grade) of the student in

a specific course. First, the model predicts the student

with poor final grades. Then, the instructor intervenes to

tutor the student and help him/her in achieving the im-

proved final result. The limited number of students in a

course leaves these datasets with a lower number of in-

stances [11]. Moreover, a wide range of students’ attri-

butes, such as attendance, marks in assessment tools,

cumulative grade point average, credit hours, and marks

in prerequisite courses, possess real values. The dataset

in such environments suffers from class imbalance is-

sues, wherein fewer learners have chances to perform

unsatisfactorily. In this study, we consider a small imbal-

anced dataset, with attributes having nominal and real

values, from a course in an institute.

In an empirical study, Pristyanto and Dahlan [12]

demonstrated the use of oversampling and undersam-

pling algorithms to improve the accuracy of instance se-

lection methods on imbalanced databases. Their results

yield that oversampling and undersampling methods im-

prove accuracy. To improve the performance of classi-

fiers based on emerging patterns, Sasikala et al. [13]

used oversampling and undersampling methods. Simi-

larly, Fatima and Mahgoub [14] implemented machine

learning algorithms to classify students into binary clas-

ses (A and B). The dataset suffers from an imbalance ra-

tio (IR), and the number of instances in class B is much

bigger than that in class A. The results show that each

of the applied algorithms has produced higher precision

and recall for class B. Naïve Bayes classifier as the

better-performing classifier yields a recall of 0.500 for

class A and 0.851 for class B. All the implemented algo-

rithms [naïve Bayes, multilayer perceptron (MLP), and

decision tree] produced a higher recall, FP rate, and pre-

cision value for class B than class A. In addition, Kabak-

chieva made use of classification algorithms to classify

students into five classes (excellent, very good, good,

average, and bad) [15]. The dataset has over 4000 in-

stances for the “very good” and ‘good’ classes and

around 500 or less for the other three classes. The deci-

sion tree (J48) achieved recall values of less than 0.100
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for ‘average’ and ‘excellent’ classes compared with other

classes that achieved recall values of nearly or more than

0.70.

Some previous studies on class distribution and IR are

presented in Table 1. Similarly, the difference in the per-

formance evaluation of seven classes ranges from 0% to

83%, as shown in ref. [16]. Some results are evidence of

the high diversity between the F measure of the majority

and minority classes. The MLP has achieved the highest

accuracy of 75%, but the difference between the F meas-

ure of the majority and minority classes is 0.244 (nearly

one fourth). Similarly, it is nearly 50% in the case of

Table 1 Comparative analysis of previous work in relation to the class balancing ratio

Ref. Class distribution/imbalance ratio

Fatima and Mahgoub [14] Class A B

Instances 62 195

Imbalance ratio 1 3.14

Xie et al. [16] (Dataset-1) Class A B C D E

Instances 2 22 38 8 2

Imbalanced ratio 1 11 19 4 1

Xie et al. [16] (Dataset-2) Class A B C D E

Instances 1 41 46 14 4

Imbalanced ratio 1 41 46 14 4

Ashraf et al. [17] Class Excellent Very good Good Average Bad

Instances 539 4336 4543 347 564

Imbalanced ratio 1.55 12.5 13.10 1 1.60

Fig. 1 Information flow chart
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SVM This finding draws attention toward the need for a

proper class distribution before performing experiments

to achieve reasonable results.

Unbalanced classes are a common issue in the classifica-

tion of machine learning, where the number of findings is

disproportionated in class. Most algorithms for mastery

learning work best if the sample numbers are approxi-

mately equal in each class [17]. Most algorithms have been

developed to increase precision and decrease errors. Typ-

ically, the data imbalance represents an uneven class rep-

resentation in a dataset. The fact that some classes have a

slightly greater number of instances in the training set

than certain classes is a typical issue in actual life imple-

mentations. Such a difference is called a class imbalance.

Methods of addressing imbalances are well known for

classical models of machine learning. Sampling methods

are the most straightforward and common approach.

These methods work on the data itself (instead of the

model) to increase its balance. Of note, oversampling [18]

is widely used and proven to be robust.

Methods

The experiments have been performed in Waikato En-

vironment for Knowledge Analysis (WEKA) [19].

WEKA, acknowledged as a landmark system in machine

learning and DM, has become a widely used tool for

DM research [20]. Classifier training is performed using

a 10-fold cross-validation [21]. To select classifiers, we

first categorized them and then selected one from each

of the categories, probably the one found frequently in

the literature. The findings are elaborated through a data

flow diagram, shown in Fig. 1. Initially, from the data

corpus, the samples were collected on the basis of the

problem stated. All samples were applied in accordance

to the mechanism described in the classification with the

imbalanced dataset [22]. Each sample was incremented

according to the required capacity. To balance the ac-

curacy and manage the generated attributes that lead to

new samples, the evaluation of the fitness function was

performed. The fitness feature was also calculated based

on the number of generations made to prevent an over-

fitted classification model [23]. When the criteria are

accomplished, the final instances will be achieved; other-

wise, the operators, such as selection, crossover, and mu-

tation, will be utilized, and a balanced condition will be

attempted to maintain by deriving substantial incre-

ments [24].

Memory-based classifiers

In memory-based classifiers, the classification is directly

based on the training examples. It stores the training set

in the memory and then compares each instance with the

instances in the training process. k-nearest neighbors (k-

NN) [25] is an example of memory-based classifiers that

plots each instance as a point in a multi-dimensional

space and classifies it based on the class of their nearest

neighbors.

Artificial neural network

This computational model is inspired by the structural

and functional characteristics of the biological nervous

system. The MLP [26] is a class of artificial neural

networks.

Bayesian statistics

Bayesian inference is a method of statistical inference

[27] based on using some evidence or observations in

calculating the probability that a hypothesis may be true

or update its previously calculated probability [28].

SVMs

The SVM is a set of interrelated supervised learning

methods that examine data and identify the patterns.

Generally, naïve Bayes and SVM algorithms are consid-

ered better choices for text classification [29].

Decision tree

Decision tree [30] is a recursive technique that builds a

tree. It starts with a root node, probably the most im-

portant attribute, branching all the way through inter-

mediate nodes and stopping at the end node.

Performance metrics

The confusion matrix, precision, recall, and F measure

were used to record the overall performance. Table 2

provides a standard visualization of a model with two

class labels.

The ‘high’ class is considered a positive term and the

‘low’ class as a negative term. The rest of the terms are ex-

plained as follows: (1) True positive (TP): Predicted as

‘high’, and in actual fact, it is also ‘high’; (2) True negative

(TN): Predicted as ‘low’, and in actual fact, it is also ‘low’;

False positive: Predicted as ‘high’, but actually it is ‘low’;

False negative: Predicted as ‘low’, but actually it is ‘high’.

� Recall

Recall is also called sensitivity or TP rate [31]. It is a

measure of all positive instances and the number of in-

stances that the model predicted correctly. It is the ratio

of positive instances that are predicted correctly and the

Table 2 Representation of the standard confusion matrix

Positive Negative

Positive True positive False negative

Negative False positive True negative
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actual number of positive instances that can be calcu-

lated, as shown in Eq. 1.

Recall ¼ TP= TPþ FNð Þ ð1Þ

� Precision

It shows all the positive instances that the model has

predicted correctly [32] and the actual number of posi-

tive instances, as expressed by Eq. 2.

Precision ¼ TP= TPþ FPð Þ ð2Þ

� F measure

The recall and precision values indicate the quality of

the prediction model. However, making a decision based

on the precision and recall values is sometimes not easy.

The F measure takes precision and recall values into ac-

count and calculates their weighted average [33]. It is

given in Eq. 3.

F‐Measure ¼ 2� Precision� Recallð Þ= Precision þ Recallð Þ½ �

ð3Þ

� Accuracy

It is the ratio of the sum of the TP and TN and the

total number of instances [34], as expressed in Eq. 4.

Accuracy ¼
TPþ TNð Þ

n
ð4Þ

where n is the total number of instance in the dataset.

Dataset

The dataset contains 151 instances, which are the total

number of students enrolled in the core course

‘CMP427’ during the three semesters taught in the IT

Department at Hohai University, Changzhou, China.

Final_Grade is the prediction feature with ‘low’ and

‘high’ classes. Usually, the students frequently obtaining

grades below 65% are considered at risk of losing aca-

demic benefits.

Undersampling

This method is applied to the majority classes.

Undersampling reduces the instances in the majority

class to make them approximately equal to the in-

stances in the minority class. Spread subsampling is

one of the undersampling algorithms that we use in

this research. Spread subsampling creates a random

subsample of the imbalanced dataset. It adjusts the

class distribution by randomly eliminating instances

from the majority class [35]. To compute the

distribution, spread subsampling takes a spread-

distribution value (a parameter) from the user, which

specifies the maximum ratio between the classes.

Oversampling

Synthetic minority oversampling technique (SMOTE) [36]

oversamples the minority class with a random under sam-

pling (RUS) of the majority class. This algorithm reba-

lances the original training set by conducting an

oversampling approach. A SMOTE forms new instances

for the minority class by interpolating among several mi-

nority class instances that recline together. The k-NN of

the minority class instances are computed, and afterward,

certain neighbors are selected. New synthetic data samples

are generated from these neighbors [37]. SMOTE does

not change the number of instances in the majority class;

rather, it has a parameter (percentage) that specifies the

desired increase in the minority class.

Understanding oversampling and undersampling at the

algorithm level

The SMOTE is an oversampling technique that synthetic-

ally produces instances by arbitrarily selecting minority

class instances and using interpolation methods to pro-

duce instances between the selected point and its neigh-

boring instances. Through this process, any instance of a

minority class is considered, and new instances of a mi-

nority class are created along the line segment joining its

nearest neighbors. The number of synthetic instances is

generated based on the requisite percentage of oversam-

pling. The algorithm steps are as follows: (1) Load data

collection and classify the division of minority and major-

ity classes; (2) Calculate the number of instances to be

generated using the oversampling percentage; (3) Identify

a minority class random case and locate its closest neigh-

bors; (4) Choose one of the closest neighbors and deter-

mine the difference between the random instances and

neighbors selected; (5) Multiply the difference by a num-

ber generated at random between 0 and 1; (6) Add that

difference to the instance selected at random; and (7) Re-

peat the cycle from 3 to 6 until it produces the number of

instances according to the percentage given.

Furthermore, RUS is a simple undersampling strategy

that randomly excludes instances from the main class of

the dataset before the classification methodology is ap-

plied. The main challenge of this strategy is that it can

exclude relevant details in the dominant class that may

not be appropriate in certain situations. The algorithm

steps are as follows: (1) Launch the dataset and classify

the minority and majority classes; (2) Calculate the num-

ber of instances to be removed on the basis of the

percentage of undersampling; (3) Identify a random in-

stance in the majority class and delete it from the
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majority class; and (4) Repeat step 3 until the number of

instances eliminated is equal to the specified percentage.

Results

Most of the classifiers tend to maximize accuracy despite

a higher accuracy. A classifier may produce inadequate

results, given that the training dataset is imbalanced. In

an ideal dataset, the number of instances in the classes is

more or less equal. The IR expresses how imbalanced a

dataset is and is defined as the ratio of the sizes of the

majority and minority classes. The dataset with IR = 1 is

absolutely balanced, and thus the dataset with a higher

IR is more imbalanced. Imbalanced classes bias the clas-

sifiers, which tend to classify all instances into the ma-

jority class. Data balancing refers to decreasing the value

of IR and bringing it close to 1. The preceding literature

shows that tuning class distribution can improve classi-

fier performance. However, there is no unified rule for

class balancing, but classification with sampling tech-

niques yielded more optimal results than that without

sampling techniques. Over time, a number of algorithms

have been developed to deal with the class imbalance

problem. The data-level algorithms make use of sam-

pling techniques to adjust the IR. They are grouped as

an oversampling or undersampling algorithm. Oversam-

pling methods increase the number of instances in the

minority class to balance the classes; by contrast, under-

sampling remove instances from the majority class to

adjust the class distribution. Figure 2 depicts the idea of

undersampling and oversampling algorithms. The center

dataset is imbalanced with gapes in the majority class;

the left side illustrates the dataset after undersampling

where instances are removed from the grapes class,

whereas the orange instances are added to the right side

when oversampling is performed.

Classification with imbalanced datasets

We acquired an imbalanced dataset from an educational

environment with an IR = 1:3.19. Around two-thirds of

the instances were from the majority (high) class com-

pared to the low number of instances in the minority

(low) class. We performed classification with an imbal-

anced dataset to compare the accuracy of the classifiers

with other performance evaluation measures. Table 3

shows the results obtained from the classifiers. It out-

lines the accuracy of each classifier and provides the pre-

cision, recall, and F measure for minority (low) and

majority (high) classes and also their average. The last

column provides the confusion matrix for each classifier.

The results show that most of the classifiers have pro-

duced more than 80% accuracy. The confusion matrix

identifies the number of instances in each class that are

misclassified by each classifier. Figure 3 shows a chart

that compares the accuracy (data labels at the top of the

bar) of each classifier and the F measure (in percent) for

the minority (data labels at the center of the bar) and

majority (data labels at the bottom of the bar) classes.

Despite achieving higher accuracies and F measures for

the majority class, the classifiers have achieved relatively

lower F measure values for the minority class. For in-

stance, SVM has an exceptionally low F measure for the

minority (75.8%) class but high accuracy (89.4%). More-

over, the difference between the F measure of the major-

ity and minority classes is high for all classifiers. It

concludes the bias behavior of classifiers over an imbal-

anced dataset. The classifiers achieved reasonably high

Fig. 2 Depiction of oversampling and undersampling
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accuracy but failed to correctly classify the minority class

instances.

Undersampling dataset classification

We applied spread subsampling algorithm, an under-

sampling algorithm for balancing the imbalanced

dataset. Figures 4 and 5 illustrate the impact of

spread subsampling-produced datasets. Similarly,

Table 4 shows the performance measures of classifiers

when spread subsampling was implemented. SVM and

MLP achieved the highest accuracy. MLP achieved

slightly higher F measure and recall values for the mi-

nority class. The confusion matrix shows that MLP

misclassified only four instances of the minority class

compared with the SVM that misclassified five.

To compare the classification with the imbalanced and

undersampled datasets, a specified chart is illustrated in

Fig. 6, which presents the decrease in the accuracy of

Table 3 Results of classification with the imbalanced dataset

Classifier Accuracy Classes Precision Recall F-Measure Confusion matrix

Naïve bayes 84.77% Low 0.659 0.750 0.701 a b < −- classified as
27 9 | a = Low
14,101 | b = High

High 0.918 0.878 0.898

Average 0.856 0.848 0.851

Multilayer perceptron 80.79% Low 0.600 0.583 0.592 a b < −- classified as
21 15 | a = Low
14,101 | b = HighHigh 0.871 0.878 0.874

Average 0.806 0.808 0.807

SVM 89.40% Low 0.833 0.694 0.758 a b < −- classified as
25 11 | a = Low
5110 | b = HighHigh 0.909 0.957 0.932

Average 0.891 0.894 0.891

IBk 78.81% Low 0.559 0.528 0.543 a b < −- classified as
19 17 | a = Low
15,100 | b = HighHigh 0.855 0.870 0.862

Average 0.784 0.788 0.786

Random forest 86.09% Low 0.727 0.667 0.696 a b < −- classified as
24 12 | a = Low
9106 | b = High

High 0.898 0.922 0.910

Average 0.858 0.861 0.859

Fig. 3 Accuracy comparison and the F measures of classifiers for the minority and majority classes over the imbalanced dataset
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classifiers (except MLP) after undersampling. This find-

ing may indicate that the classifiers have reduced partial-

ity and have properly classified instances.

Oversampling dataset classification

SMOTE has been utilized to balance datasets through over-

sampling. With 200 as the percentage value, SMOTE

approached 108 instances of the minority class. Figure 7

shows the class distribution after oversampling. SMOTE ap-

pends the newly created instances at the end of the dataset

file. The use of k-fold cross-validation will possibly give rise

to data overfitting. To avoid overfitting, we randomized the

instances in our dataset. Table 4 provides the results for the

classification after oversampling. The application of SMOTE

has further enhanced the performance of the classifier. MLP

has achieved the highest accuracy. The chart in Fig. 8 com-

pares the classifiers’ performance using the average F meas-

ure after oversampling. This chart confirms that the average

F measure for classifiers has increased with oversampling for

both datasets. The chart in Fig. 9 highlights an increase in

the precision (in percent) of the minority class with oversam-

pling. This chart illustrates that oversampling has increased

the precision of the minority class. The highest increase was

achieved by MLP, and the lowest was achieved by SVM.

Conclusions

The outcome shows that not only the accuracy of a clas-

sifier decides whether it is predicting well. In fact, other

performance measures, such as F measure, precision,

and recall values for the minority class, should be ob-

served as well. This supports the argument that classi-

fiers with an imbalanced dataset tend to misclassify most

of the instances as the majority class. We observed that

undersampling and oversampling algorithms are effect-

ive in decreasing the difference between the F measures

of the majority and minority classes. In both cases, the

classifiers achieved reasonable accuracies and F measure

values. However, between the two sampling algorithms,

oversampling (SMOTE) performed better than under-

sampling. The oversampling approach shows superiority

over undersampling SMOTE.

The comparative analysis with oversampling and under-

sampling algorithms was conducted for classifiers with im-

balanced datasets for the data collection. The sample was

drawn from a perspective in training. The classifier was

Fig. 4 Imbalanced dataset
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Fig. 5 Balanced dataset

Table 4 Classification results after oversampling

Classifier Accuracy Classes Precision Recall F-Measure Confusion matrix

Naïve bayes 87.89% Low 0.852 0.907 0.879 a b < −- classified as
98 10 | a = Low
17 98 | b = HighHigh 0.907 0.852 0.879

Average 0.881 0.879 0.879

Multilayer perceptron 91.03% Low 0.873 0.954 0.912 a b < −- classified as
103 5 | a = Low
15,100 | b = HighHigh 0.952 0.870 0.909

Average 0.914 0.910 0.910

SVM 88.79% Low 0.849 0.935 0.890 a b < −- classified as
101 7 | a = Low
18 97 | b = HighHigh 0.933 0.843 0.886

Average 0.892 0.888 0.888

IBk 83.86% Low 0.805 0.880 0.841 a b < −- classified as
95 13 | a = Low
23 92 | b = HighHigh 0.876 0.800 0.836

Average 0.842 0.839 0.838

Random forest 90.13% Low 0.898 0.898 0.898 a b < −- classified as
97 11 | a = Low
11,104 | b = HighHigh 0.904 0.904 0.904

Average 0.901 0.901 0.901
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Fig. 6 Performance comparison before and after undersampling

Fig. 7 Class distribution after oversampling
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Fig. 8 Performance comparison using the average F measure

Fig. 9 Precision increase with oversampling
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split into various groups, and from each group, one classi-

fier was chosen. We believe that classification with an im-

balanced dataset will yield higher accuracy for the

minority class but low F measure values. Hence, the classi-

fiers misclassify cases of the minority class. In our dataset,

we implemented undersampling (spread subsampling)

and oversampling (SMOTE). The findings indicate that

the F measure levels for the minority class are improved

by spread subsampling and SMOTE. Nonetheless,

SMOTE performs well in achieving a higher F measure

value and accuracy than spread subsampling.
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