
To be published in 
IEEE Trans. Nucl. Sci. 

Presented at IEEE Nuclear Science 
Symposium, 19-21 October 1977, 
Sheraton Palace Hotel, San Francisco 

BNLifo 23363 

c~~-1'7IO:L3- ~/J___ 

* 

CONVERSION ON AN OPERATING SYSTEM ORIENTED TOWARDS 
TRANSACTION PROCESSING FROM TWO TO THREE MODES 

OF LOGICAL ADDRESS SPACE* 

F. W. Stubblefield 

Brookhaven National Laboratory 
Upton, New York 11973 

October 1977 

This res earch was supported by the U. S. Department of Energy : 
Contract No. EY-76-C-02-0016. 

OISTRI6U1.!00 Of n·IIS DOCUMENT IS UNLIMITED 



DISCLAIMER 

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency Thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately 
owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any 
agency thereof. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States 
Government or any agency thereof. 



DISCLAIMER 

Portions of this document may be illegible in 
electronic image products. Images are produced 

from the best available original document. 



Th" -NOTICE-------

CONVERSION OF &~ OPERATING SYSTEM ORIENTED TOWARDS 
TRANSACTION PROCESSING FROM TWO TO THREE MODES 

OF LOGICAL ADDRESS SPACE* 

IS report was prepared 
sp~nsored by the United State as an account of Work 
Umted States nor th U . s Government. Neither the 

Energy, nor any of ;eir ruted States Department of 

contractors, subcontractors~:~loye~s, nor any of their 

any warranty, express or im ,. theu employees, makes 
liability or responsibility r; P led, or assumes any legal 

or useful~ess of any inforr:t~e accuracy, completeneu 

~rocess dJScJosed, or represents n, app~tus, product or 

Infringe Privately owned rights. that IU use would not 

F. W. Stubblefield 

Brookhaven National Laboratory 
Upton, New York 11973 

Abstract 

A computer system to control and acquire data from 
a set of ten neutron and x-ray scattering and diffrac
tion experiments located at the High Flux .Beam Reactor 
at Brookhaven National Laboratory has operated in a 
routine manner for over two years. The system has been 
constructed according to a functionally distributed 
architecture and thus consists of a set of functional 
nodes. Ten of these nodes, the private or application 
nodes, perform the function "execute programs to con
trol and acquire data from experiment number x". An 
additional functional node, the common or shared ser
vice node, performs the function "provide a set of 
shared services to the application nodes". 

The shared service node has been successfully im
plemented in software with in-house code oriented 
towards transaction processing and in hardware with a 
Digital Equipment Corporation PDP-11/40 computer. 
However, recent demands that this node provide an ex
panded set of services have required that its imple
mentation elements be modified and extended. In par
ticular, the node hardware has been changed to a 
PDP-11/45 processor and the software present at the 
node has been extended from operation ·in two modes of 
logical address space to three modes. A discussion of 
the· systems analysis p"rinciples which influenced the 
manner in which these modifications and extensions were 
carried out is given. The structure of the old two
mode software is briefly reviewed in order to provide 
a basis for an examination of its three-mode replace
ment. Finally, the possibility of extending the tech
nique to operation in many modes of logical address 
space is indicated. 

Introduction 

A computer system to control and monitor and ac
quire data from nine neutron scattering and diffraction 
experiments and one x-ray diffraction experiment lo
cated at the High Flux Beam Reactor at Brookhaven Na
tional Laboratory has operated in a routine manner for 
over two years. This computer system, the Reactor Ex
periment Control Facility, has been constructed ac
cording to a distributed function architecture. A 
detailed discussion of the principles upon which this 
architecture is based has been given elsewhere, 1 as has 
a complete overview of the Facility. 2 The more impor
tant of these principles are briefly reviewed in order 
to establish the functional definition of an important 
part of this system, the common or shared service node. 
Once this node has been functionally defined, princi
ples of systems analysis and a knowledge of the current
ly available system implementation elements can be used 
to implement the node in the best way possible. In 
addition, intuitive extrapolations of current trends in 
the production of system implementation elements should 
be made in order to anticipate ways in which future ex
tensions in existent elements and additions of new ones 
could be utilized to extend the node. (It is important 
to note, however, that the functional definition of a 

node does not change with time.) The application of 
systems analysis principles in this manner is illus
trated with a di"scussion of the implementation and sub
sequent extension of a major part of the common node, 
the common node operating system. 

System Functional Definition 

The system function of the Reactor Experiment 
Control Facility is to "control and monitor and acquire 
data from a set of laboratory experiments". Once the 

·system function has been identified and stated, the 
system can be designed according to the architecture of 
functional distribution. 

Functional Distribution 

The primary objective in structuring a system ac
cording to a functionally distributed architecture is 
to iteratively partition the system function into a set 
of subfunctions at a lower complexity level in such a 
manner that the resulting subfunctions have the follow
ing properties: 

(1) the boundaries (i.e., the input 
to and output from the subfunctions) 
of all subfunctions in the set have 
approximately the same complexity 
level and an approximately uniform 
structure; 

(2) the subfunctions in the set are 
further separable into subsets 
which do not overlap each other 
with respect to the hardware 
structures and software structures 
which are required to implement 
the subfunctions. 

When such a set of subfunctions has been identified, 
each subfunction can be confined to a node of the 
system, where a node contains all of the hardware and 
software required to implement the subfunction. This 
confinement process can also be viewed as a distribution 
process for the system function and is thus the funda
mental design procedure which gives the architecture 
its name. 

In general, the partitioning process can be iterated 
within a system node to isolate nodes at still lower 
levels of functional complexity. However, with currently 
available hardware and software, it is usually not eco
nomically feasible to implement more than the first level 
of nodes. This is the case in the present system, and 
the system nodes at this level will be referred to simply 
as nodes. The functional level of the subfunctions per
formed by the nodes is called the node level. 

-:. 
This research was supported by the U. S. Department 
of Energy: Contract No. EY-76-C-02-0016. 

rf 
T\.IIS OOCUMENI IS UNLIMITED, 

DISTRISUI\Ot'l Of I '' · 



The advantages which accrue to a computer system 
as a result of distributing in this manner the function 
which it performs have been discussed in detail else
where.1 Two of the more important of these advantages 
should be mentioned here: 

(1) the functions which are very ex
pensive to implement can be con
fined to one node of the system 
and performed for the other system 
nodes in a shared manner; 

(2) a set of functions which tend to 
remain constant in time can be 
confined to one node which can 
be left undisturbed (with respect 
to its implementation hardware and 
software) throughout the lifetime 
of the system. 

In general, there are many ways in which the function 
which a system is to perform can be partitioned into 
subfunctions. However, the partitioning process must 
be carried out with additional constraints in mind. 
Many of these constraints are indirectly imposed by the 
necessity of confining the resulting subfunctions to 
system nodes and implementing the nodes with currently 
available implementation elements. Additional con
straints may more correctly be considered to be due to 
adherence to general principles of systems analysis. 
In particular the definition of the ·subfunctions must 
be realized in such a way that they are readily visible 
to the users of the system. 

Function Visibility 

A great advantage of the functional approach to 
systems design is that the description of the system 
which results co;responds closely both in its terminol
ogy and in its partitioned subparts to the description 
which the system users·would employ in relating how they 
interact with and utilize the system. That is, it is 
believed that users think in terms of functions. They 
divide their work (a function at the highest complexity 
level) up into units (lower level functions) which they 
comprehend well and set about executing these units 
one-after-another in sequential fashion. A computer 
system which is partitioned in a manner which corre
sponds well to the way a system user analyzes his use 
of the system will be easy for the user to understand. 
It is likely, then, if certain other important criteria 
are met, that the user will consider the system to be 
a success. The realization of such an opinion from a 
majority of the users of the system is the ultimate goal 
of the systems analyst. 

A careful analysis of a computer system along 
functional lines usually leads to definition of a set of 
functions just below the system level which can be con
sidered to be standard in that they are in one-to-one 
correspondence with the individual operations which a 
majority of the users would expect to perform in the 
process of utilizing the system. As the functional 
partitioning process proceeds to the middle levels of 
functional complexity, it becomes more difficult to 
define functions which are easily recognized by users. 
This is because most users have little previous ex
perience with operations at these levels, have no pre
conceived notions of the form that the operations 
should assume, and in addition hesitate to examine the 
operations because they consider these levels the pri
vate domain of the systems analyst. In fact, it might 
be expected that this same situation would prevail at 
even lower levels of functional complexity, and in some 

systems, especially those devoted to numerical analysis 
and computation, such is the case. A striking exception 
arises in the case of computer systems for experiment 
control and data acquisition. Most users have very 
definite ideas about the form which operations at the 
lowest functional complexity level should assume in 
such systems. 

Thus in the case of computer systems for experiment 
control and data acquisition, the constraints on func
tion definition imposed by the requirement that the 
system be highly visible to its users are most numerous 
at the highest and lowest levels of functional complex
ity. 

First Partitioning of the System Function 

The system function of the Reactor Experiment 
Control Facility, given above, is partitioned at the 
second level of functional complexity into the func
tions "develop programs for experiment control and data 
acquisition" and "perform operations to control and 
acquire data from a set of laboratory experiments". 
The first of these functions can be confined to a system 
node, the program develonment node, as it stands. The 
second function must be further partitioned into the 
n functions "perform operations to control and acquire 
data from experiment number x", where n is the total 
number of laboratory experiments. Each of these func
tions is further partitioned into the function "ex
ecute program to control and acquire data from experi
ment number x" and the function "provide a set of ser
vices required to control and acquire data from experi
ment x". The n functions in the first set are confined 
to n private or application nodes. The n functions in 
the second set are collected together to form the func
tion "provide a set of shared services required for ex
periment control and data acquisition" and this function 
is confined to a common or shared service node. The 
detailed jus_tifications for "thiS" particular partitioning 
of the system function have been given elsewhere.l• 2 

Also, the implementation of the program development and 
application nodes has been discussed at length.l,2 
Here, the original implementation of the common node3-5 
is reviewed in order to provide a basis for discussing 
the extensions to this node. 

Common Node Functional Definition 

The function of the common node is to provide a 
set of services to the application nodes. Each service 
is provided in response to a r~quest initiated by an 
application node. The common node in no sense controls 
the operation of the application nodes. The individual 
services themselves reside as functions at the next 
lower level of functional complexity. At present these 
functions have not been distributed onto nodes, i.e., 
nodes at a level lower than that of the common node 
itself. 

The statement that all services provided by the 
common node reside at the same functional complexity 
level means that each and every provided service has 
the following properties: 

(1) an elapsed time (i.e., not 
processor Cime) period of 
10-2 to 10° seconds is al
lowed for the node to provide 
the service; 

( 2) information required to describe 
the service to be performed must 
have a maximum length which is 

.. 
' 



of the order of 10l main 
memory words; 

(3) the data transmitted (if any) 
in the process of satisfying 
the service request must have 
a maximum length of the order 
of 104 main memory words; 

(4) the types of services provided 
can be considered to have ap
proximately equal weight in 
terms of response time require
ments; 

(5) the data (if any) associated 
with a service request· can be 
assembled into (disassembled 
from) a single contiguous main 
memory buffer prior to (after) 
transmission to (from) the re
questing node; 

(6) common node processor operations 
required to provide the service 
involve no complex arithmetic 
operation sequences. Here, 
complex arithmetic operation 
sequences are c'onsidered to be 
those which consist of more than 
single word moves, bit shifts, 
and bit tests; 

(7) the amount of temporary storage 
space (scratch pad space) re
quired to process the service 
request must have a ~imum length 
of the order of 101 words. 

The implementation elements utilized to construct.a 
node to provide such a set of services are described 
below. Before this description is given, however, it 
is impo,tant to discuss briefly the principles of 
systems analysis which most influenced the original 
choice of implementation elements. 

Systems Analysis Princioles Influencing 
Common Node Implementation 

In addition to. the constraints imposed by the 
necessity of functionally· defining ·the system in terms 
of functions which are recognizable to its. potential 
users and the constraints imposed by the fact that the 
functions must eventually be implemented in a reason
able (usually economically reasonable) manner, princi
ples of systems analysis have an effect. on the imple- · 
mentation of the system. In the present case, good 
systems analysis practice dictates that the processors 
present at each of the system nodes should be of the 
same type. If this is not possible, the processors 
must at least all execute the same instruction set. 
Thus an additional constraint on implementation of the 
common node is that the processor (or processors) 
present at this node must execute the same instruction 
set as the application node processors. 

Since, by functional definition, the common node 
provides a set of services to the application nodes, 
it is readily apparent that failure of this node to 
operate can have an adverse effect on the operation 
of not just one but all of the application nodes. In 
the worst case, all laboratory experiments may cease 
to operate; i.n practice certain of the experiments can 
continue without the common node services in a·very 

3 

limited stand-alone mode. Thus by far the most impor
tant factor to be considered in the implementation of 
the common node is the reliability of this node. Ac
cordingly, the node has been implemented with com
pletely main memory resident software. All software 
elements, both the tasks which supply .the services and 
the operating system which supports task execution, 
rest'de permanently in the main memory of the node pro
cessor. The continuing decrease in the cost of large. 
capacity core memory arrays is the implementation ele
ment trend which first indicated that such an imple
mentation would be possible and led to its eventual 
acceptance. This trend and others which influenced 
the implementation of the Reactor E~eriment Control 
Facility have been given elsewhere. 1 

A second major implementation element which can 
contribute substantially to the reliability of a node 
is a memory management option for the node processor. 
Such an element can be used to provide hardware iso
lation between the various modes of logical address 
space utilized at the processor. In particular,. tasks 
which execute in the processor can be isolated from 
the operating system which supports their execution. 
In addition, the various portions o{ a logical space 
which can be modified by code resident in the logical 
space can be isolated from areas which the code should 
access in read-only fashion. For these reasons the 
common node has been implemented with a processor which 
includes a memory management option. 

A third consideration to be taken into account in 
implementing the common node is that the reliability 
of the node should increase as the complexity of the 
operations performed by the node decreases. It will 
be shown below that the common node has been implemented 
as a transaction processor. The node responds to re
quests for service submitted to it in the form of trans
actions over the communication links between it and the 
application nodes. However, no additional inputs to 
this node, not even a console terminal, have been al
lowed. The common node responds to transaction re
quests and nothing else. Other implementation elements 
present at this node are listed below. 

Common Node Implementation 

The common node has been implemented as a trans
action processor. Each request for service, the pro
cessing implied by the request, and the response to 
the request take the form of a transaction. 

Transactions 

A transaction consists of ~NO mandatory and one 
optional transmissions over the communication link 
between an application node and the common node. These 
transmissions consist of the following: 

(1) a REQUEST transaction parameter 
block (32 words) is transmitted 
from the application node to the 
common node. One parameter in 
this block, the function code, 
labels the service which the ap
plication node is requesting; 

(2) an ACKNOWLEDGE transaction param
eter block (32 words) is trans
mitted from the common node back 
to the application node. Param
eters in this block specify whether 
or not the requested function has 
been performed successfully. In 



addition, the ACKNOWLEDGE 
block may contain information 
which represents the output 
of the requested function; 

(3) an optional transaction DATA
BLOCK may be transmitted 
between the nodes in either 
direction. The DATABLOCK length 
can vary but has a maximum of 
8192 words. 

In order to perform its function as a transaction pro
cessor, the common node must contain code and hardware 
to carry out the block transmissions which comprise a 
transaction and to perform the operations specified by 
the transaction function. The hardware and software 
elements used .to implement the common node are listed 
below. 

Hardware Implementation Elements 

Hardware components utilized to implement the 
common node include the following: 

(1) a Digital Equipment Corporation 
POP-11/40 computer processor 
with two-mode memory management 
option. Many of the operations 
which this processor performs 
consist of status bit manipula
tions and manipulations of entries 
in bit maps used to allocate and 
deallocate various common node 
resources. Since these operations 
involve multi-word bit shifts and· 
fixed point multi~lication and 
division, an extended instruction 
set (EIS) option is included with 
the processor. However, since the 
processor performs no complex arith
metic operations (as defined above), 
a floating point arithmetic unit is 
not required; 

(2) a set of high-quality peripheral 
devices required to support the 
shared input/output and file man
agement functions provided to the 
application nodes. Detailed de
scriptions of the management of 
these functions has been given 
elsewhere; 6-8 

(3) a large capacity core memory unit 
(81,920 words) which serves as the 
main memory of the processor; 

(4) the common node half of an inter
node communication subsystem. The 
communication subsystem, designed 
and constructed in-house, supports 
bi-directional, asynchronous, 16-bit 
parallel word transfers at a 30 kilo
hertz rate. Information transfer 
to main memory at each end of a com
munication link is via direct memory 
access. The termina of eleven inter
node communication links are loca
ted at the common node. 

Software Implementation Elements 

The form of the software present at the common 

node is a reflection of the functional definition of 
the node as a transaction. processor. In particular, 
four types of code, divided into common node subsys
tems at various levels of ·functional complexity, are 
present: task subsystems, service subsystems, the un
solicited transaction handler subsystem, and the de
vice driver subsystem These components have been 
discussed elsewhere),)- 8 in some detail and will be 
reviewed here only breifly. 

Task Subsystems. Each transaction submitted to 
the common node is processed by two task sequences. 
Tasks in the first sequence access information in the 
REQUEST transaction parameter block in order to assemble 
an ACKNOWLEDGE transaction parameter block for trans
mission back to the requesting application node. Part 
of the information in the ACKNOWLEDGE block consists 
of parameters of the transaction DATABLOCK if a DATA
BLOCK transmission is required. A transaction is com
plete with respect to the application node once the 
transaction DATABLOCK transmission has taken place. 
However, at the common node, execution of a second 
task sequence may be required upon completion of this 
transmission. The second task sequence is usually re
quired when the direction of transmission of a trans
action DATABLOCK is from an application node to the 
common node. Upon completi9n.of the second task se
quence, the transaction is complete with respect to 
the common node and may be removed from this node. 

A task sequence consists of a number of tasks 
executed one-after-another in series, i.e., no two 
tasks in a sequence execute in parallel. When a task 
in a sequence has finished its processing for a trans
action, it indicates the identification of the next 
task in the sequence ("primes" the next task), at
taches the transaction to this next task, calls for 
execution of the next task to begin ("starts" the 
next task), and voluntarily gives up the processor 
("exits"). When a task exits without having passed 
its transaction on to another task, the current task 
sequence is considered to be finished. 

Common node tasks are grouped according to the 
transaction functions which they perform into task 
level subsystems. Members of a task level subsystem 
perform a set of closely related transaction functions. 
Tasks within a subsystem do not call into execution 
other tasks outside of their own subsystem and, further
more, do not pass their transactions to such other 
tasks. 

Service Subsystems. In the course of processing 
a transaction, tasks may request services from routines 
contained within the common node operating system. A 
reque~t for service at this level takes the form of a 
software trap into an appropriate trap service routine. 
As in the case of tasks, service routines which perform 
a set of similar functions are grouped together into a 
service level subsystem. A service routine may invoke 
(again via a software trap) other service routines in 
the process of performing its assigned function. 
Service routines, except for a very few notable ex
ceptions, consist of code which is executed straight 
through to completion, i.e., the code is executed to 
completion without the routine's voluntarily giving 
up the computer processor. 

Unsolicited Transaction. Handler Subsystem. Rou
tines within the unsolicited transaction handler sub
system (all transactions are currently unsolicited with 
respect to the common node) perform the operations 
necessary to set up and control the block transmissions 
which form a transaction. Code for this subsystem 
consists of interrupt service rrutines. Fbucine enb:y is via 

7 



vectored processor interrupt and exit is via a return
from-interrupt programmed instruction. The routines 
are also executed in straight through fashion; an in
terrupt service routine cannot voluntarily give up the 
computer processor. 

Device Driver Subsystem. Information transfers 
to and from the peripheral devices present at the 
common node are controlled by a set of routines re
ferred to as device drivers. Each device driver in 
turn consists of a small number of contiguous (in 
logical address space) subroutines. In general there 
is one subroutine for initiating each function sup
ported by the device and one additional routine to han
dle the interrupt generated by the device at function 
completion. Device functions are started via a sub
routine call to the appropriate initiating code. Upon 
function completion, the interrupt· service routine re
quests that the current device op'eration be dequeued 
via a service request to a routine within the d'evice 
queue manager service level subsystem. 

Members of the subsystems listed above may utilize 
common node resources in order to perform their assigned 
function. There are three types of resources present 
at the common node. 

Statically Allocated Resources. Each subsystem 
may utilize its own set of statically allocated re
sources and, in a few cases, may utilize similar re
sources belonging to other subsystems. The term stat
ically or non-dynamically allocated refers to the fact 
that main memory space for the resources is allocated 
and initialized when the common node operating system 
is loaded to main memory. Furthermore, this allocation 
is not changed until the operating system is reloaded. 
Three types of statically allocated resources are 
available: 

(l) modification access tables 
module. Subsystem routines 
may modify information con
tained in their modification 
access tables module during 
the course of their operation. 
Such resources are usually 
employed for maintaining status 
information; 

(2) read-only access tables module. 
Information which does not 
change during the execution of 
subsystem routines is contained 
in the read-only access tables 
resource. Such information in
cludes properties (as opposed to 
status) indicators, offsets into 
other tables modules, resource 
size descriptions, tables of ad
dresses of other routines, and 
error codes; 

(3) subroutines module. Each sub
system has available to it a set 
of subroutines which its routines 
may call in the course of perform
ing th~ir a~signed functions. 

Logical Resources. Logical resources 4 are es
sentially structured flags which represent access to 
modification access tables resources or other informa
tion which can be modified by a subsystem routine. A 
logical resource may be claimed for either read-only 
or modification access. Only subsystem routines at the 

.
-· 

task level (i.e., tasks) may claim logical resources. 

Physical Resources. Physical resources4 are 
blocks of main memory which are dynamically allocated, 
i.e., allocated and deallocated after the .common node 
operating system has been loaded to main memory and 
initialized. Physical resources are accessed by both 
task and service level routines. Resources accessed 
at the task level include buffers for input/output 
operations and control blocks for carrying out such 
operations. Resources accessed by service level rou
tines include blocks to contain information about the 
status of task execution and the collection of resources 
associated with a task. 

Transaction Processing Scheme 

The scheme employed for processing transactions 
at the common node is very simple to describe but can 
involve some unexpected subtleties if it is rigidly 
enforced: 

All resources, both logical and 
physical, required to completely 
process a transaction are claimed 
as a group before processing of 
the transaction commences. 

In this manner, the classic .lockout problem is avoided. 
The lockout problem occurs when two partially completed 
transactions each require additional resources for their 
completion and at least one resource required by one 
transaction is currently assigned to the other trans
action and vice versa. In general, the set of task 
level resources required to process a transaction to 
completion is easily determined. What is not so obvious 
is the group of resources accessed at the service level 
which can be required for the processing. 

Conversion of the Common Node 
Operating System 

For reasons discussed above, the common node op
erating system is completely main memory resident. A 
discussion of the conversion of the operating system 
from two- to three-mode operation reduces to a discus
sion of the details of the memory management scheme 
employed, the layout of the operating system in physi
cal memory, and the methods of communicating between 
different main memory logical address spaces. 

Memory Management Scheme 

The memory management scheme employed in the 
PDP-11 series of Digital Equipment Corporation computers 
supports a number of ·spaces, or modes, of logical main 
memory addresses. Each mode can be used to reference 
logical address locations 000 000 to 177 777 (octal), 
or a total of 65,536(lO) address units. (Here, a 
logical address unit is an 8-bit byte.) A mode is 
divided up into eight logical address ~ of maximum 
length 8,192(l0) logical address units each. It is the 
page which may nave its access limited. In general, 
access to a logical space page may be restricted to 
modification, read-only, or execute-only. Here the ex
ecute-only protection feature is not utilized. 

The physical main memory space behind the memory 
management unit map contains physical address locations 
000 000 to 777 777 for a total of 262,144(10) physical 
address units. (The physical address unit is the same 
as the logical address unit, an 8-bit byte.) For memory 
management purposes, this physical space is considered 
to be divided up into 4,096(10) memory management units 



-of 64(lO) physical address units each. Thus each 
memory management unit consists of 000 100 physical 
address locations. 

In addition, a page of logical address space can 
have a variable length of from 000 100 to 020 000 
logical address locations (corresponding to 001 to 200 
memory management units). Thus in some instances, a 
particular mode of logical space may have unused por

. tions or "holes". This feature of the memory manage
ment scheme is used only at the task level in the 
present system. 

Associated with each mode of logical address 
space is a stack pointer register. Only one set of 
general registers is used for operations in all modes 
of the operating system, however. Two processor in
structions are provided for moving small quantities of 
information from one mode to· another. In particular, 
in order to move a word (~Jo bytes) of information to 
or from the current mode of logical address space, the 
currently executing routine must be able to generate 
(either implicitly or explicitly) the following param
eters: 

(1) the mode of the logical address 
space which is .to be the source 
or destination of the word to be 
transferred. This space is always 
referred to as the "previous" log
ical address space and its mode is 
referred to as the "previous" 
mode; 

(2) the source or destination address 
within the previous logical ad
dress space of the word to be 
transferred; 

(3) and, of course, the destination 
or source address within the cur
rent logical address space of the 
word to be transferred. 

An important inclusion in the addressing methods for 
specifying logical addresses within the previous mode 
space is that of the contents of the stack pointer 
register. Thus, a routine in the current mode may both 
manipulate the stack pointer in the previous mode and 
fill in words to the previous mode stack. It is shown 
below that the method of inter-mode communication be
tween tasks and service routines (and in the extended 
system between service routines residing at different 
modes) is .based on this facility. 

Memory Management of Tasks. Common node tasks 
execute within the highest (highest in the sense of 
most protection from other modes) level mode of log
ical address space, the ~ mode. The assignment of 
the eight available pages of user mode logical address 
space is summarized in Table I. The first page, cor
responding to logical space addresses 000 000 - 017 777, 
is dedicated to the task stack and hence is always as
signed modification access. The second page, addresses 
020 000- 037 777, corresponds to the task executable 
code and its access is always set at read-only. The 
remaining six pages may be used to access statically 
or dynamically allocated task level resources. In 
practice, in nearly every task, logical space pages 
seven and eight are used to access statically allocated 
resources, the task subsystem subroutines module and 
read-only access tables module, respectively. \.Jhen 
this is the case, both these pages are assigned read-

only access. A second near-standard page assignment 
holds for logical space page number three; this page 
is almost always used to access the transaction in
formation block,3 a dynamically allocated resource. 
Since part of this block becomes the ACKNOI.JLEDGE trans
action parameter block·, the task must load into it in
formation which comprises the output of the transaction 
function. Hence this page is always assigned modifica
tion access . 

It is worth noting here that the memory management 
scheme is defi'cient in one respect. The scheme does 
not divide up the mode logical address space into enough 
pages. Thus for the more complex task level subsystems, 
where many different resources must be accessed, the 
pages of logical address space must be dynamically 
switched back and forth between resources, a very cum
bersome procedure. 

Memory Management of Service Routines. Code and 
resources belonging to the service level subsystems 
reside at the lowest level mode of logical address space, 
the kernel mode. The assignment of service level rou
tines to the eight pages of kernel mode logical space 
is summarized in Table II. In contrast to the manage
ment of user mode logical space, the correspondence 
between kernel mode logical space and the physical main 
memory occupied by the routines executed in kernel mode 
is established at the time the common node operating 
system is loaded and initialized and does not change. 
This means that the kernel mode routines and resources 
do not overlap in logical address space. 

The reasons for keeping the logical-to-physical 
space map constant in time and having the service level 
routines occupy kernel mode space in a non-overlapping 
manner are a result of both the functional definition 
of these routines and practical considerations. Rou
tines at the service level consist of from- 10 1 to 
~ 102 instructions and, as mentioned above, are always 
executed straight. through to col!lPletion. Thus their 
execution .can require from~ 10l to~ 103 ~sec. If a 
page switching scheme were employed for this mode, a 
routine to save the mapping parameters for the current 
kernel mode routine, locate the physical space param
eters of the next kernel mode routine to be executed, 
and set up the map for this execution could easily 
require 102 - 103 instructions. Thus the time over
head for execution of a kernel mode routine could 
easily exceed the execution time of the routine it
self. 

Additional reasons for not executing the kernel 
mode routines in a page switching manner are purely 
practical in nature. The reasons have to do with the 
problems involved in linking the kernel mode routines 
and their resources to logical space and, more impor
tantly, loading the resultant modules to physical space. 
Unfortunately, the concept of partitioning functions 
so that their requirements in terms of logical space 
for code and resources are well-defined (i.e., do not 
proliferate to multitudinous small areas of logical 
space) is relatively new. Hence no practical tools 
for implementation of the concept are available. 
Usually, as is true in the present case, software pro
cessors for carrying out the linking and loading opera
tions must be cleverly improvised from commercially 
available linkers and loaders. Since there are now 
117 service level routines which operate in the kernel 
mode and these routines can access 31 statically al
located resources in the course of their operation, 
the linking and loading processes for this mode would 
become extremely tedious. 



In any case, routines to manipulate the memory 
management maps for all levels of memory management 
would have to be located in a dedicated area of kernel 
mode logical space which could not overlap with the 
logical space utilized to execute the remaining kernel 
mode routines. It is fair to note, however, that if 
this one consideration is taken into account, if the 
time overhead for switching the kernel mode map could 
be tolerated, and if adequate tools for producing and 
loading logically overlapping routines were available, 
the entire problem of extending the operating system 
by addition of another mode of logical space would 
disappear. 

The last very practical reason for not overlapping 
kernel mode software elements in logical space is that 
it is much easier to track down programming errors in 
non-overlapping code. Only one logical space map is 
required when main memory locations are being manually 
examined and the logical space location to physical 
space location conversion, as noted below, is trivial. 

In practice, the kernel mode logical space is 
mapped into physical space on a. one-to-one correspond
ence. An exception is the "external" page which con
tains logical space addresses used to access peripheral 
device registers. This page must be mapped to physical 
addresses 760 000- 777 777. The logical space to 
physical space map for the kernel mode is summarized 
in Table II. 

Inter-mode Communication Scheme for 
Control Parameters 

Whenever a task requests a service from the opera
ting system, it must first submit a small ($ 10) number 
of control parameters which describe the service to be 
provided and then call the appropriate service routine 
into operation. As mentioned above, the mechanism for 
calling a service level routine into operation is the 
software trap. Communication of the control param
eters to the requested routine must be accomplished 
in a manner which conforms to the system design objec
tives. 

According to these system design objectives, com
munication between routines at different levels should 
be implemented by means of a physically (and logically) 
contiguous area of main memory space which is mapped 
by a set of globally defined logical offsets into the 
space. The method for accessing the communication area 
is to set a general register to its logical space start 
address and then access individual address units with
in the area by adding the offsets to the contents of 
this base register. In this manner, both the length 
and arrangement of the information within the area can 
be modified by redefining the logical offsets and re
linking the routine. In the case of the service level 
routines, this scheme for communicating between rou
tines has been implemented by utilizing the mode stacks. 

A task which must request a service establishes a 
space on its stack (user mode stack) by adjusting the 
contents of its stack pointer register so that a logi
cal number of address locations are added to the stack. 
Control parameters are moved into this space by utili
zing the stack l:'ointer and a set of the above-mentioned 
offsets. When task execution continues upon completion 
of the service, the control parameters returned by the 
service are also present in the stack area and are re
trieved by utilizing the stack pointer and additional 
offsets in the set. After retrieving the returned 
parameters, the task destroys the communication area 
by removing the required number of logical address 

locations from the stack. 

Thus one of the objectives of the functional ap
proach, the rigorous specification of the input and 
output of a function, is realized. The input to and 
output from each service level routine are defined by 
a logical length of main memory space and a set of 
logical offsets. The parameters of a typical service 
which can be requested by a task level routine are il
lustrated in Fig. 1. 

When the software interrupt (trap) instruction 
which calls a service routine into execution is en
countered, the following sequence of operations takes 
place: 

(1) execution of the software trap 
instruction itself causes the 
logical space mode of operation 
of the processor to be switched 
to a lower level; 

(2) execution control moves via the 
software interrupt vector to a 
routine which examines the in
terrupt label and dispatches to 

the correct trap service routine; 

(3) the first instruction executed 
by the service routine is a call 
to a special purpose subroutine 
which allocates an area on the 
current mode stack which is equal 
in length to the stack area pre
pared by the requestor routine; 

(4) the control parameters which form 
the input to the function (service 
routine) are moved from the pre
vious mode stack to the current 
stack. 

The service routine, utilizing the same set of global
ly defined offsets mentioned above, accesses the input 
parameters and carries out the requested operations. 
The offsets are also used to place output parameters 
into the stack communication area. Upon completion of 
its operations, the service routine effects a return 
to its requestor by initiating the following operations: 

(5) the next to last instruction 
executed by the service routine 
is a call to a special purpose 
subroutine which moves the control 
parameters to be returned from the 
current mode stack to the previous 
mode stack and removes the control 
parameter area from the current 
mode stack; 

(6) the service routine executes its 
last instruction, a return-from
software-interrupt. This instruc
tion switches the logical space 
mode of operation of the processor 
back to the mode of the requesting 
routine. 

Not only tasks, but service routines themselves 
may request services supplied by the routines operating 
in kernel mode space. Thus an implicit hierarchical 
structure can be ascertained amongst the service level 
subsystems. It is shown below that this hierarchical 
structure becomes more explicit when the operating 



system is extended to three modes of logical address 
space. Requests in the other direction, i.e., from a 
service routine to a task, are, of course, not alloYed. 

Inter-mode Communication Scheme for Data 

Quantities of information which exceed the maximum 
length specified for service routine control parameters 
are transferred becYeen modes via physical resources. 
Also, such information has, in general, much longer 
lifetime requirements than do the control parameters. 
Space for control parameters is allocated at the time 
that execution of a service routine is requested and 
deallocated upon completion of this execution. Hence 
space for the parameters is reserved for a maximum of 
- 102 - 103 ~sec. In contrast, space required for 
physical resources is allocated at the start of trans
action processing and deallocated when the transaction 
has been completely processed. 1s mentioned above, 
this processing may require - 10 - 103 milliseconds. 
Thus the time requirements for the re-entrancy of the 
CYo types of information, as well as the constraints 
on their maximum amounts, are different by a factor of 
- 102 - 103. 

These differences in re-entrancy requirements 
between the two types of information lead to differ
ences in the manner in Yhich multi-mode access to the 
information is provided. Whereas the control param
eters, being few in number, are simply copied to the 
logical space of the neY mode when a service is re
quested, quantities of information in physical re
sources are accessed in different modes by establish
ing a correspondence between the different logical 
space start addresses of the physical resources in 
the different modes. Tables and code to establish 
this correspondence are contained within the main memory 
resource manager subsystem, a service level subsystem 
which resides at the kernel level of logical space. 

Briefly, all physical resources managed by the 
operating system are labeled with a type specification 
and a number from 0 to m, where (n = m + 1) is the 
maximum number of resources of the type available. A 
service level routine which must access a physical 
resource requests its logical space start address from 
the resource manager subsystem. The type and number 
of the resource are submitted control parameters of the 
request; the resource start address in the logical space 
of the requesting routine is a returned control param
eter. It has been mentioned above that the kernel mode 
routines and resources do not overlap in logical address 
space. Hence, if a physical resource type must be ac
cessed in a particular service level mode of logical 
space, an area of length (n x {.) logical space address 
locations within the mode must be dedicated to the re
source type. Here, n is the same as above and {. is the 
length of an individual physical resource. 

Once the logical space start address of a physical 
resource has been determined, data contained in the re
source is accessed in the same manner as in the case of 
control parameters. A register is set to this logical 
space start address and a set of inter-modally defined 
offsets into the resource is used. 

Extension to Three Modes of Logical Address Space 

The number of services which can be provided by the 
common node is limited in two respects. The number of 
tasks to provide the services is limited by the physi
cal main memory space available to the common node pro
cessor. The number of service routines to support 
these tasks is limited by the logical space available 

in the kernel mode. The physical space available to 
a PDP-11/40 computer is 262,144 byt.es. Each mode of 
logical space corresponds to 65,536 bytes. Clearly 
the limitation on the service routines is expected to 
be encountered first and has been in the present case. 
One way to extend the node is to add another mode of 
logical space, establish hierarchical structure among 
the service routines, and move some of these routines 
to the new space. Fortunately, a processor which sup
ports three modes of logical space, the PDP-11/45, is 
available. 

The added mode is termed the suoervisor mode and 
occupies a level, with respect to the protection pro
vided by the memory management unit, intermediate be
tween the user and kernel mode levels. The rules for 
service requests among the modes have been extended 
to the folloYing: 

(1) routines executing in user 
mode logical space (tasks) 
may request services only 
from routines operating in 
supervisor mode logical space; 

(2) routines executing in super
visor mode logical space 
(service routines) may re
quest services from other 
supervisor mode routines or 
from routines operating in 
kernel mode logical space; 

(3) routines executing in kernel 
mode logical space (service 
routines) may request services 
only from other kernel mode 
routines. 

The practical systems analysis involved in extending 
the ~ode lies in deciding which service level sub
systems should be moved up to the new mode. Such moves 
must be consistent with the hierarchical relationship 
among the service routines and must be made in such a 
way that the supervisor and kernel mode spaces are ap
proximately equally occupied. Since a hierarchical 
structure for the service subsystems was defined and 
rigidly adhered to even when all service routines ex
ecuted in one mode, the effort involved in adding the 
mode has been minimal. It should be noted, however, 
that if such a discipline had not been adopted, a 
significant (almost complete) reconstruction of the 
operating system would have been required. The final 
assignment of subsystems to the three modes of logical 
space is summarized in Tables III and IV. 

Conclusions 

Extension of the operating system at the common 
node has made it possible to increase the number of 
task level subsystems present at the node from four 
to twelve; correspondingly, the total number of tasks 
has been increased from 33 to 128. The number of trans
action functions (services provided by the node) has 
been increased from 15 to 96. An additional 32 new 
service routines are now present, with 07 new statically 
allocated resources to support their operation. 

Perhaps the most important aspect of this exercise 
is that it has provided some working experience in 
dealing with the problems which arise in the process 
of partitioning functions, defining rigorously the 
methods for communicating between the functions, and 
establishing a hierarchical framework for the functions. 



It· ·is believed that the requirements which must be met 
when sets of functions are confined to separate modes 
of logical address space closely approximate those 
which would have to be met if the functions were to be 
partitioned and distributed onto individual system 
nodes at a level below that of the common node itself. 
While such a partitioning exercise is theoretically 
possible in a computer which has only one mode of log
ical address space, in practice an actual implementation 
on a multimode machine is required to bring out all 
the subtleties of the technique and to rigidly enforce, 
during the implementation phase, adherence to the prin
c~ples of the technique. It has been the author's ex
perience that attempts to implement a partitioned sys
tem on a single-mode machine are always foiled by the 
enormous pressures placed on the systems analyst to 
take short cuts and violate the logical space boundaries 
which, in the case of such single-mode machines, can be 
only artifically enforced. 

Future. Work 

The next constraint on extending the set of common 
node services will be imposed when the physical space 
available to the task level routines and resources is 
exhausted. However, the node has been functionally 
defined in such a way that only one task need be in ex
ecution at any one time. This means that the operations 
required to establish the logical-to-physical space map 
need to be performed only a small number of times in 
the course of a complete execution of a task. Further
more, the ·logical space (and hence the maximum physical 
space) available to a task has been defined in such a 
way that it constitutes only a portion of the total 
physical space available for user mode routines. These 
facts suggest that additional memory management hardware 
could be added to the node in order to map a portion of 
the user mode phvsical main memory space into a large 
bank of external memory. Such memory management hard
ware, a module of which is termed a multipart memory 
controller, has already been developed here at Brookhaven 
and is described in detail elsewhere.9 Such an addition 
to the node hardware would allow many more tasks to be 
added to the common node. Since all task code executes 
at the same page of logical address space, the linking 
procedures for these new tasks would be the same as 
those for the present tasks. A rather sophisticated 
extension to the present task loader program would be 
required, however. 

As mentioned above, the eight pages of logical 
address space are insufficient. After pages have been 
assigned to the task stack, the task itself, and its 
standard statically allocated resources, and an ad
ditional page has been assigned to the transaction in
formation block, only t:T.-10 or three pages remain· for 
accessing the dynamically allocated resources. It is 
believed that sixteen pages would be a comfortable 
number. The prospects for a machine in the PDP-11 
series with such a memory management appearing on the 
market appear to be nonexistent. It may be possible, 
however, to implement such a memory management scheme 
by utilizing the microcoding capabilities of the PDP-11/60. 

·Also, more than three hierarchy levels are present 
among the routines used to implement the common node. 
If a memory management with more modes were available, 
even more partitioning of these routines to separate 
logical address spaces could take place and a more 
reliable common node would result. 

If the trend toward relatively inexpensive computer 
processors continues, it may not be unrealistic in the 
future to seriously consider confining the subsystems 

present at the common node to lower level nodes. In 
this scheme, each subsystem would have its own processor, 
probably an LSI-11, and the main function of the common 
node system level processor would be to arbitrate the 
access that these processors would have to a large bank 
of main memory. It is believed that the present work 
is a step toward the realization of such a system. 

Acknowledgements 

As can be surmised from the References section, 
much of the background work which serves as a basis 
for the functional approach is due to D. G. Dimmler; 
it is always a pleasure to acknowledge many useful 
discussions with him on this subject. P. D. Mansfield 
typed the source code and maintained the object code 
libraries required for the routines added in the process 
of extending the operating system. B. D. Gaer typed 
both the draft and final version of this manuscript. 

References 

1. D. G. Dimmler; Functional Distribution - An 
Architecture for Multi-User Computer Networks in 
Instrumentation. IEEE Trans. Nucl. Sci., NS-21,. 
838 (Feb. 1974). 

2. D. G. Dimmler, N. Greenlaw, M. A. Kelley, D. W. 
Potter, S. Rankowitz, and F. W. Stubblefield; 
The Brookhaven Reactor Experiment Control Facil
ity -A Distributed Function Computer Network -. 
IEEE Trans. Nucl. Sci., NS-23, 398 (Feb. 1976). 

3. F. W. Stubblefield and D. G. Dimmler; Transaction 
Processing in the Common Node of a Distributed 
Function Laboratory Computer System. IEEE Trans. 
Nucl. Sci., NS-22, 473 (Feb. 1975). 

4. F. W. Stubblefield; Logical and Physical Resource 
Management in the Common Node of a Distributed 
Function Laboratory Computer Network. IEEE Trans. 
Nucl. Sci., NS-23, 406 (Feb .. 1976). 

5. F. W. Stubblefield and D. G. Dimmler; A Task 
Scheduler and Service Subsystem for the Common Node 
of a Distributed Function Laboratory Computer 
Network. IEEE Trans. Nucl. Sci., NS-23, 413 (Feb. 
1976). --

6. F. W. Stubblefield; Continuous Sharing of a Record
Oriented Output Device within a Distributed Function 
Laboratory Computer Network. IEEE Trans. Nucl. Sci., 
NS-23, 423 (Feb. 1976). 

7. F. W. Stubblefield; A File Management for Experiment 
Control Parameters within a Distributed Function 
Computer Network. IEEE Trans. Nucl. Sci., NS-24, 
460 (Feb. 1977). --

8. F. W. Stubblefield; A Main Program and Overlay 
Manager Subsystem within a Distributed Function 
Laboratory Computer System. To be presented at the 
1977 Nuclear Science Symposium. 

9. D. G. Dimmler and W. H. Hardy; A Shared Random Ac
cess Memory Resource for Multi-processor Real-time 
Systems. IEEE Trans. Nucl. Sci., NS-24, 469 (Feb. 
19 77). 



.. 

Lo·g ical Space 
Logical Space End Address, 

Page Start Address Highest Possible 
Number ~octal2 ~octal2 

000 000 017 777 

2 020 000 037 777 

3 040 000 057 777 

4 060 000 077 777 

5 100 000 117 777 

6 120 000 137 777 

7 140 000 157 777 

8 160 000 177 777 

Length, Number 
of Logical 

Space Locations 
( octal2 

000 100 

varies 
.-()02 000 

000 100 

varies 
.-()04 000 

varies 
.-()01 000 

Type of Module Access 
Used to Access Assig;nment 

Task Stack Modification 

Task Code Read-only 

*Transaction Modification 
Information 
Block 

Dynamically Modification 
Allocated 
Resource 

Dynamically Modification 
Allocated 
Resource 

Dynamically Modification 
Allocated 
Resource 

*Task Subsystem Read-only 
Subroutines Module 

*Task Subsystem Read-only 
Read-only Access 
Tables Module 

Table I. Standard Page Assignments for User Mode Logical Address Space 
(*Denotes Near-Standard Assignment) 

Common Node 
Service Level 
Subsystem 

Main Memory Map Mgr. 

System Tables Mgr. 

Main Memory Resource Mgr. 

Device Queue Mgr. 

Device Driver 

Event Group Control 

Partitioned Device Mgr. 

Logical Resource Manager 

Physical Resource Manager 

Inter-task Communication 
Block Manager 

Transaction Datablock Mgr. 

I/O Control Block Mgr. 

I/O Buffer Manager 

Non-dynamically Allocated 
Main Memory Resource Mgr. 

Resource Group Control 

Transaction Manager 

Task Scheduler 

Unsolicited Transaction 
Handler 

Kernel Mode Logical Space Page Address Limits, 
Physical Space Limits, and Assimed. Access 

000000 
-017777 
000000 
-017777 
Modifi
cation 

MT 

MT 

MT 

MT. 

MT 

MT 

MT 

MT 

MT 

MT 

MT 

MT 

MT 

020000 
-037777 
020000 
-037777 
Modifi
cation 

DD 

CD 

IR,MT 

040000 
-057777 
040000 
-057777 
Read
only 

SR,SB 

RT 

SB 

SB,RT 

SB 

RT 

SB,RT 

SB 

SB 

RT 

RT 

IR,RT 

060000 
-077777 
060000 
-077777 
Read
only 

SB 

SR 

SR 

SR 

SB 

SR 

SB 

SR 

SR 

SR 

SR,SB 

.SR,SB 

SR,SB 

SB 

100000 
-117777 
100000 
-117777 
Read
only 

SR 

SR 

SR 

SR 

SR 

SR 

SR 

SR 

SR 

SR 

SR 

120000 

-137777 
120000 
-137777 
Read
only 

SR 

SR 

SR 

SR 

SR 

SR 

SR 

140000 
-157777 
140000. 
-l'i 7777 

Modifi
cation 

(Task 
Information 
Blocks -
one per 
task) 

SR 

160000 
-177777 
760000 
-7.77777 
Modifi
cation 

(External 
page -
used to 
access 
peripheral 
device 
registers) 

Table II. Original System - Assignment of Service Level Subsystems to Kernel _Mode Logical ~ddress Space 

(CD Cyclically Executed Code, DD = Device Drivers, 
IR Interrupt Service Routines, SR = Service Routines, 
SB Subroutines Module, RT = Read-only Access Tables Hodule, 
MT Modification Access Tables Module) 

IC 

i ., 



Kernel Mode Logical Space Page Address Limits, 
Physical Seace Limits, and Assigned Access 

000000 020000 040000 060000 100000 120000 140000 160000 

-017777 -037777 -057777 -077777 -117777 -137777 -157777 -177777 
000000 020000 040000 060000 100000 120000 140000 760000 

Common Node -017777 -037777 -057777 -077777 -117777 -137777 -157777 -777777 

Service Level Read- Read- Read- Read- Read- Modifi- Read- Modifi-
Subsystem onl:z: only only only onl:z: cation onl:z: cation 

Main Memory Map Mgr. SR SB (Not used (External 
-future page -

! 
System Tables Mgr. SR RT MT expansion) used to 

access 
Communication Channel Mgr. SR RT peripheral 

device 

·l Main MemorY Resource Mgr. SR SB RT MT registers) 

Device Queue Mgr. SR SB RT MT l 
I 

Device Driver DO DD 

I Event Group Control SR SB MT 

Error Report SR SB MT ! 

Partitioned Device Mgr. SR SB RT 

Chronological SR 

Logical Resource Mgr. SR SR SB RT MT 

'physical Resource Control SR 

Inter-task Communication SR SR SB MT 
Block Manager 

Transaction Datablock Mgr. SR SR SB MT 

I/O Control Block Mgr. SR SR SB MT 

I/O Buffer Manager SR SR SB MT 

Non-dynamically Allocated SR SB RT 
Main Memory Resource Mgr. 

Table III. Extended System - Assignment of Service Level Subsystems 
to Kernel Mode Lo_gical Address $pace 

(DO = Device Drivers, SR = Service Routines, SB = Subroutines Module, 
RT = Read-only Access Tables Module, MT = Modification Access Tables Module) 

I! 



. . 
Supervisor Mode Logical_ Space Page Address Limits, Physical Space LimiL:~, and Assigned Access 

000000 020000 040000 060000 100000 120000 140000 160000 
-017777 ' -037777 -057777 -077777 -117777 -137777 -157777 -177777 

Common Nod.e 200000 220000 240000 260000 300000 320000 340000 160000 
Service Level -217777 -237777 -257777 -277777 -317777 -337777 -357777 -177777 
Subsystem Read- Read- Read- Read- Modifi- Modifi- Read- Modifi-

onl;t: onl;t: onl;t: onl;t: cation cation onl;t: cation 

Resource Group Control SR SB,RT MT 

Transaction Manager SR SR SR SB,RT MT MT 
(Not used (Task 
-future Information 

Task Scheduler SR SR CD SB,RT MT expansion) Blocks -

Unsolicited Transaction IR SB,RT MT 
one per task) 

Handler· 

Table IV. Extended System -Assignment of Service Level Subsystems to Supervisor Mode Logical Address Space 
(CD = Cyclically Executed Code, IR = Interrupt Service Routines, SR = Service Routines, SB = Sub
routines Module, RT = Read-qnly Access Tables Module, MT = Modification Access Tables Module) 

No. of Submitted 
Arguments = TPPCNS = 04 

No. of Returned 
Arguments = TPPCNR = 01 

No. of Stack Locations 
(2*TPPCNS)+(2*TPPCNR) 

= TPPCSB 

Logical Offsets 

Task Identification No. 

(Submitted) 

Physical Resource 

Task Local No. 

(Submitted) 

Physical Resource 

Type Code 

(Submitted) 

Physical Resource 

Length, No. Words 

(Submitted) 

Error Code 

(Returned) 

Top of Stack Prior to 

I 

1 
Service Request 1 

r-- - - - - -- - - - -- - --j 

I 
I 

~ 
TPPCID(Rl) 

TPPCTL(Rl) 

TPPCRC(Rl) 

TPPCLH(Rl) 

TPPCEC(p) 

Figure l. dlobally Defined Logical Parameters of a 
Typical Service Request 

(Here, SerVice Request = "Prime Creation 
of Physical Resource") 

·.'-

lO(Rl) 

06(Rl) 

04(Rl) 

02(Rl) 

OO(Rl) 

t 
Physical Offsets 

·l 

/ 


