
ORIGINAL RESEARCH
published: 07 December 2017
doi: 10.3389/fnins.2017.00682

Frontiers in Neuroscience | www.frontiersin.org 1 December 2017 | Volume 11 | Article 682

Edited by:

Gert Cauwenberghs,

University of California, San Diego,

United States

Reviewed by:

Sadique Sheik,

University of California, San Diego,

United States

John V. Arthur,

IBM, United States

Bruno Umbria Pedroni contributed to

the review of John V. Arthur

*Correspondence:

Bodo Rueckauer

rbodo@ini.uzh.ch

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 25 July 2017

Accepted: 22 November 2017

Published: 07 December 2017

Citation:

Rueckauer B, Lungu I-A, Hu Y,

Pfeiffer M and Liu S-C (2017)

Conversion of Continuous-Valued

Deep Networks to Efficient

Event-Driven Networks for Image

Classification.

Front. Neurosci. 11:682.

doi: 10.3389/fnins.2017.00682

Conversion of Continuous-Valued
Deep Networks to Efficient
Event-Driven Networks for Image
Classification
Bodo Rueckauer 1*, Iulia-Alexandra Lungu 1, Yuhuang Hu 1, Michael Pfeiffer 1, 2 and

Shih-Chii Liu 1

1 Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland, 2 Bosch Center for Artificial

Intelligence, Renningen, Germany

Spiking neural networks (SNNs) can potentially offer an efficient way of doing inference

because the neurons in the networks are sparsely activated and computations are

event-driven. Previous work showed that simple continuous-valued deep Convolutional

Neural Networks (CNNs) can be converted into accurate spiking equivalents. These

networks did not include certain common operations such as max-pooling, softmax,

batch-normalization and Inception-modules. This paper presents spiking equivalents of

these operations therefore allowing conversion of nearly arbitrary CNN architectures. We

show conversion of popular CNN architectures, including VGG-16 and Inception-v3,

into SNNs that produce the best results reported to date on MNIST, CIFAR-10 and

the challenging ImageNet dataset. SNNs can trade off classification error rate against

the number of available operations whereas deep continuous-valued neural networks

require a fixed number of operations to achieve their classification error rate. From the

examples of LeNet for MNIST and BinaryNet for CIFAR-10, we show that with an increase

in error rate of a few percentage points, the SNNs can achieve more than 2x reductions

in operations compared to the original CNNs. This highlights the potential of SNNs in

particular when deployed on power-efficient neuromorphic spiking neuron chips, for use

in embedded applications.

Keywords: artificial neural network, spiking neural network, deep learning, object classification, deep networks,

spiking network conversion

1. INTRODUCTION

Deep Artificial Neural Network (ANN) architectures such as GoogLeNet (Szegedy et al., 2015)
and VGG-16 (Simonyan and Zisserman, 2014) have successfully pushed the state-of-the-art
classification error rates to new levels on challenging computer vision benchmarks like ImageNet
(Russakovsky et al., 2015). Inference in such very large networks, i.e., classification of an ImageNet
frame, requires substantial computational and energy costs, thus limiting their use in mobile and
embedded applications.

Recent work have shown that the event-based mode of operation in SNNs is particularly
attractive for reducing the latency and computational load of deep neural networks (Farabet et al.,
2012; O’Connor et al., 2013; Neil et al., 2016; Zambrano and Bohte, 2016). Deep SNNs can be
queried for results already after the first output spike is produced, unlike ANNs where the result
is available only after all layers have been completely processed (Diehl et al., 2015). SNNs are

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2017.00682
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2017.00682&domain=pdf&date_stamp=2017-12-07
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:rbodo@ini.uzh.ch
https://doi.org/10.3389/fnins.2017.00682
https://www.frontiersin.org/articles/10.3389/fnins.2017.00682/full
http://loop.frontiersin.org/people/238702/overview
http://loop.frontiersin.org/people/479430/overview
http://loop.frontiersin.org/people/349652/overview
http://loop.frontiersin.org/people/21160/overview
http://loop.frontiersin.org/people/14463/overview

Rueckauer et al. Spiking Network Conversion

also naturally suited to process input from event-based sensors
(Posch et al., 2014; Liu et al., 2015), but even in classical frame-
based machine vision applications such as object recognition or
detection, they have been shown to be accurate, fast, and efficient,
in particular when implemented on neuromorphic hardware
platforms (Neil and Liu, 2014; Stromatias et al., 2015; Esser et al.,
2016). SNNs could thus play an important role in supporting,
or in some cases replacing deep ANNs in tasks where fast and
efficient classification in real-time is crucial, such as detection of
objects in larger and moving scenes, tracking tasks, or activity
recognition (Hu et al., 2016).

Multi-layered spiking networks have been implemented on
digital commodity platforms such as FPGAs (Neil and Liu, 2014;
Gokhale et al., 2014), but spiking networks with more than tens
of thousands of neurons can be implemented on large-scale
neuromorphic spiking platforms such as TrueNorth (Benjamin
et al., 2014; Merolla et al., 2014) and SpiNNaker (Furber et al.,
2014). Recent demonstrations with TrueNorth (Esser et al., 2016)
show that CNNs of over a million neurons can be implemented
on a set of chips with a power dissipation of only a few hundred
mW. Given the recent successes of deep networks, it would be
advantageous if spiking forms of deep ANN architectures such as
VGG-16 can be implemented on these power-efficient platforms
while still producing good error rates. This would allow the
deployment of deep spiking networks in combination with an
event-based sensor for real-world applications (Orchard et al.,
2015a; Serrano-Gotarredona et al., 2015; Kiselev et al., 2016).

In order to bridge the gap betweenDeep Learning continuous-
valued networks and neuromorphic spiking networks, it is
necessary to develop methods that yield deep Spiking Neural
Networks (SNNs) with equivalent error rates as their continuous-
valued counterparts. Successful approaches include direct
training of SNNs using backpropagation (Lee et al., 2016),
the SNN classifier layers using stochastic gradient descent
(Stromatias et al., 2017), or modifying the transfer function of
the ANNs during training so that the network parameters can be
mapped better to the SNN (O’Connor et al., 2013; Esser et al.,
2015; Hunsberger and Eliasmith, 2016). The largest architecture
trained by Hunsberger and Eliasmith (2016) in this way is
based on AlexNet (Krizhevsky et al., 2012). While the results
are promising, these novel methods have yet to mature to the
state where training spiking architectures of the size of VGG-16
becomes possible, and the same state-of-the-art error rate as the
equivalent ANN is achieved.

A more straightforward approach is to take the parameters
of a pre-trained ANN and to map them to an equivalent-
accurate SNN. Early studies on ANN-to-SNN conversion began
with the work of Perez-Carrasco et al. (2013), where CNN
units were translated into biologically inspired spiking units
with leaks and refractory periods, aiming for processing inputs
from event-based sensors. Cao et al. (2015) suggested a close
link between the transfer function of a spiking neuron, i.e.,
the relation between input current and output firing frequency
to the activation of a rectified linear unit (ReLU), which
is nowadays the standard model for the neurons in ANNs.
They report good performance error rates on conventional
computer vision benchmarks, converting a class of CNNs that

was restricted to having zero bias and only average-pooling
layers. Their method was improved by Diehl et al. (2015),
who achieved nearly loss-less conversion of ANNs for the
MNIST (LeCun et al., 1998) classification task by using a weight
normalization scheme. This technique rescales the weights to
avoid approximation errors in SNNs due to either excessive or
too little firing of the neurons. Hunsberger and Eliasmith (2016)
introduced a conversion method where noise injection during
training improves the robustness to approximation errors of the
SNN with more realistic biological neuron models. Esser et al.
(2016) demonstrated an approach that optimized CNNs for the
TrueNorth platform which has binary weights and restricted
connectivity. Zambrano and Bohte (2016) have developed a
conversion method using spiking neurons that adapt their firing
threshold to reduce the number of spikes needed to encode
information.

These approaches achieve very good results onMNIST, but the
SNN results are below state-of-the-art ANN results when scaling
up to networks that can solve CIFAR-10 (Krizhevsky, 2009). One
reason is that SNN implementations of many operators that are
crucial for improved ANN error rate, such as max-pooling layers,
softmax activation functions, and batch-normalization, are non-
existent, and thus SNNs can only approximately match the
inference of an ANN. As a consequence, none of the previously
proposed conversion approaches are general enough for full
automatic conversion of arbitrary pre-trained ANNs taken from
a Deep-Learning model zoo available, for example, in Caffe1.

In this work, we address some important shortcomings
of existing ANN-to-SNN conversion methods. Through
mathematical analysis of the approximation of the output firing
rate of a spiking neuron to the equivalent analog activation
value, we were able to derive a theoretical measure of the error
introduced in the previous conversion process. On the basis
of this novel theory, we propose modifications to the spiking
neuron model that significantly improve the performance of
deep SNNs. By developing spiking implementations of max-
pooling layers, softmax activation, neuron biases, and batch
normalization (Ioffe and Szegedy, 2015), we extend the suite of
CNNs that can be converted. In particular, we demonstrate for
the first time that GoogLeNet Inception-V3 can be converted
to an equivalent-accurate SNN. Further, we show that the
conversion to spiking networks is synergistic with ANN network
compression techniques such as parameter quantization and the
use of low-precision activations.

To automate the process of transforming a pre-trained ANN
into an SNN, we developed an SNN-conversion toolbox that
is able to transform models written in Keras (Chollet, 2015),
Lasagne and Caffe, and offers built-in simulation tools for
evaluation of the spiking model. Alternatively, the converted
SNN can be exported for use in spiking simulators like pyNN or
Brian2. The documentation and source code is publicly available
online2.

The remainder of the paper is organized as follows: section
2.1 outlines the conversion theory and section 2.2 presents the

1https://github.com/BVLC/caffe/wiki/Model-Zoo
2http://snntoolbox.readthedocs.io/

Frontiers in Neuroscience | www.frontiersin.org 2 December 2017 | Volume 11 | Article 682

https://github.com/BVLC/caffe/wiki/Model-Zoo
http://snntoolbox.readthedocs.io/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Rueckauer et al. Spiking Network Conversion

methods for implementing the different features of a CNN. The
work in these two sections is extended from earlier work in
Rueckauer et al. (2016). section 3 presents the conversion results
of networks tested on the MNIST, CIFAR-10, and ImageNet
datasets.

2. METHODS

2.1. Theory for Conversion of ANNs into
SNNs
The basic principle of converting ANNs into SNNs is that firing
rates of spiking neurons should match the graded activations of
analog neurons. Cao et al. (2015) first suggested a mechanism
for converting (ReLU) activations, but a theoretical groundwork
for this principle was lacking. Here we present an analytical
explanation for the approximation, and on its basis we are
able to derive a simple modification of the reset mechanism
following a spike, which turns each SNN neuron into an unbiased
approximator of the target function (Rueckauer et al., 2016).

We assume here a one-to-one correspondence between an
ANN unit and a SNN neuron, even though it is also possible to
represent each ANN unit by a population of spiking neurons. For
a network with L layers let Wl, l ∈ {1, . . . , L} denote the weight
matrix connecting units in layer l − 1 to layer l, with biases bl.
The number of units in each layer is Ml. The ReLU activation of
the continuous-valued neuron i in layer l is computed as:

ali : = max

0,

Ml−1
∑

j=1

W l
ija

l−1
j + bli

 , (1)

starting with a0 = x, where x is the input, normalized so that each
xi ∈ [0, 1]3. Each SNN neuron has a membrane potential V l

i (t),
which integrates its input current at every time step:

zli(t) : = Vthr

Ml−1
∑

j=1

W l
ij2

l−1
t,j + bli

 , (2)

where Vthr is the threshold and 2l
t,i is a step function indicating

the occurrence of a spike at time t:

2l
t,i : = 2(V l

i (t−1)+zli(t)−Vthr), with 2(x) =

{

1 if x ≥ 0

0 else.

(3)
Every input pattern is presented for T time steps, with time step
size1t ∈ R

+. The highest firing rate supported by a time stepped
simulator is given by the inverse time resolution rmax : = 1/1t.
Input rates to the first layer are proportional to the constant
pixel intensities or RGB image values. We can compute the firing
rate of each SNN neuron i as rli(t) : = N l

i(t)/t, where N
l
i(t) : =

∑t
t′=1 2l

t′ ,i is the number of spikes generated.

3This analysis focuses on applications with image data sets, which are generally

transformed in this way. The argument could be extended to the case of zero-

centered data by interpreting negative input to the first hidden layer of the SNN

as coming from a class of inhibitory neurons, and inverting the sign of the charge

deposited in the post-synaptic neuron.

The principle of the ANN-to-SNN conversion method as
introduced in Cao et al. (2015), Diehl et al. (2015), postulates
that the firing rate of a neuron rli correlates with its original

ANN activation ali in (1). In the following, we introduce a
membrane equation for the spiking neurons to formalize a
concrete relationship rli(t) ∝ ali.

2.1.1. Membrane Equation
The spiking neuron integrates inputs zli(t) until the membrane

potential V l
i (t) exceeds a threshold Vthr ∈ R

+ and a spike is
generated. Once the spike is generated, the membrane potential
is reset. We discuss next two types of reset: reset to zero, used e.g.,
in Diehl et al. (2015), always sets the membrane potential back
to a baseline, typically zero. Reset by subtraction, or “linear reset
mode” in Diehl et al. (2016); Cassidy et al. (2013), subtracts the
threshold Vthr from the membrane potential at the time when it
exceeds the threshold:

V l
i (t) =

(

V l
i (t − 1)+ zli(t)

) (

1− 2l
t,i

)

reset to zero (4a)

V l
i (t − 1)+ zli(t) − Vthr2

l
t,i reset by subtraction.

(4b)

From these membrane equations, we can derive slightly different
approximation properties for the two reset mechanisms. In this
section we analyze the first hidden layer and expand the argument
in section 2.1.2 to higher layers. We assume that the input
currents z1i > 0 remain constant over time, and justify this
assumption in section 2.2.4. The input to first-layer neurons (2)
is then related to the ANN activations (1) via z1i = Vthra

1
i . In

order to relate these ANN activations to the SNN spike rates, we
merely have to average the membrane Equations (4a) and (4b)
over the simulation time. The detailed calculations are given in
the Supplementary Material; the resulting rates are obtained as

r1i (t) =

a1i rmax ·
Vthr

Vthr + ǫ1i
−

V1
i (t)

t · (Vthr + ǫli)
reset to zero (5a)

a1i rmax −
V1
i (t)

t · Vthr
reset by subtraction.

(5b)

As expected, the spike rates are proportional to the ANN
activations a1i , but reduced by an additive approximation error
term, and in case of reset to zero an additional multiplicative
error term. In the reset to zero case, with constant input, there
is always a constant number of time steps n1i between spikes of
the same neuron i, and the threshold will always be exceeded by
the same constant amount ǫ1i = V1

i (n
1
i) − Vthr = n1i · z1i −

Vthr ≥ 0. This residual charge ǫ1i is discarded at reset, which
results in a reduced firing rate and thereby loss of information.
For shallow networks and small datasets such as MNIST, this
error seems to be a minor problem but we have found that an
accumulation of approximation errors in deeper layers degrades
the classification error rate. We also see from Equation (5a) that
a larger Vthr and smaller inputs improve the approximation at

Frontiers in Neuroscience | www.frontiersin.org 3 December 2017 | Volume 11 | Article 682

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Rueckauer et al. Spiking Network Conversion

the expense of longer integration times. Using the definition
(n1i − 1)z1i < Vthr ≤ n1i z

1
i for n1i and ǫ1i = n1i z

1
i − Vthr for

ǫ1i , we find that the approximation error is limited from above
by the magnitude of the input z1i . This insight further explains
why the weight normalization scheme of Diehl et al. (2015)
improves performance in the reset-to-zero case: By guaranteeing
that the ANN activations a1i are too low to drive a neuron in the
SNN above Vthr within a single time step, we can keep z1i =

Vthra
1
i and thereby ǫli low. Another obvious way of improving

the approximation is to reduce the simulation time step, but this
comes at the cost of increased computational effort.

A simple switch to the reset by subtraction mechanism
improves the approximation, and makes the conversion scheme
suitable also for deeper networks. The excess charge ǫ is not
discarded at reset and can be used for the next spike generation.
Accordingly, the error term due to ǫ does not appear in Equation
(5b). Instead, the firing rate estimate in the first hidden layer
converges to its target value a1i · rmax; the only approximation
error due to the discrete sampling vanishes over time.We validate
by simulations in section 3.1 that this mechanism indeed leads
to more accurate approximations of the underlying ANN than
the methods proposed in Cao et al. (2015), Diehl et al. (2015), in
particular for larger networks.

2.1.2. Firing Rates in Higher Layers
The previous results were based on the assumption that the
neuron receives a constant input z over the simulation time.
When neurons in the hidden layers are spiking, this condition
only holds for the first hidden layer and for inputs in the
form of analog currents instead of irregular spike trains. In
the reset-by-subtraction case, we can derive analytically how the
approximation error propagates through the deeper layers of the
network. For this, we insert the expression for SNN input zli from
Equation (2) into the membrane Equation (4b) for l > 1, average
V l
i (t) over the simulation time, and solve for the firing rate rli(t).

This yields:

rli(t) =

Ml−1
∑

j=1

W l
ijr

l−1
j (t)+ rmaxb

l
i −

V l
i (t)

t · Vthr
. (6)

This equation states that the firing rate of a neuron in layer l
is given by the weighted sum of the firing rates of the previous
layer, minus the time-decaying approximation error described in
Equation (5b). This relationship implies that each layer computes
a weighted sum of the approximation errors of earlier layers,
and adds its own approximation error. The recursive expression
Equation (6) can be solved iteratively by inserting the expression
for the previous layer rates, starting with the known rates of the
first layer Equation (5b):

rli = alirmax − 1V l
il
−

Ml−1
∑

il−1=1

W l
ilil−1

1V l−1
il−1

− · · ·

−

Ml−1
∑

il−1=1

W l
ilil−1

· · ·

M1
∑

i1=1

W2
i2i1

1V1
i1

(7)

with 1V l
i : = V l

i (t)/(t · Vthr). Thus, a neuron i in layer l
receives an input spike train with a slightly lower spike rate,
reduced according to the quantization error 1V of previous
layer neurons. These errors accumulate for higher layers, which
explains why it takes longer to achieve high correlations of ANN
activations, and why SNN firing rates deteriorate in higher layers.

2.2. Spiking Implementations of ANN
Operators
In this section we introduce new methods that improve the
classification error rate of deep SNNs (Rueckauer et al., 2016).
These methods either allow the conversion of a wider ranger of
ANNs, or reduce the approximation errors in the SNN.

2.2.1. Converting Biases
Biases are standard in ANNs, but were explicitly excluded by
previous conversion methods for SNNs. In a spiking network, a
bias can simply be implemented with a constant input current of
equal sign as the bias. Alternatively, one could present the bias
with an external spike input of constant rate proportional to the
ANN bias, as proposed in Neftci et al. (2014), though then one
may have to invert the sign of spikes to account for negative
biases. The theory in section 2.1 can be applied to the case of
neurons with biases, and the following section 2.2.2 shows how
parameter normalization can be applied to biases as well.

2.2.2. Parameter Normalization
One source of approximation errors is that in time-stepped
simulations of SNNs, the neurons are restricted to a firing rate
range of [0, rmax], whereas ANNs typically do not have such
constraints. Weight normalization is introduced by Diehl et al.
(2015) as a means to avoid approximation errors due to too low
or too high firing. This work showed significant improvement
of the performance of converted SNNs by using a data-based
weight normalization mechanism. We extend this method to the
case of neurons with biases and suggest a method that makes the
normalization process more robust to outliers.

2.2.2.1. Normalization with biases

The data-based weight normalization mechanism is based on
the linearity of the ReLU unit used for ANNs. It can simply be
extended to biases by linearly rescaling all weights and biases
such that the ANN activation a [as computed in Equation (1)]
is smaller than 1 for all training examples. In order to preserve
the information encoded within a layer, the parameters of a
layer need to be scaled jointly. Denoting the maximum ReLU
activation in layer l as λl = max[al], then weights Wl and biases

bl are normalized toWl → Wl λl−1

λl
and bl → bl/λl.

2.2.2.2. Robust normalization

Although weight normalization avoids firing rate saturation in
SNNs, it might result in very low firing rates, thereby increasing
the latency until information reaches the higher layers. We
refer to the algorithm described in the previous paragraph as
“max-norm,” because the normalization factor λl was set to the
maximum ANN activation within a layer, where the activations
are computed using a large subset of the training data. This is a

Frontiers in Neuroscience | www.frontiersin.org 4 December 2017 | Volume 11 | Article 682

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Rueckauer et al. Spiking Network Conversion

very conservative approach, which ensures that the SNN firing
rates will most likely not exceed the maximum firing rate. The
drawback is that this procedure is prone to be influenced by
singular outlier samples that lead to very high activations, while
for the majority of the remaining samples, the firing rates will
remain considerably below the maximum rate.

Such outliers are not uncommon, as shown in Figure 1A,
which plots the log-scale distribution of all non-zero activations
in the first convolution layer for 16,666 CIFAR10 samples. The
maximum observed activation is more than three times higher
than the 99.9th percentile. Figure 1B shows the distribution of
the highest activations across the 16,666 samples for all ANN
units in the same layer, revealing a large variance across the
dataset, and a peak that is far away from the absolute maximum.
This distribution explains why normalizing by the maximum
can result in a potentially poor classification performance of the
SNN. For the vast majority of input samples, even the maximum
activation of units within a layer will lie far below the chosen
normalization scale leading to insufficient firing within the layer
to drive higher layers and subsequently worse classification
results.

We propose a more robust alternative where we set λl to
the p-th percentile of the total activity distribution of layer l4.
This choice discards extreme outliers, and increases SNN firing
rates for a larger fraction of samples. The potential drawback
is that a small percentage of neurons will saturate, so choosing
the normalization scale involves a trade-off between saturation
and insufficient firing. In the following, we refer to the percentile
p as the “normalization scale,” and note that the “max-norm”
method is recovered as the special case p = 100. Typical
values for p that perform well are in the range [99.0, 99.999]. In
general, saturation of a small fraction of neurons leads to a lower
degradation of the network classification error rate compared
to the case of having spike rates that are too low. This method
can be combined with batch-normalization (BN) used during
ANN training (Ioffe and Szegedy, 2015), which normalizes the
activations in each layer and therefore produces fewer extreme
outliers.

2.2.3. Conversion of Batch-Normalization Layers
Batch-normalization reduces internal covariate shift in ANNs
and thereby speeds up the training process. BN introduces
additional layers where affine transformations of inputs are
performed in order to achieve zero-mean and unit variance. An
input x is transformed into BN[x] =

γ
σ
(x − µ) + β , where

mean µ, variance σ , and the two learned parameters β and γ

are all obtained during training as described in Ioffe and Szegedy
(2015). After training, these transformations can be integrated
into the weight vectors, thereby preserving the effect of BN, but
eliminating the need to compute the normalization repeatedly for

each sample during inference. Specifically, we set W̃ l
ij =

γ l
i

σ l
i

W l
ij

4This distribution is obtained by computing the ANN activations on a large

fraction of the training set. From this, the scaling factor can be determined and

applied to the layer parameters. This has to be done only once for a given network;

during inference the parameters do not change.

and b̃li =
γ l
i

σ l
i

(

bli − µl
i

)

+ β l
i . This makes it simple to convert

BN layers into SNNs, because after transforming the weights of
the preceding layer, no additional conversion for BN layers is
necessary. Empirically we found loss-less conversion when the
BN parameters are integrated into other weights. The advantage
lies purely in obtaining better performing ANNs if BN is used
during training.

2.2.4. Analog Input to First Hidden Layer
Because event-based benchmark datasets are rare (Hu et al.,
2016; Rueckauer and Delbruck, 2016), conventional frame-based
image databases such as MNIST (LeCun et al., 1998) or CIFAR
(Krizhevsky, 2009) have been used to evaluate the classification
error rate of the converted SNN. Previous methods (Cao et al.,
2015; Diehl et al., 2015) usually transform the analog input
activations, e.g., gray levels or RGB values, into Poisson firing
rates. But this transformation introduces variability into the firing
of the network and impairs its performance.

Here, we interpret the analog input activations as constant
currents. Following Equation (2), the input to the neurons in the
first hidden layer is obtained by multiplying the corresponding
kernels with the analog input image x:

z1i : = Vthr

M0
∑

j=1

W1
ijxj + b1i

 . (8)

This results in one constant charge value zli per neuron i, which is
added to the membrane potential at every time step. The spiking
output then begins with the first hidden layer. Empirically we
found this to be particularly effective in the low-activation regime
of ANN units, where usually undersampling in spiking neurons
poses a challenge for successful conversion.

2.2.5. Spiking Softmax
Softmax is commonly used on the outputs of a deep ANN,
because it results in normalized and strictly positive class
likelihoods. Previous approaches for ANN-to-SNN conversion
did not convert softmax layers, but simply predicted the output
class corresponding to the neuron that spiked most during the
presentation of the stimulus. However, this approach fails when
all neurons in the final layer receive negative inputs, and thus
never spike.

Here we implement two versions of a spiking softmax layer.
The first is based on the mechanism proposed in Nessler et al.
(2009), where output spikes are triggered by an external Poisson
generator with fixed firing rate. The spiking neurons do not
fire on their own but simply accumulate their inputs. When the
external generator determines that a spike should be produced,
a softmax competition according to the accumulated membrane
potentials is performed. The second variant of our spiking
softmax function is similar, but does not rely on an external
clock. To determine if a neuron should spike, we compute the
softmax on the membrane potentials, and use the resulting values
in range of [0, 1] as rate parameters in a Poisson process for
each neuron. In both variants, the final classification result over
the course of stimulus presentation is then given by the index

Frontiers in Neuroscience | www.frontiersin.org 5 December 2017 | Volume 11 | Article 682

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Rueckauer et al. Spiking Network Conversion

FIGURE 1 | Distribution of all non-zero activations in the first convolution layer of a CNN, for 16666 CIFAR10 samples, and plotted in log-scale. The dashed line in

both plots indicates the 99.9th percentile of all ReLU activations across the dataset, corresponding to a normalization scale λ = 6.83. This is more than three times

less than the overall maximum of λmax = 23.16. (B) Distribution of maximum ReLU activations for the same 16666 CIFAR10 samples. For most samples their

maximum activation is far from λmax . (A) ANN activations; (B) Maximum ANN activation.

of the neuron with the highest firing rate, as before. We prefer
the second variant because it does not depend on an additional
hyperparameter. A third variant has been suggested by one of
the reviewers: Since the softmax is applied at the last layer of the
network, one could simply infer the classification output from the
softmax computed on the membrane potentials, without another
spike generation mechanism. This simplification could speed up
inference time and possibly improve the accuracy by reducing
stochasticity. This method is appealing where one does not insist
upon a purely spiking network.

2.2.6. Spiking Max-Pooling Layers
Most successful ANNs usemax-pooling to spatially down-sample
feature maps. However, this has not been used in SNNs because
computing maxima with spiking neurons is non-trivial. Instead,
simple average pooling used in Cao et al. (2015), Diehl et al.
(2015), results in weaker ANNs being trained before conversion.
Lateral inhibition, as suggested in Cao et al. (2015), does not
fulfill the job properly, because it only selects the winner, but
not the actual maximum firing rate. Another suggestion is to
use a temporal Winner-Take-All based on time-to-first-spike
encoding, in which the first neuron to fire is considered the
maximally firing one (Masquelier and Thorpe, 2007; Orchard
et al., 2015b). Here we propose a simple mechanism for spiking
max-pooling, in which output units contain gating functions that
only let spikes from the maximally firing neuron pass, while
discarding spikes from other neurons. The gating function is
controlled by computing estimates of the pre-synaptic firing
rates, e.g., by computing an online or exponentially weighted
average of these rates. In practice we found several methods to
work well, but demonstrate only results using a finite impulse
response filter to control the gating function.

2.3. Counting Operations
To obtain the number of operations in the networks during
classification, we define as fan-in fin the number of incoming

connections to a neuron, and similarly fan-out fout as the number
of outgoing projections to neurons in the subsequent layer. To
give some examples: In a convolutional layer, the fan-in is given
by the size of the 2-dimensional convolution kernel multiplied by
the number of channels in the previous layer. In a fully-connected
layer, the fan-in simply equals the number of neurons in the
preceding layer. The fan-out of a neuron in a convolutional layer
l that is followed by another convolution layer l + 1 generally
depends on the stride of layer l + 1. If the stride is 1, the fan-
out is simply given by the size of the 2-dimensional convolution
kernel of layer l+1, multiplied by the number of channels in layer
l+ 1. Note that the fan-out may be reduced in corners and along
edges of the feature map depending on how much padding is
applied.

In case of the ANN, the total number of floating-point
operations for classification of one frame is given by:

L
∑

l=1

(2fin,l + 1)nl Ops/frame, (9)

with nl the number of neurons in layer l. The factor 2 comes from
the fact that each fan-in operation consist of a multiplication and
addition. With +1, we count the operations needed to add the
bias. The pooling operation is not considered here.

In the case of an SNN, only additions are needed when the
neuron states are updated. We adopt the notation from Merolla
et al. (2014) and report the Synaptic Operations, i.e., the updates
in the neurons of a layer caused by a spike in the previous layer5.
The total number of synaptic operations in the SNN across the

5This synaptic operation count does not include updates of the state variables due

to a bias or dynamics of the post-synaptic potential (which is instantaneous in

our case). We validated in our simulations that the operations caused by the bias

are about two orders of magnitude fewer in number than synaptic operations, in

addition to being less costly in terms of memory fetches).

Frontiers in Neuroscience | www.frontiersin.org 6 December 2017 | Volume 11 | Article 682

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Rueckauer et al. Spiking Network Conversion

simulation duration T is

T
∑

t=1

[

L
∑

l=1

fout,lsl(t)

]

Ops/frame, (10)

where sl(t) denotes the number of spikes fired in layer l at time t.
In the ANN, the number of operations needed to classify one

image, consisting of the cost of a full forward-pass, is a constant.
In the SNN, the image is presented to the network for a certain
simulation duration, and the network outputs a classification
guess at every time step. By measuring both the classification
error rate and the operation count at each step during simulation,
we are able to display how the classification error rate of the
SNN gradually decreases with increasing number of operations
(cf Figure 4).

The two different modes of operation—single forward pass
in the ANN vs. continuous simulation in the SNN—have
significant implications when aiming for an efficient hardware
implementation. One well known fact is that additions required
in SNNs are cheaper than multiply accumulates needed in
ANNs. For instance, our simulations in a Global Foundry 28
nm process show that the cost of performing a 32-bit floating-
point addition is about 14 X lower than that of a MAC operation
and the corresponding chip area is reduced by 21 X. It has also
been shown that memory transfer outweighs the energy cost
of computations by two orders of magnitude (Horowitz, 2014).
In the ANN, reading weight kernels and neuron states from
memory, and writing states back to memory is only done once
during the forward pass of one sample. In contrast, memory
access in the SNN is less predictable and has to be repeated
for individual neurons in proportion to their spike rates. If the
number of operations needed by the SNN to achieve a similar
classification error as that of the ANN is lower, then equivalently
the SNN would also have a reduction in the number of memory
accesses. The direct implementation of SNNs on dedicated
spiking hardware platforms like SpiNNaker or TrueNorth is
left to future work, and will be necessary for estimating the
real energy cost in comparison to the cost of implementing
the original ANNs on custom ANN hardware accelerators like
Eyeriss (Chen et al., 2017).

3. RESULTS

There are two ways of improving the classification error rate
of an SNN obtained via conversion: (1) training a better
ANN before conversion, and (2) improving the conversion by
eliminating approximation errors of the SNN. We proposed
several techniques for these two approaches in section 2; in
sections 3.1 and 3.2 we evaluate their effect using the CIFAR-
10 data set. section 3.3 extends the SNN conversion methods
to the ImageNet data set. In section 3.4 we show that SNNs
feature an accuracy-vs.-operations trade-off that allow tuning the
performance of a network to a given computational budget.

The networks were implemented in Keras (Chollet, 2015).
Some of the CIFAR-10 results were previously reported
in Rueckauer et al. (2016).

3.1. Contribution of Improved ANN
Architectures
The methods introduced in section 2 allow conversion of CNNs
that use biases, softmax, batch-normalization, and max-pooling
layers, which all improve the classification error rate of the ANN.
The performance of a converted network was quantified on the
CIFAR-10 benchmark (Krizhevsky, 2009), using a CNN with 4
convolution layers (32 3×3 - 32 3×3 - 64 3×3 - 64 3×3), ReLU
activations, batch-normalization, 2×2 max-pooling layers after
the 2nd and 4th convolutions, followed by 2 fully connected
layers (512 and 10 neurons respectively) and a softmax output.
This ANN achieved 12.14% error rate (Table 1). Constraining the
biases to zero increased the error rate to 12.27%. Replacing max-
pooling by average-pooling further decreased the performance
to 12.31%. Eliminating the softmax and using only ReLUs in the
output led to a big drop to 30.56%.With our newmethods we can
therefore start the conversion already with much better ANNs
than was previously possible.

3.2. Contribution of Improved SNN
Conversion Methods
Figure 2 shows that in the case of CIFAR-10, the conversion
of the best ANN into an SNN using the default approach (i.e.,
no normalization, Poisson spike train input, reset-to-zero) fails,
yielding an error rate of 83.50%, barely above chance level.
Adding the data-based weight normalization (Diehl et al., 2015)
(green bar) lowers the error rate to 40.18%, but this is still a
big drop from the ANN result of 12.14% (dashed black line).
Changing to the reset-by-subtractionmechanism from section 2.1
leads to another 20% improvement (brown bar), and switching to
analog inputs to the first hidden layer instead of Poisson spike
trains results in an error rate of 16.40% (orange bar). Finally,
using the 99.9th percentile of activations for robust weight
normalization yields 12.18% error rate, which is on par with
the ANN performance and gives our best result for CIFAR-10.
We therefore conclude that our proposed mechanisms for ANN
training and ANN-to-SNN conversion contribute positively to
the success of the method. The conversion into a SNN is nearly
loss-less, and the results are very competitive for classification
benchmarks using SNNs (Table 1). These results were confirmed
also on MNIST, where a 7-layer network with max-pooling
achieved an error rate of 0.56%, thereby improving previous
state-of-the-art results for SNNs reported by Diehl et al. (2015)
and Zambrano and Bohte (2016).

SNNs are known to exhibit a so-called accuracy-latency
trade-off (Diehl et al., 2015; Neil et al., 2016), which means
that the error rate drops the longer the network is simulated,
i.e., the more operations we invest. The latency in which
the final error rate is achieved, is dependent on the type of
parameter normalization as illustrated by the three curves in
Figure 3. Parameter normalization is necessary to improve upon
chance-level classification (blue, no normalization). However,
our previous max-norm method (green) converges very slowly
to the ANN error rate because the weight scale is overly reduced
and spike-activity is low. With a robust normalization using the
99.9th percentile of the activity distribution, the weights are larger

Frontiers in Neuroscience | www.frontiersin.org 7 December 2017 | Volume 11 | Article 682

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Rueckauer et al. Spiking Network Conversion

TABLE 1 | Classification error rate on MNIST, CIFAR-10 and ImageNet for our converted spiking models, compared to the original ANNs, and compared to spiking

networks from other groups.

Data set [architecture] ANN err. SNN err. Neur. Synap.

MNIST [ours] 0.56 0.56 8 k 1.2 M

MNIST [Zambrano and Bohte, 2016] 0.86 0.86 27 k 6.6 M

CIFAR-10 [ours, BinaryNet sign] 11.03 11.75 0.5 M 164 M

CIFAR-10 [ours, BinaryNet Heav] 11.58 12.55 0.5 M 164 M

CIFAR-10 [ours, BinaryConnect, binarized at infer.] 16.81 16.65 0.5 M 164 M

CIFAR-10 [ours, BinaryConnect, full prec. at infer.] 8.09 9.15 0.5 M 164 M

CIFAR-10 [ours] 11.13 11.18 0.1 M 23 M

CIFAR-10 [Esser et al., 2016], 8 chips NA 12.50 8 M NA

CIFAR-10 [Esser et al., 2016], single chip NA 17.50 1 M NA

CIFAR-10 [Hunsberger and Eliasmith, 2016]* 14.03 16.46 50 k NA

CIFAR-10 [Cao et al., 2015]** 20.88 22.57 35 k 7.4 M

ImageNet [ours, VGG-16]† 36.11 (15.14) 50.39 (18.37) 15 M 3.5 B

ImageNet [ours, Inception-V3]†† 23.88 (7.01) 25.40 (7.96) 11.7 M 0.5 B

ImageNet [Hunsberger and Eliasmith, 2016]‡ NA 48.20 (23.80) 0.5 M NA

The reported error rate is top-1, with top-5 in brackets for ImageNet.

*Cropped to 24x24. **Cropped to 24x24.
†
On a subset of 2570 samples, using single-scale images of size 224x224.

††
On a subset of 1382 samples, using single-scale images of size

299x299.
‡
On a subset of 3072 samples. The values in bold highlight the best SNN result for a particular data set.

FIGURE 2 | Influence of novel mechanisms for ANN-to-SNN conversion on

the SNN error rate for CIFAR-10.

and convergence is much faster. Empirically, the best results
were obtained with normalization factors in the range between
the 99th and 99.9th percentile of activations, which allows the
network to converge quickly to error rates similar to those of the
underlying ANN.

This accuracy-latency trade-off is very prominent in case of
the classic LeNet architecture on MNIST (Figure 5). While the
ANN achieves an error rate of 1.04 % using a fixed amount of 2.35
MOps per frame, the spiking model reaches within 1 percentage
point of the ANN using 2x less operations (2.07 % error rate at
1.07 MOps/frame). At 1.47 MOps, the SNN error rate is 1.13 %.
The SNN then continues to improve until it reaches 1.07 % error
rate at the end of the simulation.

3.3. ImageNet
VGG Simonyan and Zisserman (2014) and GoogLeNet Szegedy
et al. (2015) are two deep network architectures that won

FIGURE 3 | Accuracy-latency trade-off. Robust parameter normalization (red)

enables our spiking network to correctly classify CIFAR-10 samples much

faster than using our previous max-normalization (green). Not normalizing

leads to classification at chance level (blue).

first places in the localization and classification competitions
of the ImageNet ILSVRC-2014 respectively. By introducing
inception modules and bottlenecks, GoogLeNet requires 12X
fewer parameters and significantly less computes than VGG-
16, even though the total layer count is much higher. Since
their initial introduction in 2014, both architectures have been
improved. The third version of GoogLeNet which was released
in 2015 as Inception-V3 (Szegedy et al., 2016), improved on the
ImageNet results to state-of-the art 5.6% top-5 error rate, and
uses 2.5X more computes than the original GoogLeNet. This was
in part done by further reducing the kernel size and dimensions
inside the network, applying regularization via batch-normalized
auxiliary classifiers, and label smoothing.

Frontiers in Neuroscience | www.frontiersin.org 8 December 2017 | Volume 11 | Article 682

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Rueckauer et al. Spiking Network Conversion

3.3.1. Transient Dynamics and Voltage Clamp
While the conversion pipeline outlined in section 2 can deliver
converted SNNs that produced equivalent error rates as the
original ANNs on the MNIST and CIFAR-10 data sets, the
error rate of the converted Inception-V3 was initially far
from the error rate of the ANN. One main reason is that
neurons undergo a transient phase at the beginning of the
simulation because a few neurons have large biases or large
input weights. During the first few time steps, the membrane
potential of each neuron needs to accumulate input spikes
before it can produce any output. The firing rates of neurons
in the first layer need several time steps to converge to a steady
rate, and this convergence time is increased in higher layers
that receive transiently varying input. The convergence time
is decreased in neurons that integrate high-frequency input,
but increased in neurons integrating spikes at low frequency6.
Another factor contributing to a large transient response are
1×1 convolution layers. In these layers, the synaptic input to
a single neuron consists only of a single column through the
channel-dimension of the previous layer, so that the neuron’s
bias or a single strongly deviating synaptic input may determine
the output dynamics. With larger kernels, more spikes are
gathered that can outweigh the influence of e.g., a large
bias7.

In order to overcome the negative effects of transients in
neuron dynamics, we tried a number of possible solutions,
including the initializations of the neuron states, different reset
mechanisms, and bias relaxation schemes. The most successful
approach we found was to clamp the membrane potential to zero
for the first N time-steps, where N increases linearly with the
layer depth l: N(l) = d · l. The slope d represents the temporal
delay between lifting the clamp from consecutive layers. The
longer the delay d, the more time is given to a previous layer to
converge to steady-state before the next layer starts integrating
its output.

This simple modification of the SNN state variables removes
the transient response completely (see Figure S1), because by
the time the clamp is lifted from post-synaptic neurons, the
presynaptic neurons have settled at their steady-state firing-
rate. We found a clamping delay of d = 10 in Inception-
V3 to be sufficient. Clamping the membrane potential in
VGG-16 did not have a notable impact on the error rate.
Each input image was presented to the converted VGG-16
spiking network for 400 time steps, and to the converted
Inception-V3 for 550 time steps. The average firing rate

6An ANN neuron responds precisely the same whether (A) receiving input from

a neuron with activation 0.1 and connecting weight 0.8, or (B) activation 0.8 and

weight 0.1. In contrast, the rate of an SNN neuron will take longer to converge

in case (A) than in (B). This phenomenon forms the basis of the accuracy-latency

trade-off mentioned above: One would like to keep firing rates as low as possible

to reduce the operational cost of the network, but has to sacrifice approximation

accuracy for it.
7Even though the parameters in each layer were normalized such that the input to

each neuron is below threshold, this does not guarantee that all biases are sub-

threshold: their effect could be reduced by inhibitory input spikes. While such

inhibitory synaptic input is still missing at the onset of the simulation, the output

dynamics of a neuron will be dominated by a large bias.

of neurons is 0.016 Hz8 in VGG-16, and 0.053 Hz in
Inception-V3.

We expect that the transient of the network could be reduced
by training the network with constraints on the biases or the β

parameter of the batch-normalization layers.Table 1 summarizes
the error rates achieved by our SNNs using the methods
presented above, and compares them to previous work by other
groups.

3.4. Combination with Low-Precision
Models
The neurons in our spiking network emit events at a rate
proportional to the activation of the corresponding unit in
the ANN. Target activations with reduced precision can be
approximated more quickly and accurately with a small number
of spike events. For instance, if the activations are quantized into
values of {0, 0.1, 0.2, ..., 0.9, 1.0}, the spiking neuron can perfectly
represent each value within at most 10 time steps. On the other
hand, to approximate a floating-point precision number using 16
bit precision, the neuron in the worst case would have to be active
for 216 = 65536 time steps.

To demonstrate the potential benefit of using low-
precision activations when transforming a given model
into a spiking network, we apply the methods from section
2.2 to BinaryNet Courbariaux et al. (2016), a CNN where both
weights and activations are constrained to either {0,+1}, or
{−1,+1}. To obtain the binarized ANNs with these two sets
of activations, we train BinaryNet using the publicly available
source code Courbariaux et al. (2016) on two different activation
functions: First with a Heaviside activation function, and second,
with a signed activation function. The two binarized models are
then converted into spiking networks. Instead of interpreting
the negative activations of BinaryNet “sign” as negative firing
rates, we invert the sign of the spikes emitted by neurons with a
negative activation. To achieve this, we add a second threshold at
−1, where neurons can emit spikes of size −1 if the threshold is
reached from above.

By virtue of the quantized activations, these two SNNs are able
to approximate the ANN activations with very few operations
(see Figure 4). The BinaryNet SNNs already show an error
rate which is close to the ANN target error rates early in
the simulation, in fact as soon as the first output spikes are
produced. In contrast, in full-precision models (cf. Figures 3, 5),
the classification error rate starts at chance level and drops over
the course of the simulation, as more operations are invested.

The lowest error rate for our converted spiking CIFAR-10
models is achieved using BinaryConnect (Courbariaux et al.,
2015). This network is trained using full-precision weights in
combination with binarized weights. Either set of weights can
be used during inference. We test the resulting model with
both the binarized weights and the full-precision copy kept
during training (cf. Table 1). These results illustrate how spiking
networks benefit from and at the same time complement the
strengths of low-precision models.

8As our neuronmodel does not contain any time constant, this unit should be read

as “spikes per simulation time step” and is not related to spikes per wall-clock time.

Frontiers in Neuroscience | www.frontiersin.org 9 December 2017 | Volume 11 | Article 682

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Rueckauer et al. Spiking Network Conversion

FIGURE 4 | Classification error rate vs number of operations for the BinaryNet

ANN and SNN implementation on the complete CIFAR-10 dataset.

FIGURE 5 | Classification error rate vs number of operations for the LeNet

ANN and SNN implementation on the MNIST dataset.

4. DISCUSSION

This work presents two new developments. The first is a novel
theory that describes the approximation of an SNN firing
rates to its equivalent ANN activations. The second is the
techniques to convert almost arbitrary continuous-valued CNNs
into spiking equivalents. By implementing SNN-compatible
versions of common ANN CNN features such as max pooling,
softmax, batch normalization, biases and Inception modules, we
allow a larger class of CNNs including VGG-16 and GoogLeNet
Inception-V3 to be converted into SNNs. Table 1 shows that our
SNN results compare favorably to previous SNN results on all
tested data sets: (Cao et al., 2015) achieved 22.57% error rate
on CIFAR-10, albeit with a smaller network and after cropping
images to 24×24. With a similarly small network and cropped

images, (Hunsberger and Eliasmith, 2016) achieve 16.46% error
rate. Better SNN error rates to date have only been reported by
Esser et al. (2016), where an error rate of 12.50% was reported
for a very large network optimized for 8 TrueNorth chips, and
making use of ternary weights and multiple 1×1 network-in-
network layers. A smaller network fitting on a single chip is
reported to achieve 17.50%. In our own experiments with similar
low-precision training schemes for SNNs, we converted the
BinaryConnect model by Courbariaux et al. (2016) to 8.65% error
rate on CIFAR10, which is by far the best SNN result reported to
date.

In addition to the improved SNN results on MNIST and
CIFAR-10, this work presents for the first time, a spiking network
implementation of VGG-16 and Inception-V3 models, utilizing
simple non-leaky integrate-and-fire neurons. The top-5 error
rates of the SNNs during inference lie close to the original ANNs.
Future investigations will be carried out to identify additional
conversion methods that will allow the VGG-16 SNN to reach
the error rate of the ANN. For instance, we expect a reduction
in the observed initial transients of higher up layers within large
networks, by training the networks with constraints on the biases.

With BinaryNet (an 8-layer CNN with binary weights and
activations tested on CIFAR-10) (Courbariaux et al., 2016), we
demonstrated that low-precision models are well suited for
conversion to spiking networks. While the original network
requires a fixed amount of 1.23 GOps to classify a single frame
with average error rate of 11.57%, the SNN can be queried for
a classification result at a variable number of operations. For
instance, the average error rate of the SNN is 15.13% at 0.46
GOps (2.7x reduction), and improves further when investing
more operations. This reduction in operation count is due to
the fact that, first, activation values at lower precision can more
easily be approximated by discrete spikes, and second, zero
activations are natively skipped in the activity-driven operation
of spiking networks. In light of this, our work builds upon and
complements the recent advances in low-precision models and
network compression.

The converted networks highlight a remarkable feature of
spiking networks: While ANNs require a fixed amount of
computations to achieve a classification result, the final error rate
in a spiking network drops off rapidly during inference when an
increasing number of operations is used to classify a sample. The
network classification error rate can be tailored to the number
of operations that are available during inference, allowing for
accurate classification at low latency and on hardware systems
with limited computational resources. In some cases, the number
of operations needed for correct classification can be reduced
significantly compared to the original ANN. We found a savings
in computes of 2x for smaller full-precision networks (e.g.,
LeNet has 8 k neurons and 1.2 M connections), and larger low-
precision models (e.g., BinaryNet has 0.5 M neurons and 164
M connections). These savings did not scale up to the very
large networks such as VGG-16 and Inception-V3 with more
than 11 M neurons and over 500 M connections. One reason is
that each additional layer in the SNN introduces another stage
where high-precision activations need to be approximated by
discrete spikes. We show in Equation (5b) that this error vanishes

Frontiers in Neuroscience | www.frontiersin.org 10 December 2017 | Volume 11 | Article 682

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Rueckauer et al. Spiking Network Conversion

over time. But since higher layers are driven by inputs that
contain approximation errors from lower layers (cf. Equation
6), networks of increasing depth need to be simulated longer
for an accurate approximation. We are currently investigating
spike encoding schemes that make more efficient use of temporal
structure than the present rate-based encoding. Mostafa et al.
(2017) present such an approach where the precise spike time
is used to train a network to classify MNIST digits with a single
spike per neuron. Such a sparse temporal code clearly reduces the
cost of repeated weight fetches which dominates in rate-encoded
SNNs.

Finally, this conversion framework allows the deployment of
state-of-the-art pre-trained high-performing ANN models onto
energy-efficient real-time neuromorphic spiking hardware such
as TrueNorth (Benjamin et al., 2014; Merolla et al., 2014; Pedroni
et al., 2016).

AUTHOR CONTRIBUTIONS

BR developed the theory, implemented the methods, conducted
the experiments and drafted the manuscript. YH implemented

and tested the spiking max-pool layer. I-AL contributed to some
of the experiments. MP and S-CL contributed to the design of
the experiments, the analysis of the data, and to the writing of the
manuscript.

FUNDING

This work has been supported by the Samsung Advanced
Institute of Technology, University of Zurich and ETH
Zurich.

ACKNOWLEDGMENTS

We thank Jun Haeng Lee for helpful comments and discussions,
and the reviewers for their valuable contributions.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2017.00682/full#supplementary-material

REFERENCES

Benjamin, B. V., Gao, P., McQuinn, E., Choudhary, S., Chandrasekaran,

A. R., Bussat, J.-M., et al. (2014). Neurogrid: a mixed-analog-digital

multichip system for large-scale neural simulations. Proc. IEEE 102, 699–716.

doi: 10.1109/JPROC.2014.2313565

Cao, Y., Chen, Y., and Khosla, D. (2015). Spiking deep convolutional neural

networks for energy-efficient object recognition. Int. J. Comput. Vis. 113, 54–66.

doi: 10.1007/s11263-014-0788-3

Cassidy, A. S., Merolla, P., Arthur, J. V., Esser, S. K., Jackson, B., Alvarez-

Icaza, R., et al. (2013). “Cognitive computing building block: a versatile

and efficient digital neuron model for neurosynaptic cores,” in Proceedings

of the International Joint Conference on Neural Networks (Dallas, TX).

doi: 10.1109/IJCNN.2013.6707077

Chen, Y.-H., Krishna, T., Emer, J. S., and Sze, V. (2017). Eyeriss: an energy-efficient

reconfigurable accelerator for deep convolutional neural networks. IEEE J. Solid

State Circ. 52, 127–138. doi: 10.1109/JSSC.2016.2616357

Chollet, F. (2015). Keras (Version 2.0) [Computer software]. Available online at:

https://github.com/fchollet/keras

Courbariaux, M., Bengio, Y., and David, J.-P. (2015). “BinaryConnect: training

deep neural networks with binary weights during propagations,” in Advances

in Neural Information Processing Systems 28 (NIPS 2015) (Montréal, QC), 1–9.

Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., and Bengio, Y. (2016).

Binarized neural networks: training deep neural networks with weights and

activations constrained to +1 or -1. arXiv:1602.02830.

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S.-C., and Pfeiffer, M.

(2015). “Fast-classifying, high-accuracy spiking deep networks through

weight and threshold balancing,” in Proceedings of the International

Joint Conference on Neural Networks (Killarney). doi: 10.1109/IJCNN.2015.

7280696

Diehl, P. U., Pedroni, B. U., Cassidy, A., Merolla, P., Neftci, E., and Zarrella, G.

(2016). “TrueHappiness: neuromorphic emotion recognition on TrueNorth,”

in Proceedings of the International Joint Conference on Neural Networks

(Vancouver, BC), 4278–4285. doi: 10.1109/IJCNN.2016.7727758

Esser, S. K., Arthur, J. V., Merolla, P. A., Modha, D. S., and Appuswamy, R. (2015).

“Backpropagation for energy-efficient neuromorphic computing,” in Advances

in Neural Information Processing Systems 28 (NIPS 2015) (Montréal, QC), 1–

9. Available online at: http://papers.nips.cc/paper/5862-backpropagation-for-

energy-efficient-neuromorphic-computing

Esser, S. K., Merolla, P. A., Arthur, J. V., Cassidy, A. S., Appuswamy,

R., Andreopoulos, A., et al. (2016). Convolutional networks for fast,

energy-efficient neuromorphic computing. Proc. Natl. Acad. Sci. U.S.A. 113,

11441–11446. doi: 10.1073/pnas.1604850113

Farabet, C., Paz, R., Pérez-Carrasco, J., Zamarreño-Ramos, C., Linares-Barranco,

A., LeCun, Y., et al. (2012). Comparison between frame-constrained fix-pixel-

value and frame-free spiking-dynamic-pixel convNets for visual processing.

Front. Neurosci. 6:32. doi: 10.3389/fnins.2012.00032

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The SpiNNaker

project. Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Gokhale, V., Jin, J., Dundar, A., Martini, B., and Culurciello, E. (2014). “A 240 G-

ops/s mobile coprocessor for deep neural networks,” in IEEE Computer Society

Conference on Computer Vision and Pattern RecognitionWorkshops (Columbus,

OH), 696–701. doi: 10.1109/CVPRW.2014.106

Horowitz,M. (2014). “Computing’s energy problem (andwhat we can do about it),”

inDigest of Technical Papers IEEE International Solid-State Circuits Conference,

Vol. 57 (San Francisco, CA), 10–14. doi: 10.1109/ISSCC.2014.6757323

Hu, Y., Liu, H., Pfeiffer, M., and Delbruck, T. (2016). DVS benchmark datasets

for object tracking, action recognition, and object recognition. Front. Neurosci.

10:405. doi: 10.3389/fnins.2016.00405

Hunsberger, E., and Eliasmith, C. (2016). Training spiking deep networks for

neuromorphic hardware. arXiv:1611.05141.

Ioffe, S., and Szegedy, C. (2015). Batch normalization: accelerating deep network

training by reducing internal covariate shift. arXiv:1502.03167.

Kiselev, I., Neil, D., and Liu, S. C. (2016). “Event-driven deep neural

network hardware system for sensor fusion,” in Proceedings - IEEE

International Symposium on Circuits and Systems (Montréal, QC), 2495–2498.

doi: 10.1109/ISCAS.2016.7539099

Krizhevsky, A. (2009). Learning Multiple Layers of Features from Tiny Images.

Technical Report, University of Toronto.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “ImageNet classification

with deep convolutional neural networks,” in Advances in Neural Information

Processing Systems (Lake Tahoe, NV), 1–9.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). “Gradient-based learning

applied to document recognition,” in Proceedings of the IEEE (IEEE), Vol. 86,

2278–2323.

Lee, J. H., Delbruck, T., and Pfeiffer, M. (2016). Training deep spiking

neural networks using backpropagation. Front. Neurosci. 10:508.

doi: 10.3389/fnins.2016.00508

Frontiers in Neuroscience | www.frontiersin.org 11 December 2017 | Volume 11 | Article 682

https://www.frontiersin.org/articles/10.3389/fnins.2017.00682/full#supplementary-material
https://doi.org/10.1109/JPROC.2014.2313565
https://doi.org/10.1007/s11263-014-0788-3
https://doi.org/10.1109/IJCNN.2013.6707077
https://doi.org/10.1109/JSSC.2016.2616357
https://github.com/fchollet/keras
https://doi.org/10.1109/IJCNN.2015.7280696
https://doi.org/10.1109/IJCNN.2016.7727758
http://papers.nips.cc/paper/5862-backpropagation-for-energy-efficient-neuromorphic-computing
http://papers.nips.cc/paper/5862-backpropagation-for-energy-efficient-neuromorphic-computing
https://doi.org/10.1073/pnas.1604850113
https://doi.org/10.3389/fnins.2012.00032
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1109/CVPRW.2014.106
https://doi.org/10.1109/ISSCC.2014.6757323
https://doi.org/10.3389/fnins.2016.00405
https://doi.org/10.1109/ISCAS.2016.7539099
https://doi.org/10.3389/fnins.2016.00508
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Rueckauer et al. Spiking Network Conversion

Liu, S.-C., Delbruck, T., Indiveri, G., Douglas, R., and Whatley, A. (2015). Event-

Based Neuromorphic Systems. Chichester, UK: John Wiley & Sons, 440.

Masquelier, T., and Thorpe, S. J. (2007). Unsupervised learning of visual

features through spike timing dependent plasticity. PLoS Comput. Biol. 3:e31.

doi: 10.1371/journal.pcbi.0030031

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J.,

Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with

a scalable communication network and interface. Science 345, 668–673.

doi: 10.1126/science.1254642

Mostafa, H., Pedroni, B. U., Sheik, S., and Cauwenberghs, G. (2017). “Fast

classification using sparsely active spiking networks,” in ISCAS.

Neftci, E., Das, S., Pedroni, B., Kreutz-Delgado, K., and Cauwenberghs, G. (2014).

Event-driven contrastive divergence for spiking neuromorphic systems. Front.

Neurosci. 7:272. doi: 10.3389/fnins.2013.00272

Neil, D., and Liu, S.-C. (2014). Minitaur, an event-driven FPGA-based spiking

network accelerator. IEEE Trans. Very Large Scale Integr. Syst. 22, 2621–2628.

doi: 10.1109/TVLSI.2013.2294916

Neil, D., Pfeiffer, M., and Liu, S.-C. (2016). “Learning to be efficient: algorithms

for training low-latency, low-compute deep spiking neural networks,” in

Proceedings of the 31st Annual ACM Symposium on Applied Computing (Pisa),

293–298. doi: 10.1145/2851613.2851724

Nessler, B., Maass, W., and Pfeiffer, M. (2009). “STDP enables spiking neurons

to detect hidden causes of their inputs,” in Advances in Neural Information

Processing Systems, Vol. 22 (Vancouver, BC), 1357–1365.

O’Connor, P., Neil, D., Liu, S. C., Delbruck, T., and Pfeiffer, M. (2013). Real-

time classification and sensor fusion with a spiking deep belief network. Front.

Neurosci. 7:178. doi: 10.3389/fnins.2013.00178

Orchard, G., Lagorce, X., Posch, C., Furber, S. B., Benosman, R., and Galluppi,

F. (2015a). “Real-time event-driven spiking neural network object recognition

on the SpiNNaker platform,” in Proceedings - IEEE International Symposium

on Circuits and Systems (Lisbon), 2413–2416. doi: 10.1109/ISCAS.2015.

7169171

Orchard, G., Meyer, C., Etienne-Cummings, R., Posch, C., Thakor, N.,

and Benosman, R. (2015b). HFirst: a temporal approach to object

recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37, 2028–2040.

doi: 10.1109/TPAMI.2015.2392947

Pedroni, B. U., Das, S., Arthur, J. V., Merolla, P. A., Jackson, B. L.,

Modha, D. S., et al. (2016). Mapping generative models onto a network

of digital spiking neurons. IEEE Trans. Biomed. Circ. Syst. 10, 837–854.

doi: 10.1109/TBCAS.2016.2539352

Perez-Carrasco, J. A., Zhao, B., Serrano, C., Acha, B., Serrano-Gotarredona, T.,

Chen, S., et al. (2013). Mapping from frame-driven to frame-free event-driven

vision systems by low-rate rate coding and coincidence processing - application

to feedforward convNets. IEEE Trans. Pattern Anal. Mach. Intel. 35, 2706–2719.

doi: 10.1109/TPAMI.2013.71

Posch, C., Serrano-Gotarredona, T., Linares-Barranco, B., and Delbruck, T. (2014).

Retinomorphic event-based vision sensors: bioinspired cameras with spiking

output. Proc. IEEE 102, 1470–1484. doi: 10.1109/JPROC.2014.2346153

Rueckauer, B., and Delbruck, T. (2016). Evaluation of event-based

algorithms for optical flow with ground-truth from inertial

measurement sensor. Front. Neurosci. 10:176. doi: 10.3389/fnins.2016.

00176

Rueckauer, B., Lungu, I.-A., Hu, Y., and Pfeiffer, M. (2016). Theory and tools

for the conversion of analog to spiking convolutional neural networks.

arXiv:1612.04052.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015).

ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115,

211–252. doi: 10.1007/s11263-015-0816-y

Serrano-Gotarredona, T., Linares-Barranco, B., Galluppi, F., Plana, L., and

Furber, S. (2015). “ConvNets experiments on SpiNNaker,” in Proceedings -

IEEE International Symposium on Circuits and Systems (Lisbon), 2405–2408.

doi: 10.1109/ISCAS.2015.7169169

Simonyan, K., and Zisserman, A. (2014). “Very deep convolutional networks for

large-scale image recognition,” in ICLR (Banff, AB), 1–14.

Stromatias, E., Neil, D., Galluppi, F., Pfeiffer, M., Liu, S. C., and Furber,

S. (2015). “Scalable energy-efficient, low-latency implementations of

trained spiking Deep Belief Networks on SpiNNaker,” in Proceedings

of the International Joint Conference on Neural Networks (Killarney),

1–8. doi: 10.1109/IJCNN.2015.7280625

Stromatias, E., Soto, M., Serrano-Gotarredona, T., and Linares-Barranco,

B. (2017). An event-driven classifier for spiking neural networks fed

with synthetic or dynamic vision sensor data. Front. Neurosci. 11:350.

doi: 10.3389/fnins.2017.00350

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al.

(2015). “Going deeper with convolutions,” in 2015 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR) (Boston, MA: IEEE), 1–9.

doi: 10.1109/CVPR.2015.7298594

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2016).

“Rethinking the inception architecture for computer vision,” in IEEE

Conference on Computer Vision and Pattern Recognition (Las Vegas, NV).

doi: 10.1109/CVPR.2016.308

Zambrano, D., and Bohte, S. M. (2016). Fast and efficient asynchronous neural

computation with adapting spiking neural networks. ArXiv:1609.02053.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

The reviewer, SS, and handling Editor declared their shared affiliation.

Copyright © 2017 Rueckauer, Lungu, Hu, Pfeiffer and Liu. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 12 December 2017 | Volume 11 | Article 682

https://doi.org/10.1371/journal.pcbi.0030031
https://doi.org/10.1126/science.1254642
https://doi.org/10.3389/fnins.2013.00272
https://doi.org/10.1109/TVLSI.2013.2294916
https://doi.org/10.1145/2851613.2851724
https://doi.org/10.3389/fnins.2013.00178
https://doi.org/10.1109/ISCAS.2015.7169171
https://doi.org/10.1109/TPAMI.2015.2392947
https://doi.org/10.1109/TBCAS.2016.2539352
https://doi.org/10.1109/TPAMI.2013.71
https://doi.org/10.1109/JPROC.2014.2346153
https://doi.org/10.3389/fnins.2016.00176
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/ISCAS.2015.7169169
https://doi.org/10.1109/IJCNN.2015.7280625
https://doi.org/10.3389/fnins.2017.00350
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2016.308
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Conversion of Continuous-Valued Deep Networks to Efficient Event-Driven Networks for Image Classification
	1. Introduction
	2. Methods
	2.1. Theory for Conversion of ANNs into SNNs
	2.1.1. Membrane Equation
	2.1.2. Firing Rates in Higher Layers

	2.2. Spiking Implementations of ANN Operators
	2.2.1. Converting Biases
	2.2.2. Parameter Normalization
	2.2.2.1. Normalization with biases
	2.2.2.2. Robust normalization

	2.2.3. Conversion of Batch-Normalization Layers
	2.2.4. Analog Input to First Hidden Layer
	2.2.5. Spiking Softmax
	2.2.6. Spiking Max-Pooling Layers

	2.3. Counting Operations

	3. Results
	3.1. Contribution of Improved ANN Architectures
	3.2. Contribution of Improved SNN Conversion Methods
	3.3. ImageNet
	3.3.1. Transient Dynamics and Voltage Clamp

	3.4. Combination with Low-Precision Models

	4. Discussion
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

