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Formulas are derived for converting the relative enthalpy, heat capacity, entropy, and Gibbs
energy {rom the basis of one practical temperature scale to the basis of another, when these properties
on either scale have been derived from calorimetric measurements of enthalpy as though that scale
were the thermodynamic one. These formulas are directly applicable for converting certain other
properties as well, The conversion relates the values of the property at the same numerical tempera-
ture on both scales. The formulas, given as exact infinite series, are applicable to widely differing
scales, one of which may vary linearly with a temperature-measuring quantity such as electrical
resistance. However, great simplification is well within most calorimetric accuracy when the conver-
sion is from the International Practical Temperature Scale of 1948 to the corresponding scale of 1968,
which has recently replaced it, provided the heat capacity is not changing abnormally rapidly, as in
a transition region. For convenient application to conversion between these two scales, relatively
simple numerical equations are derived giving the differences between the two scales at temperatures
from 90 K to 10,000 K. The problem of avoiding the introduction of discontinuities with temperature
in converted tables, arising from the existing discontinuities in the temperature derivative of the
differences between the two scales, is discussed.,

Key words: Existing property tables; IPTS-48; IPTS—68; practical-scale differences; temperature-
scale conversion: thermodynamic properties.

1. Introduction

The International Practical Temperature Scale of 1968 (“IPTS-68") was adopted in 1968
[1]! as a replacement for the corresponding scale of 1948 (amended edition of 1960) (“IPTS-48").
The IPTS—68 serves the same general purposes as the [PTS-48, but better: its specification is
more consistent with current experimental capabilities for reproducing temperature, it more
closely approximates the thermodynamic teinperature scale, and it extends the temperature range

downward (from approximately 90 K in the IPTS-48 to approximately 14 K in the IPTS-68).

The great preponderance of quantitative macroscopic properties of matter vary appreciably
with temperature. As a consequence, it will be of interest and concern as to the extent to which
numerous existing values of these properties, expressed in reference to temperatures on the
IPTS—48 or an earlier scale, would change if referred to temperatures on the IPTS—68. In the case
of the most accurate values it will be desirable to make the actual conversion— for the sake of
future consistency, for facilitating direct comparison with future values expressed in reference
to the IPTS-68, and for better thermodynamic accuracy when this is significant. In what will
undoubtedly be the more common case of less accurate values, one will want to know the magni-
tudes of the errors neglected if such a conversion is not made. Incidentally, tables of thermody-
namic properties of ideal gases derived statistical-mechanically from molecular-constant data

! Figures in brackets indicate the literature references at the end of this paper.
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are based on the thermodynamic temperature scale (as well as on the values of the physical con-
stants used), and are hence independent of any practical temperature scale.

This article is limited to a consideration of the more common thermodynamic properties de-
rived from calorimetric data—enthalpy, heat capacity, entropy, and Gibbs (free) energy— with
particular attention to the substitution of the IPTS—68 for the IPTS—48 as a temperature basis.
The differences between these two scales (listed numerically in table 4 of this article) are not so
large but that very simple procedures which have been previously used.? and which are virtually
self-evident, are adequate within the accuracy of most existing calorimetric data. However, it
seems worthwhile to outline systematically the rigorous conversion procedures, which may be
required not only in regions of sharp transitions but also in those cases where the correction
terms are large, as when one is converting from an arbitrary temperature scale such as one related
very simply (for convenience) to thermometer resistance, thermocouple electromotive force, or
radiative brightness.

In section 2, conversion formulas (exact as infinite series) are derived for converting the
thermodynamic properties named above to the basis of a new temperature scale. in terms of the
difference between the two scales as a continuous function of temperature. The thermodynamic
properties are assumed to be based on experimental measurements of enthalpy increments that
span the entire temperature range of interest. Thus the correction to be applied to an enthalpy
increment involves merely associating it with different boundary temperatures, but the correc-
tions to the properties derived from the enthalpy (heat capacity, entropy, ete.) involve in addition
what is essentially a repetition of the differentiation or integration as if the new temperature
scale, not the old, corresponds to true thermodynamic temperatures. The formulas derived convert
the properties at a given temperature on the old scale to those at the same numerical value of
temperature on the new scale, thus preserving the “round” temperature values of most tables.
When, instead, it is desired to make conversion to a fixed-point temperature whose values are
different on the two scales, the additional step simply involves the variation of the given property
with temperature on one of the scales, and can be readily carried out by standard thermodynamic
procedures.

Some non-calorimetric properties may be converted to the basis of the new temperature scale
using the same formulas derived in this article. For example, if the linear coefficient of thermal
expansion is defined as (1/1) (dl/dt). then this coefficient or In [ can replace C,, or H. respectively.

In section 2.5 it is shown what modifications are needed when extrapolation of calorimetric
data to 0 K has been effected by such means as the well-known 73" law. Simple approximate
correction formulas, obtained by dropping all terms of the exact infinite series that are of no
practical value when the conversion is from the IPTS-48 to the IPTS-68 and outside sharp-
transition regions, are given in section 2.6.

In section 3, a numerical equation giving the difference between the IPTS—68 and the IPTS—48
(Tes—Tss, or tes—tss) as a function of temperature is derived for each of the four temperature
ranges above the oxygen boiling point (approximately 90 K) that are defined separately by the
IPTS—68. Values of Tss—Tss and its first temperature derivative, calculated from these equations,
are tabulated up to 10,000 K in section 3.6, for use in the formulas of section 2; the values of
Tis—Tas(= tes—tss) agree perfectly with a recently published tabulation [1]. Though the IPTS-68
is defined from 13.81 to 90.188 K, the IPTS—48 was not, so the two scales cannot be compared in
this temperature range. (Tentative differences in this range between the IPTS-68 and each of
four ““national” scales are being published, but it is stated that these differences may undergo
changes of up to several millikelvins when the national scales are finally compared accurately to
the IPTS-68[3].)

The first temperature derivative of Tgss—7's5 is continuous at the ice point (0°C), but has sharp
discontinuities at the *‘antimony”™ and gold points (approximately 631 and 1064 °C) which will

* E.g., several years ago the author derived corrections to convert the thermodynamic properties of mercury from the basis of practical temperature scales 1o
what was at that time regarded as the best available approximation to the scale of thermodynamic temperatures 2.
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introduce corresponding small discontinuities at these temperatures into a heat capacity-tempera-
ture function that has previously been smoothed. This problem is discussed in section 3.5. where
suggested *“*smoothing” equations to eliminate these discontinuities are derived.

2. Derivation of General Conversion Formulas
2.1. Enthalpy (H)

The conversion formula derived in this section for enthalpy (and those derived in sections
2.2-2.6 for other properties as well) are for clarity expressed specifically in terms of conversion
from the IPTS—-48 to the IPTS-68. Because these formulas (in sections 2.1-2.5) are exact, any
other pair of continuous temperature scales may be used instead. For example, one of these scales
might be defined as some linear function of thermometer resistance or thermocouple electromotive
force.

The formulation is given in terms of what is now called the International Practical Kelvin
(absolute) temperature (7T'), which is numerically greater than the International Practical Celsius
temperature (t) by 273.15. This constant was adopted for the IPTS-68 [1], and for the IPTS-48
in 1954. (Between 1948 and 1954 this constant was not officially defined. but was usually taken
as 273.16.) Thus we shall always use

Tes=tes+273.15 (1)
and

T.;x:f.w+2?3.15. (2)

designating the value of the temperature on either IPTS as Kelvin or Celsius interchangeably as
may prove convenient,

We shall often find it convenient to refer specifically to a pair of temperatures ® (referred to
as temperatures 1 and 2 and symbolized by single prime and double prime, respectively), and
consider the case of converting the enthalpy (or any other property) from its value on the basis of
the IPTS—48 at temperature 1 to its value on the basis of the IPTS—68 at temperature 2. As stated
in the introduction (sec. 1), these two temperatures will be related to each other such that numerically

Tgs=T4- (3)

Since such thermodynamic properties as enthalpy cannot be assigned absolute values and there-
fore are usually expressed numerically as the magnitude in excess of the enthalpy at a reference
temperature, it will be convenient to use the symbol H to represent this relative enthalpy. Because
it simplifies the treatment, the reference temperature is to be restricted to one having the same
value on both temperature scales (e.g.. 273.16 K, but not 298.15 K). The situation under discus-
sion may be clarified somewhat by reference to figures 1 and 2, which are schematic and are not
to be taken as implying a given sign or magnitude of (T — Tis) or (T —Ths).

The relative enthalpy will be assumed to be given by heat measurements at constant pres-
sure, but it will be convenient to omit the indication of the constancy of pressure from derivatives
of enthalpy. The lack of both a single and a double prime will imply a temperature unspecified in
relation to temperatures 1 and 2. For convenience we shall abbreviate according to the further
definitions:

C8 = dH|dTss; (4)
C18 = dH|[dTs: (5)
= (Tss) ] = Tes— Ty at a given temperature. (6)

1 Subsequent use of the word “temperature” instead of “temperature value™ is restricted to mean “hotness.”
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FIGURE 1. Schematic example illustrating the relation of T\ and . : : ! : .
Ty to “Fotness FIGURE 2. Schematic example illustrating the conventions used in
converting relative enthalpy (H) from the basis of one temperature
(The thermodynamic or any other temperature scale whose temperature values scale (e.g., Tis) to that of another scale (e.g., Tis).
continually increase with increasing “hotness” may be used as a quantitative measur
of “hotness.”) H' (at Ti) 15 converted to H'' (at 144).

In more specific form for future reference, eq (6) can of course be written

,(L'=T;5H_T-;H (7}
or

#" = Ts — Tis. (8)
From eq (3) and (8),

u'=Tis—Th. )
From eq (6),

dT.m_ n dﬂ-

dTes = dle’ i
and therefore

1
dTﬂH:_—d}J‘- ll 1]
dw 1-gp

The Taylor expansion of H(T,s) about H' is [remembering eq (5)]

(12)

S 2048\ !
H=H'+ (Ta=Th) (C)'+3 (Tu=Th)* (Go) 43 )=

- _T' 3
T e (T —Tis) a7

Substituting H" for H and Tis for Tss in eq (12), then replacing (T — Tis) from eq (9). gives the
desired enthalpy correction 8H,
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1
SH:HH_H1=_#»(C},H)(+§ ('uu)z(

dC'}f‘)' 1 (a”C*F ) 4 (13)

e LAY
aT) ~6 W\ g,

Equation (13) is in a convenient form: H and its derivatives with respect to Tys are presumed
known (or evaluable) at the round value of temperature Tys= Tis, whereas u is assumed to be
known as a function of T and so can readily be evaluated at the temperature where Tys= Ty
(=T"), also a round value of temperature.

Equation (13) is exact (as an infinite series). However. of the rhs (right-hand side). only the
first term is. usually. not negligible in practice (see sec. 2.6).

Reverting temporarily to the usual definition of the symbol H as representing absolute enthalpy
al some one temperature, let us exemplify enthalpy relative to that at a temperature where
w# 0 by H—Hausys. Obviously 8 (H — Hous5) = 8(H —H:) — 8(Haus s — H,) . Each of the two terms
of the right-hand side be evaluated separately from eq (13) with reference to a temperature ¢
(say, 0 K) where p=10.

2.2 Heat Capacity (C,)

The Taylor expansion of heat- capacity as a function of Ty about (C¥)' is [after replacing

CH# by (C#). Ty by Tis . and then (T{ — T ) from eq (9)]

7= (08— (30 e (£ |
(Er=(ovii=pi(Gr] 5w o) = (14)
From eq (4), (5), and (11),
: 1
(CH)"= (C)" (15)

() |
H‘THH

Substituting for (C#)" from eq (15) into eq (14) and then solving for (C#)"— (C}¥)" gives the desired
heat-capacity correction 8Cp.

e .:m)" [ _(u‘.',u.)"] [_ : M) 1 ,,__,(f;-’(;}ﬁ)*_ ]
dCr= (CPF)"— (CF) T (CF)' +]1 aT “\iT +5 (1) am )

(16)

= F e Tac § =] (!p' /
< 1, so that the factor [] (dTriM ) ]

Equation (16) is exact (as an infinite series). In practice,

dT

dp
Lt

may be replaced by 1 (approximate).

2.3. Absolute “Third-Law” Entropy (S)

We wish to find the equivalent of (S%%)"— (S§'%)', each term of which is taken to represent
entropy relative to that at 0 K (absolute entropy if the Third Law of Thermodynamics holds) and is
evaluated from the enthalpy data at its respective indicated temperature value on the assumption
that the respective indicated IPTS represents the thermodynamic temperature.

Since both (S%)" and (S*%)" involve integration down to 0 K. it is convenient to formulate
them separately, then take the difference. Consider dS% and dS** over a definite infinitesimal
temperature range, dff being a fixed experimentally determined quantity. Then

. dH
dSHf=- . (17)
and
dH
dS48 =, (18)
18
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Replacing dH from eq (5) and Tsx from eq (6). eq (17) becomes

CH
T.m"’ i

1565 — ( ) AT,

Integrating eq (19).

(s'*)":l_m( B ) T+ (59— (5%

T.;g"’,u.
Similarly using eq (5). the integration of eq (18) gives

T C48

TARY ! —
{b ) i T-IN

dTys.

Subtracting eq (21) from eq (20).

T IJ-C :"NdT4 5

BB Q4B — e o S L
{S } (S J 0 TJH(T4H+.|!L}

< [Slix]"_ {S!ix) k

(19)

(20)

(21)

(22)

(8§9%)"— (§*%)" is the desired correction (= 8S). but it remains (a) to formulate p(7s5) from
the presumably known w(7Tss) for use in eq (22). and (b) to substitute for (S%%)"— (859" in terms
of known quantities, remembering that S and its derivatives with respect to T4y are known at

Tiw=Tis, whereas p and its derivatives with respect to Ty are known at Tys=T¢x, numerically

the same value of temperature.
Expanding p(T4s) about p”. then setting u=pu'.

r " r L] f I' ]‘ r n &> "'2 ff
e = + (Tis— 4:4:'( 2 ) +§[T4H_T-IH)'('{"_&) sz s s

dT e dT3,

Substituting from eq (9), eq (23) gives

] " {1# " I " ‘12“ )”
= +=(u")? S
=k [ I+(dT4u) } p (W) (,rra,,
Using eq (11). we can write
dp
f!'j.l- _ l‘!j..l. f!T(iH: ({Tm“
(.’T.m . e‘!T!;s rr‘T;H ] . d,u i
dTnn
Differentiating eq (25) with respect to Tyy gives
d*u
d* _ dl s
dT3 (1__12'&):;.
dT gy

Substituting from eq (25) and (26) for the derivatives in eq (24) gives

1( d*u )"(#,.}2
”Lr: nu‘ +2 ({TNF:;N : g

(i) () |
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We are assuming p to be available in the form p(7%s). Consider any given value of Ty in the
integrand of eq (22); if we temporarily call it T (not to be confused with the T, which forms the
upper limit of integration). then the w to be associated with it is. of course. w at Tys=T34. or u'.
This p' can be obtained from eq (27), since. in view of eq (3). the corresponding p" is p at
Tss=Tgs=Tis. Hence the g to use in the integrand of eq (22) is ' of eq (27). where p” and its
derivatives with respect to T are evaluated, with T4 then replaced by Tys. Expressed more
concisely, where  designates a definite function defined by the rhs of eq (27):

w =T

(28)
,U(Tla) = (Tis).
Although eq (27) as an infinite series is exact, in practice ";,_ <l.u %:ii < 1. ete.. so that
m=ul (29)

Turning to the formulation of (§%%)"— (S8%%)" [needed in using eq (22)]. let us expand S*%(7'4x)
about (S%)". Then successively replacing S% by (5%%)", Tys by 1. and Tis— T4 from eq (9),
we get

TERY T (QBBY — " JS“H)' T 7 2((12868)1'_
(S ERN— (S8 I (__thm +2(4u ) dT L 30)

From eq (19)
ds8%s P

l’l‘T.m_ T4H+ L X {31]
and differentiating eq (31).
d*S% _ ( I ) acy — Cp ( 1+ pr,_)
ﬂ"T'iu T.1H+,U. (}'T.m [T.pn‘f‘j.l.].‘! n‘fT“; ’ [.‘;ZI
From eq (25).
du 1 -
l+dT“~7l 3 (33)
i‘”‘im
Equations (31)-(33) convert eq (30) into
JERY M [ CBR '=_#”(C?’H)r _%,u-n é{#")z (d(‘l#;)r+ 3_1.
=G T;,,+u'|l+ T T T P bl o
[ -in+ﬂ--| I= dT e

Finally. substituting for (S%%)"— (S%%)" into eq (22) from eq (34) gives the desired entropy correc-
tion 8S.

o ; _H o " ‘,H ’ a e
BSz (};"“_)”_(AS'IH]P=—J’T ?‘uf; d‘il }_’;’“{(—"j }' 1+ E.u' I -
0 asl Ly K 48T M [Tjg-l‘;.l.'][]—(-i'#—) ]
dTw
(p")? (d(f?-” )
+Tia+ﬂ~' dT s dd oo (35)

where. if eq (29)is not a sufficiently good approximation, u(7ys) in the integrand can be evaluated

du
(IT(.;H

as p' from eq (27) [in view of eq (28)]. and where p” and ( ) can also be found from eq (27).
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The contribution of any first-order process (such as a heat of transition. fusion, or vaporization)
to C#8dT s in eq (35) is indeterminate, and must be replaced by dH, whose integral is the heat of
that process.

Equation (35) as an infinite series is exact, but it does assume calorimetric evaluation of
CH(Tys) all the way down to 0 K. When this assuription is invalid, see section 2.5.

2.4. Other Thermodynamic Functions

The other thermodynamic functions commonly used in chemical thermodynamics can be
readily converted from the basis of one temperature scale to that of another using the corrections
found above (secs. 2.1 and 2.3) for the enthalpy. H. and the absolute entropy. S. For example,
consider the enthalpy function H/T, more explicitly written (Hy—H,)/T when H is understood
to represent the enthalpy at temperature T relative to the enthalpy at absolute zero. Using eq (3)
and our previous notation, the correction 6(H/T) is given by

T

H H' H' H'-H'
5 ( ):"n __r:7: L
ff;ﬁ T-IH 44 80

or simply the correction to the enthalpy. divided by the value of the Kelvin temperature. The
correction 8G to the Gibbs energy is given by

8G= (G*)"— (G**) "= [H"—Tis(S%*)"] —[H' —T1s(S*¥) ' | =H"—H' —Tis[(S%%)"— (5*%)"].
(37)

where H and G are both understood to be relative to the enthalpy H at some one temperature
which has the same value on both temperature scales. The correction 8(— G/T) to the “free-energy
function”™ — (Gy—H,)|T. when the latter is abbreviated to — G/T, is analogous to eq (36):

’ AT Tar LAl TEBY W (a8 !
a(—9)=[—”’%]—[—“',) }Z_W' ={ee] (38)

T (it} 48 ’48

where — [ (G®%)"— (G**) "] is given by eq (37).

2.5. Modifications of Conversion Procedure when Significant Extrapolation to 0 K was Made Using
a Theoretical Relation

In evaluating thermodynamic functions based on 0 K. the heat capacity is measured to as
low a temperature as practical and then extrapolation to 0 K is carried out on some more or less
simple theoretical basis. The following treatment of the conversion to the basis of a new tempera-
ture scale will be exemplified by the use of the simple “T%" law. If the extrapolation has been from
such a low temperature that the heat capacity at all lower temperatures is very small, the modifica-
tions are of little importance. However, a great many heat-capacity investigations have involved
experimental measurements only down to the triple point of nitrogen (or oxygen), and it is desirable
to know whether the required modifications are significant in preserving a given degree of accuracy,

The “T%" law gives for the fundamental thermodynamic properties

(Cp)r=cT? (39)
i e B ;
Hy—Hy= (C;:)?-rfl":i f'T'ZZ (Cp)rT (40_}
= " (Cp)y e ) 5
.sv,-:f” (—.;.idTZE('T"=:3[Cp}-;- (41)
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where the constant e is dependent on the substance involved. Equation (41) as written assumes
the validity of the Third Law of Thermodynamies in the case in question.
According to the Debye theory the constant ¢ is given by

12 :
c==mR[6} (42)

per gram-atom, where 8 is the Debye characteristic temperature. However. ¢ is rarely evaluated
from eq (42) independently of the heat-capacity data, because the “T%" law expressed by eq (39)
and (42) is only approximate: for any given substance the value of 65, depends on the property from
which it is derived. It also varies with temperature when derived from a given property such as
heat capacity. and the 7% law may “fail” well below the highest temperature at which it is
desired to apply eq (39).

Let us use the T in eq (39)-(41) to represent the temperature on any scale assumed to be the
thermodynamic one. In what follows it will be assumed that extrapolation to 0 K using the “7%"
law was from a temperature a which is 7%, on the IPTS-48 and 7'¢, on the IPTS-68, that measure-
ments of enthalpy giving heat capacity are available at the temperatures above temperature a,
and that a temperature b (where Tw=TY% and Ty=T2,) is such that T8, = T4, [analogous to eq
(3)]. As before, it is desired to find the correction converting a thermodynamic property on the
basis of IPTS—48 and at T,x=T', to the basis of IPTS=68 and at Tyy=T},=T,,. where T, = T,
and Tf, = T, The temperature ranges of interest are represented by these various symbols in the
schematic diagram of figure 3. It will be assumed that ¢ is assigned values such that the heat
capacity given by eq (39) agrees with the experimental value of (C{#)® if IPTS—-48 is the basis,
and with that of (C§8)? if IPTS-68 is the basis.
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Firvure 3. Temperature ranges of interest when extrapolation to () K was
muade using a theoretical relation {schematic).

As before, the desired correction to the enthalpy (this time specified to be relative to that a
0 K) is H"—H', which can be found as the sum of the corrections to the enthalpy increment above
Tt.( or T%,) and the correction to the enthalpy increment below this temperature:

SH=H"—H'= [(H"—H')— (H*—H")]+ [H*—H"]. (43)

The two parenthesized terms of eq (43) are separately calculable from eq (13). using the heat-
capacity data on the IPTS-48 and (7). The second bracketed term in eq (43) is, from eq (40),

[f h_Hﬂ] z%{CI"i.ﬂ)bT?‘H _%{C}l,&) dT:!H

U Ok ()

since Th,=T%, - [(C8¥)t— (C#¥)7] is derivable from eq (16) after replacing temperatures 1 and 2
by a and b respectively.
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There is no modification to the heat capacity correction [(C88)”"—(C#)’] given by eq (16)
(T =Tl and Ti = T1,). since the heat capacity in the experimental range is assumed to depend
on temperature only in the manner observed experimentally.

As before, the desired correction to the entropy (taken as zero at 0 K because the Third Law
of Thermodynamics is assumed) is (§%%)"— (548)’, and

58 = (Sﬁa'l)"_ (S‘”)' — [(533]"_ (Ssa)n]
—[(S"s)’—(S“‘)“]-I-[(S"”}“—(S“}"]. (45)

From eq (9) (with subscripts changed correspondingly),
T8y=T4— u®. (46)
If eq (20) is modified by replacing the lower limit of integration by Tl. given by eq (46). it becomes

(Sﬁs)"_ (S‘ﬁ&)h: & (_C}".H_) dTu+ (S‘Ba'}"._ (S!i!'l) 47
' Th—p T43+.u- " ’ ’ (%0)

where (8%)"— (S%)' is given, as before, by eq (34). Similarly, modifying the lower integration
limit to 79, eq (21) becomes

Fix 8
= [(S"“‘)’—(S“”)"]:—f o dT . (48)
T Ty
From eq (41),
[(S5%) 0= (S**) ] =3 [(C#)*— (CIH)“], (#9)

where [C88)b— (C48)%] can be found from eq (16) for the two temperatures involved. The sub-
stitution from eq (47)—(49) into the last member of eq (45) then gives the desired entropy correction.

2.6. Approximate Conversion Formulas

Instead of using eq (13), (16), and (35) (or those in sec. 2.5) the enthalpy, heat capacity, and
entropy may be corrected by the much simpler but approximate formulas below with sufficient
accuracy for most purposes—even for the most accurate data except in the case of sharp transi-
tions, and except possibly at very low temperatures. It should be realized, however, that the
approximate formulas of this section may not be sufficiently accurate when applied to two tem-
perature scales differing more widely from each other than the IPTS-48 and IPTS-68: in such
cases, additional terms of the exact equations of the preceding sections are needed. Incidentally,
it is well to point out that when the enthalpy data are sufficiently precise to justify the higher-
order correction terms containing temperature derivatives of the heat capacity, it will often be
simpler instead to repeat the treatment of the original unsmoothed data after replacing the boundary
temperatures of each enthalpy increment in terms of the new temperature scale.

We define

8X

(X)) pyumry— (X8 ) g ary s (50)

(X=Cp, or H or S relative to that at a temperature where u=0. The superscript 68 or “48"
indicates the temperature scale with respect to which the given value of X was determined.)

m=To—Tix=tes—tas. (51)
All properties are those at Ty, the nominal value of T where the corrected property is desired,
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unless otherwise stated. The property values in the rhs of each equation below are as determined
on the IPTS—48, and either dT s or dTss can be used for dT [dropping the last term of eq (10)].
From eq (13), the only term of importance, usually, is the first, so

8H=— 0y, o
From eq (52),

oY o du dCe

8“"_8( d?')_d?'aﬁ_ Crar—*ar (53)

Considering the correction to the absolute entropy, we can first write [using eq (53)]:

d
dT

dS ) - 8( C ) _8Cy_ pdCp Cpdu
a i Tdr T dT°

(03) :8( a7) A\T)T T T Tar T (54)

But

‘_f(_fflpr:"d?‘_#(;j‘)Z_Eg‘(‘l—&@ i
ar\" ), T T )= Tar T dT° (59)

Since the last members of eq (54) and (55) are identical, we can write

8 T uCpdl  pCp
as=—ﬁ 2 %_‘: _,uT; . 56)

of which the second member approximates the only important terms in eq (35).

The last member of eq (53) represents the only two terms of eq (16) that are usually of im-
portance: and of these two terms, the first is probably nearly always the much more important
(except, of course, when du/dT is accidentally very close to zero). According to this term, the
relative (fractional) correction to the heat capacity is approximately equal in magnitude to duw/dT.
According to table 4, this does not exceed 0.3 percent below 3000 K. The relative correction to
the absolute entropy [eq (56)] tends to be considerably smaller, owing to partial cancellation within
the integral and to the magnified weighting by the factor 1/7% of low temperatures where the
differences between the IPTS—48 and the IPTS—68 are relatively small.

The corresponding equations that are accurate to the same approximation when the “7*"
law is used below absolute temperature 7, with the 7% and experimental heat capacities required
to agree at this temperature, are easily found from section 2.5. Thus, where 8H and 8S in the rhs
are given by eq (52) and (56) respectively:

8H=147(8Cp) .+ (8H) — (8H); (57)
&C is given by eq (53): (58)
8S=3(8Cp) .+ (8S) — (8S),. (59)

3. The Numerical Differences Between the International Practical Temperature
Scales of 1948 and 1968

The temperature ranges separately defined by the two scales are treated individually in
sections 3.1-3.4 (headed by the respective temperature ranges expressed on the IPTS-68), and
equations are derived giving numerically the differences pu(= Ts— Tis=tss —t4x) between the
IPTS—68 and the IPTS—48 in these respective ranges, with sufficient accuracy for most practical
purposes,
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3.1. 90.188 to 273.15 K (—182.962 to 0 °C)

The realization of both scales is specified to be by the resistance of a suitable platinum ther-
mometer over the entire temperature range from approximately 90 to 904 K (— 183 to 631 °C). Since
both scales are so defined as to preserve the highest practical continuity over this whole tempera-
ture range, their specifications below the ice point depend on those above the ice point. Therefore
it will be necessary to consider together the definitions of the two scales in these two regions of
temperature,

Using W to represent the ratio of the measured resistance of a particular thermometer at
some temperature to its resistance at 0 °C? the specified functions may be written:

IPTS—48 (t35. —182.97 to 0 °C) (Callendar-van Dusen equation) [4]:
W=14a(l4+0.01 8;x)tix—104adixt2,—10 2B, (100 —t,4). (60)
IPTS—68 (tos, — 182.962 to 0 °C) [1]:
W=W~+atu+ catix(tex—100). (61)°
IPTS—48 (t.x. 0 to 630.5 °C) (Callendar equation) [4]:

W=14+a(l+ 0.0]64N}I4H—10_4Q‘84n3§g (62)
IPTS—68 (tyx. 0 to 630.74 °C) [1]:

1 t' 3
= (W=1)+8 (—) (——1). :
a 100/ \ 100 {5}
which when rearranged is
Wit')=14+a(14+0.018x)t" — 10 4adsx(t')2. (63a)

where t' is defined (as a monotonic function) by the equation

r' .,f f‘ l'a
tex=1t'+0.045 (—) (———— ]) ( = ) ( o ) :
>\To0/) oo ') \inoss =) \ezoma ! (64)

The functions W (tx) and W (te) differ somewhat from one thermometer to another. and the con-

TaBLE 1. Fixed points used for calibration of platinum resistance thermometers using eq (60)—(64)

Temperature value
Fixed point =
IPTS-48 |4, 5] IPTS-68 [1]
o o

Normal boiling point of oxygen —182.970 — 182.962
TERIPle POINE O WALET: i s dove s ss s s vt isit 0.01 0.01
Normal Boiling point of Waler.. oot et e en e aaieaaens 100 100
Normal bailing: peointiof stlfir: ol i L0 A e e ey e
Normal freazimg POmT DTN C oo, sasabebi e e st s s S “419.505 419.58

O For IPTS=38 the “sulfur™ point was an official defining fised point b the ‘ulmliluh-I--I I-z_i:u |r|_|||; ;;;I 1l 1-‘|n|n-|-;;|_|;-- Ii.-u-.ll_--rTwu-_n- reconimendel,

4 Actually. a temerature whose vilue is exactly 07C on one of the twe seales his o vidue trivially different thy 5% 100° 0 on the ather scale,
3 1o ref, [L]. W7 is written as B Tyd .
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- stants appearing in eq (60)—(63a) are determined for a particular thermometer by measuring W at
the fixed points listed in table 1. ¥, which appears in eq (61). is a single-valued reference function
given by the equation

20
-'li.‘i_..z ,"f;‘[lll Wr}{Tuh]]' (65)
=1
with the 20 constants 4, . . . 4. defined numerically and having 16 significant figures each [1].

Since the correction to the heat capacity is approximately proportional to du/dT [eq (53)]. we
shall be concerned as to whether the latter and its temperature derivative are continuous at 0 °C,
above and below which both W (T ) and W (Ts) are each defined differently by the above equa-
tions. Among . T'ix. and T there is only one independent variable. so we can write

{ {H{Tis— Tax AT 4 W w
e T A oF

dTsx AT dTex dTw /[ dTw
It is clear [from eq (60) and (62) | that dW [dT s and d*W/[dT7 are continuous at 0 °C, but the situation
for the corresponding derivatives involving T is not obvious. From eq (66), du/dTs and d?uldT?,
are continuous at 0 °Cif and only it dW/dTs and d*W[dT3, also are.

[t turns out that the two derivatives of B involving Tyx as defined by eq (61). (63a). and (64) are
not identically continuous at 0 °C. The statement has been made, however. that they are continuous
at 0 °C for what may be regarded as a typical thermometer having the following constants [1]
(using asterisks for this special case):

af=ecf=0; a*=3.9259668(10 *): §f = 1.496334. (67)

This continuity may be readily demonstrated. as shown below. Incidentally. the corresponding
function W*(Te) [= W at and below 0 °C: = W* (1) at and above 0 °C] may alternatively be
regarded as the standard reference function defining tg from — 182,962 1o 630,74 °(C,

Since WE=1 at Tyw=273.15. it was found. using eq (65) and the numerical values of the con-
stants A;, that at 0 °C

dW;K (!1‘“3 | 5 = ; ;
— = / ——=—=3.98650632(10-%) (68)
dT s dWiE A,

and

AT, dW*

!Fu.r* (.’: Tux (!Tﬁn 4 ,-41 = 2/4_- .
= /( : ) =———=—1.2261330(10-%). (69)
AW E 13

Similarly, it was found, using eq (63a), (64), and (67), that at 0 °C

dW*(e') _dW*(t") S _ 5 ane =
fleiH - dt’ / dt’ i 398630630( 10 ) [70}
and
AW (") AW (@_.;_H)ﬁ_dW*(r') ((Fh;a) (dh;s):"__ : s e -
dT3, dr" dt’ dt’ dt'? / dt' ) L3631 (1079). (7L

The values of eq (68) and (70) differ by a factor of 14+5(10-9), and those of eq (69) and (71) by a
factor of 1+2(10-7). Though the pertinent magnitudes are such that at 0 °C the fractional dis-
continuity in du/dTs is many times as great as that in dW/dTgs. these discrepancies are too
small to be of any practical significance and are very likely to be so for all resistance thermometers
meeting the standards imposed by the IPTS-68.
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For a given resistance thermometer, @ has the same value in eq (60), (62), (63), and (63a),
because it depends only on the resistances at 0 and 100 °C, which designate the same 4 (see foot-
note 4) respective temperatures on the IPTS—48 and the IPTS—68. However, 8.5 # 8q¢x. because
of the difference in the two values of temperature for the zine (or sulfur) point (table 1). At the
zine point tix=419.505 and t'=t=419.58. Substituting these values and that of 8% from eq
(67) into eq (62) and (63a) and equating the two expressions for W give

8;5=1.49135723. (72)

Since W also is a continuous function of temperature, W and its derivatives may replace H
and its derivatives in eq (13) to give an equation from which w(tex) may be derived,

dw\' 1 i dWN
(ST
t‘hTﬁ

=% e (_dhx) 2

(73)

In rhs of eq (73) all terms except the first may with sufficient accuracy be neglected (the ratio of the
second term to the first does not exceed 0.00004 between — 182.962 and 630.74 °C), giving

AW\’
,u"=(W’_W’”),f(d ) (74)
L

Using for W the standard reference function defined by eq (60)-(65) with the parameter values of
eq (67) and (72), we shall derive from eq (74) numerical functions for w(tes), in this section for the
range tgw=—182.962 to 0 °C and in the next section for the range tex=0 to 630.74 °C.

Since eq (74) expresses u at temperature 2, for temperatures at or below 0°C W’ and (dW[dts)’
are found from eq (60), (67), and (72), then replacing t; by t; by eq (1)=(3). and W from eq (61) and
(67). [The value of B is found from eq (60) applied at the oxygen boiling point, where W has the value
of W} at Tys=90.188 K and where t=—182.970 (table 1).] The final equation is

~250.97 [1+3.9845170(103) 24 — 5.855019(107) tds +4.35717 (10~ '2) (100 — t4s) £3s — Wi
- 1—2.9389(10 %) t4s+4.3741 (10-9) (75 — tun) t3x

u

[£6s=—182.962 to 0 °C]. (75)

3.2. 273.15 to 903.89 K (0 to 630.74 °C)

For temperatures at and above 0 °C. eq (74) is applied similarly as was done in section 3.1 for
the lower temperature range. W' and (dW/dt,s)" are found from eq (62). replacing tys by ti, and
W from eq (63a). For replacing t' in eq (63a) in terms of . eq (64) may be written

tﬁﬁ=fi+¢(f’]“ (76)

\'\"h[‘r(‘
. ¢ " : t' ; t' : 77
e(t') = 0. (100) (100 )(419.58 )(630.74 - ) )

Expanding ¢(t') 1o two terms about ¢(t4) and then replacing ¢(t') from eq (76) gives

@ (tix)
d@“liﬁ) '
dis

t' =t —

(78)
1+

(The magnitude of de(ta)/dts never exceeds about 0.001.) Neglecting a term [in ¢(te)] whose
magnitude never exceeds approximately 0.00002 °C, the result is

464



__0-01 (Bis — Bun) s (0.01 Il;s—]}+
B = 110,01 65— 0.0002 oyt | P Ve): (79)

Substituting the values of 8 and 64s for the reference function [eq (67) and (72)] gives the final
numerical equation,

_4904(10 T)tus (o —100)

1—2.939(10 ) te +@(tex), [f!;ﬁ=0 to 630.74 °C] (80)

where ¢ (tg) is given by eq (77) on replacing t’ by tgs. Differentiation of eq (80) gives

dp  —4.904(107%) [1 —0.02¢65+2.939(10-°) 5] +(£(P([ﬁ|4)
dfu.w— [1 —2.939(10_4“%]2 dtes

[tes=0 10 630.74 °C]  (8])

3.3. 903.89 to 1,337.58 K (630.74 to 1,064.43 °C)

Temuverature in this range is measured by a platinum-versus-rhodium-platinum thermocouple
of suitable specifications, the temperature being defined on the IPTS-48 [4] by

E=a'+b'tis+c't3, (82)

and on the IPTS-68 [1] by
E=£J+bff;n+f_.’f%u. (83)
In these equations E is the electromotive force of the thermocouple. and the six constantsa’ . . . ¢

are evaluated by calibration at the three fixed points listed in table 2. The IPTS—-68 specifies that
E shall have the respective values listed in the last column of table 2, within specified tolerances.
We may regard these nominal values as defining for each of the two scales a “standard™ emf-
temperature function to which the emf of a given thermocouple may be corrected through its
calibration.

The right-hand sides of eq (82) and (83) may be equated, then 5 replaced by (tes—p) [eq
(1). (2). and (6)]. The result on solving for o may be written

(a'"—a)+ (b'—b)tsu+ {C' —‘C)IEH

M= e ; . (84)
b'+2c' tew—c'

The term —¢’w in the denominator is virtually negngible, but g in this term may be replaced by

—1.616 + 0.00286414. which fits the three values of table 2 within 0.01 °C.. After using the values

TABLE 2. Fixed points used for calibration of Pt/P1—10% Rh thermocouples using eq (82) and (83)

I
Defined temperature
Fixed point ! Nominal electromotive
| force (IPTS—68) [1]

1PTS—48 [4] IPTS-68 (1]
OC’ \'Jr" ;‘y
Calibrated Pt resistance thermometer. .ooeviniciieninnn... B30.5 oo e e e
Calibrated Pt resistance thermometer....o.ooooi... (") 630.74 5534
Normal freezing point of silver. ... 960.8 961.93 9117
Normal freezing point of goldo o 1063.0 106443 10300

“ Apenrding to e 8O0 = B30 0 when fe= 0307} L.



of temperature and electromotive force listed in table 2 to solve eq (82) and (83) for the six constants

’

a' . . . c, their substitution into eq (84) gives the numerical equation

 —1.3145+ 1.5016 (10 %) tgx + 1.5625 (105 ) 12,
M 14+ 4.101 (10 %) tgx

[t =630.74 to 1064.43 °C]  (85)

Differentiation of eq (85) gives

dp _2.0407(10%) [1+1.53135(10-%) tex+ 3.1400(10°7) #5,]
ey [1+4.101(10%) ze]?

[tss=630.74 10 1064.43 °C] (86)

3.4. 1,337.58 K (1,064.43 °C) to 10,000 K

Above the freezing point of gold both the IPTS-48 and the IPTS-68 define the temperature
by the Planck Radiation Law, according to which, at wavelength A and in the range dA. the ratio
of the spectral intensity at the absolute thermodynamic temperature T to that at the absolute themo-
dynamic temperature of freezing gold, T'(Au). is

2
exp IV—-—)\T( Au)—}_ 1

3 d

exp [ﬁ‘]

where ¢, is the so-called second radiation constant. The definition of T« is obtained by making
the replacements T'=T\s, c:=1.438 em kelvin, and T(Au)=1336.15 K in (87) [4], and the defini-
tion of Tiw by the substitutions T="Tx, c2=1.4388 ¢m kelvin, and T(Au) =1337.58 K [1]. These
functions for the two scales may, of course, be equated: when the equation is solved for Ty and
this then subtracted from Ty, it gives T — Tis. or u(Tix), exactly. A simpler numerical equation

results by expanding some of the exponentials and dropping negligible terms: when the representa-
tive wavelength of optical pyrometers A= 6.5(10-5) ¢m is substituted, the result is

(87)

p="5.56(10"*) T+ 3.84(10-7) (1 — e~22135T68) T2,
[Tiw=1,337.58 t0 10,000]  (88)

Up to 10,000 K eq (88) is insensitive to wavelength, and the error in g does not exceed about 0.1
kelvin.
Differentiation of eq (88) gives

du

dT 5.56(107%) +7.68(10 7) Ty — [8.5(10-) + 7.68(10-7) Tys | e~ 22135/Tex

[Tsx=1.337.58 to 10,000] (89)

3.5. Discontinuities in the Temperature Derivatives of t;«—t.x at 630.74 and 1,064.43 °C

Though both the IPTS-48 and the IPTS-68 treat the “resistance thermometer”™ temperature
range differently below and above 0 °C, the two scales are highly continuous at this temperature
and no discontinuity in tg— s (=) and its first two temperature derivatives exists. as demon-
strated in section 3.1. This is not true where the “thermometer™ and “thermocouple™ ranges
join (630.74 °C), nor where the “thermocouple™ and “pyrometer™ ranges join (1,064.43 °C). Though
f is continuous at these two temperatures, du/dtss is not, the discontinuity having a magnitude
of about 0.001 in both cases.
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TaBLE 3. Comparison of the difference in the value of temperature, and its temperature dertvative, given by the IPTS of
1968 and the IPTS of 1948 () as the two scales are defined and (h) as smoothed in the regions of discontinuity,

| Tnx — 7‘1.-4 fkl'l\'il]h‘l 1‘“ Th'n o T..M)MT.;»
T K)
As defined Smuoothed As defined Smoothed

840 LR 15 6 1 AR 00009 Lo

850 sl 440.123 L0010 140.0011

860 134 135 L0012 0013

870 146 50 L0013 L0016

880 160 166 L0015 0018

890 176 185 L0017 0020

900 4194 | 205 L0019 0021

903.89 902 214 { r '"“2“} 0022

o ' ’ . 0027 ’

910 h.218 227 0027 0023

920 245 .251 0027 0024

9H) .300 2301 0027 0026

96l 354 4 354 0027 40027

80 e ¢ ] R T LT L
1260 i B e e R
1280 i 1.261 “1.261 L0029 0029
1300 1.319 1.316 L0029 0027
1320 h1.378 1.368 0029 0025
1337.58 bt 1,430 1.410 {:'m"m}' 0023

et s : 0016 :
1350 1.45 1.4 0016 0022
1375 | 1.49 “1.49 0016 ©0019
14400 L2k [l |10 e e e { VR IE T e R

g 180} * iy 1BH, * Eq 14l " by 186
b Eap (B5) Al TR U TRET I Rl TR

Though these discontinuities reflect small corresponding discontinuities at these two tem-
peratures in the IPTS-48 or the IPTS=68 or both. it is not the purpose here to discuss this question.
The principal additional discontinuity introduced when calorimetric thermodynamic properties
are converted from the basis of one temperature scale to that of the other is when the heat capacity-
temperature function has been smoothed prior to this conversion: the conversion will introduce
an approximately 0.1 percent discontinuity. Such an effect is virtually within the precision of the
best present-day calorimetry at temperatures as high as 631 °C. but it may be desirable to avoid
it in the systematic conversion of many existing tables.

An obvious simple expedient is to replace the functions w(tes), over a temperature range
extending below and above each temperature of discontinuity, by a function which provides
continuity with the pertinent original functions in both p and dp/dtes at the ends of the modified
range. That the extent of such a modified range is normally an arbitrary decision is evident from
consideration of the idealized simple case (sometimes approximated in reality) in which the heat
capacity shows a discontinuity at one temperature but otherwise no change with temperature;
How should one join the two disconnected segments smoothly? However. when the effect is as
small as in the present case. this question can hardly be important.

The procedure outlined above was followed to derive simple polynomial “*smooth™ equations
for the temperature ranges 570 to 690 °C and 1000 to 1120 °C. These equations are as follows.

467

356 -078 O-69—2



u=0.1162+9.153(10~*) (tx —570) +1.3328(10-5) (tes —570)*
—3.192(10-%) (£ss —570)3 [t65=570 to 690 °C] (90)

w=1.241+2.92(10-3) (tes — 1000) —4.092(10-°) (zes — 1000)*
—7.222(107*) (tsx —1000)* [ tss = 1000 1o 1120 °C] (91)

These two equations and their first derivatives are compared in table 3 with the equations which
it is proposed they displace in the temperature ranges indicated above when converting values
that were previously smoothed with respect to temperature on the IPTS=48. When no such smooth-
ing was done, eq (90) and (91) should not be used.

3.6. Tabulated Values of (Tix—T.x) and d(Ti— Ti)/dTss at Round Temperatures of Tis From 90 to
10,000 K

Values of Tow—Tw(=p) and d(Tow— Ti)/dTss (= dpldtes), computed from the equations
derived in sections 3.1-3.4 [ from eq (75), (80), (85), and (88); du/dtes from eq (81). (86), and
(89)], are tabulated at round temperatures (Tx) in table 4. Below 0 °C, d (T4 — T'x) [dTsx was taken
by averaging successive pairs of differences of values of Ty — T'is tabulated at intervals of 1 kelvin.
Double entries are included for those temperatures for which the equations for the adjacent tem-
perature ranges give different values (see discussion in sec. 3.5).

A similar table of Ty — Thx covering the range —180 to 4000 °C: has been published [1]. The
two tables agree exactly, to the number of significant figures given in each.

TABLE 4. Approximate difference in the value of temperature, and its temperature derivative, given by the International
Practical Temperature Scales of 1968 and 1948
(The unit of temperature is the kelvin, For hoth seales, TiK)=e(%0) 4+ 273.15.)

Tr.n Toi— Tm d(Tox— Tys) fdrmﬂ T Tix— T :f{ Tg;n = T..-q ] .l'l‘”‘r.n Tr.n Tm. — Tp( n‘” Tis — T.]H) JldTrm
90 +0.0076 +0.0022 128 —0.0135 0.00000 || 220 +0.0299 —0.00038
90.188 0080 L0021 130 —.0134 +.00015|| 225 0278 — 00045
9] 0095 0017 132 —.0129 00028 | 230 L0254 — 00051
92 0110 L0013 134 —.0122 00041 || 235 0227 — 00056
93 0121 0008 136 —.0113 00052|] 240 0198 — 00059
94 .0127 L0005 138 —.0102 00062 || 245 L0168 — 00061
95 0130 | L0002 140 —.0088 00071 230 0137 — 00062
96 0130 —.0001 142 —.0073 00079 255 L0105 —.00062
97 0128 — 0004 144 —.0057 00086 || 260 0074 — 00061
98 0123 — 0006 146 —.0039 00092 || 265 0044 —.00058
99 0116 —.0008 148 —.0020 00096 || 270 L0016 —.00054
100 0108 —.00089 (| 150 .0000 00100 || 27315 .0000 — 00050
102 ' .0088 — 00112 155 +.0050 00103 275 —.0009 — 00047
104 | 0064 —.00124| 160 0102 00102 || 280 —.0031 — 00041
106 ' 0038 —.00130(| 165 0152 00096 || 285 — 0050 — 00035
108 0012 —.00130( 170 0197 00087 || 290 — 0066 — 00029
110 —.0013 —.00125|| 175 | .0238 00075 || 295 —.0079 —.00023
112 —.0038 —.00116|(| 180 0272 .00061 || 298.15 —.0085 — 00020
114 — 0060 —.00106| 185 L0299 00047 || 300 —.0089 —.00018
116 — 0080 — 00002 (| 190 0318 00032 || 305 —.0096 —.00013
118 —.0097 —.00078 | 195 0331 00017 (| 310 — 0101 — 00008
120 —.0111 — 00063 || 200 0336 00005 || 315 —.0104 — 00003
122 —.0122 —.00046 || 205 0335 —.00009 || 320 —.0105 +.00001
124 —.0129 —.00030(| 210 .0328 —.00020 || 325 —.0103 00006
126 —.0134 —.000151] 215 0316 —.00029 || 330 — 0099 00009
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TABLE 4. Approximate difference in the value of temperature, and its temperature derivative, given by the International
Practical Temperature Scales of 1968 and 1948 — Continued
(The unit of temperature is the kelvin, For both scales, T(K)=1¢(*C)+273.15.)

Tfﬂq T:iﬂ et T.ﬂl d( TﬁH ok T-ih )Jlrd?,ll?i T‘liﬂ T“H — Tll‘ ff( Tlhl T TQN ] JII(H‘“H Tiﬂd TliH o TIH d{ TliH R T-IK ) !dTHH
W

335 —0.0093 +0.00013 || 700 +0.075 0.0000 || 1320 +1.378 +0.0029
340 — 10086 00016 || 710 074 L0000 {h L0030
345 —.0077 00020 || 720 074 20000 || 133758 h4ad ©.0016
350 — 0066 00023 || 730 074 0000 || 1350 1.45 0016
355 — 0054 00026 || 740 075 +.0001 || 1375 1.49 .0016
360 —.0041 .00028 750 076 L0001 || 1400 1.53 L0016
365 — 0026 00030 || 760 077 0001 || 1425 1.57 .0017
370 —.0010 00033 | 770 079 0002 || 1450 1.61 0017
373.15 .0000 00034 | 780 .081 0003 || 1475 1.66 0017
375 +.0006 00035 || 790 084 0003 || 1500 1.70 0017
380 0024 00036 || 800 088 0004 || 1525 1.74 0017
385 0043 00038 || 810 093 0005 || 1550 1.78 0017
390 0062 00039 || 820 098 0006 || 1575 1.83 0018
395 L0082 00041 || 830 105 0007 || 1600 1.87 0018
400 0103 00042 || 840 113 0009 || 1625 1.92 0018
410 L0146 00044 || 850 123 0010 || 1650 1.96 0018
420 0190 00045 || 860 134 0012 || 1675 2.01 0018
430 0235 00045 || 870 146 0013 || 1700 2.05 .0019
440 .0280 00045 || 880 160 0015 || 1725 2.10 L0019
450 0325 .00045 || 890 176 0017 || 1750 2.15 .0019
460 .0369 .00044 || 900 194 0019 || 1775 2.20 .0019
470 0413 00043 . a 0020 || 1800 2.94 .0019
480 0454 00041 || 70389 22 {., 0027 || 1825 2.29 0020
490 0494 00039 || 910 218 0027 || 1850 2.34 0020
500 0532 00037 || 920 245 0027 || 1875 2.39 0020
510 057 L0003 940 300 0027 || 1900 2.44 0020
520 060 0003 960 354 0027 || 1925 2.49 .0020
530 063 0003 980 409 0027 || 1950 2.54 .0021
540 066 0003 || 1000 464 0028 1975 2.60 .0021
550 068 0002 || 1020 519 0028 || 2000 2.65 0021
560 070 0002 || 1040 575 0028 | 2050 2.75 0021
570 072 0002 || 1060 631 0028 || 2100 2.86 0022
580 074 0001 || 1080 687 0028 (| 2150 2.97 0022
590 075 0001 || 1100 .743 0028 |} 2200 3.08 0022
600 076 0001 || 1120 .800 0028 || 2250 3.19 0023
610 076 0001 || 1140 857 0028 2300 3.31 0023
620 077 0000 || 1160 014 0029 || 2350 3.43 0024
630 077 0000 || 1180 971 0029 (| 2400 3.55 0024
640 077 0000 || 1200 1.029 0020 (| 2450 3.67 0024
650 077 0000 || 1220 1.086 0029 || 2500 3.79 0025
660 076 0000 ]| 1235.08 1.130 0029|2600 4.0 003
670 076 L0000 || 1240 1.144 0029 2700 4.3 .003
680 076 L0000 || 1260 1.202 0029|2800 1.6 003
690 075 0000 || 1280 1.261 0029|2900 4.8 003
692.73 075 L0000 11 1300 1.319 .0029 || 3000 5.1 003

see toowotes at end of table p. 470,
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TaBLE 4. Approximate difference in the value of temperature, and its temperature derivative, given by the International
Practical Temperature Scales of 1968 and 1948 — Continued
{The unit of temperature is the kelvin, For both scales, T(K) =¢("C) +275.15.)

Tes Tes—Tis | d(Tes—Tis)/dTes Tis Tig—Tan | d(Tos—Tie ) [dTis Ty Tos—Tas | d(Tos—Tis) [dTss
3100 +5.4 +0.003 || 4100 +8.7 =+ 0.004 5500 +14. + 0.005
3200 5.7 2003 || 4200 9.1 004 6000 17. 005
3300 6.0 .003 | 4300 9.4 .004 6500 19. .005
3400 6.3 .003 || 4400 98 004 7000 22, 005
3500 6.6 003 | 4500 10.2 004 7500 25. {006
3600 7.0 2003 || 4600 10.6 004 8000 27. 006
3700 T3 .003 || 4700 11.0 004 8500 30. 006
3800 7.6 004 114800 11.4 004 9000 33. 006
3900 8.0 004 {14900 11.8 004 9500 Sy 006
4000 8.3 004 || 5000 12.3 004 {10,000 40. 006

*Eq (81).
"Eq (86).
“Eq (89).

John L. Riddle read the entire manuseript and made several helpful suggestions.
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