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Conversion of Gaussian states under incoherent Gaussian operations

Shuanping Du1, ∗ and Zhaofang Bai1, †

1School of Mathematical Sciences, Xiamen University, Xiamen, Fujian, 361000, China

The coherence resource theory needs to study the operational value and efficiency which can be
broadly formulated as the question: when can one coherent state be converted into another under
incoherent operations. We answer this question completely for one-mode continuous-variable sys-
tems by characterizing conversion of coherent Gaussian states under incoherent Gaussian operations
in terms of their first and second moments. The no-go theorem of purification of coherent Gaussian
states is also built. The structure of incoherent Gaussian operations of two-mode continuous-variable
systems is discussed further and is applied to coherent conversion for pure Gaussian states with stan-
dard second moments. The standard second moments are images of all second moments under local
linear unitary Bogoliubov operations. As concrete applications, we obtain some peculiarities of a
Gaussian system: (1) There does not exist a maximally coherent Gaussian state which can generate
all coherent Gaussian states; (2) The conversion between pure Gaussian states is reversible; (3) The
coherence of input pure state and the coherence of output pure state are equal.

PACS numbers: 03.65.Ud, 03.67.-a, 03.65.Ta.

I. Introduction

Manipulating physical systems always suffers from
practical restrictions which limit the control we can ex-
ert. It is, e.g., extremely difficult to exchange quantum
systems undisturbed over long distances [1]. In order
to manipulate spatially separate subsystems effectively
within the resource theoretic framework, this restricts us
to local operation and classical communication (LOCC).
Under these operations, we have to prepare a certain
kind of states, i.e., separable states. The states which
can not be produced by LOCC are entangled. The en-
tanglement is the key resource that allows to implement
operations such as quantum state teleportation to obtain
perfect quantum state conversion by consuming entangle-
ment [2]. The restrictions are vital in quantum commu-
nication and quantum technology and also drive a deep
understanding of the fundamental laws of nature [1, 3–5].

As entanglement of pure states is among the manifesta-
tions of the superposition principle, one can naturally see
the phenomenon of coherent superposition as a valuable
resource. Recently, the resource theory of quantum co-
herence has attracted much attention, and various efforts
are made to build the coherence resource theory [6–12].
In this frame, free operations corresponding to LOCC
in entanglement theory are incoherent operations (IOs)
that can be interpreted as a measurement which can not
create coherence even if one applies postselection on the
measurement outcomes [7].

One of the central question in coherence resource the-
ory is conversion of coherent states . It is aimed to study
whether IOs can introduce an order on the set of co-
herent states, i.e., whether, given two coherent states ρ
and σ, either ρ can be transformed into σ or vice versa.
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The answer to this question determines the value of co-
herent states in technological applications. The question
has been solved for pure state case [13–15] and for qubit
state case [16–18]. More recently, the conversion between
pure states and mixed states is characterized in [19–21].

All the above results for conversion of coherence states
are implicitly assuming a discrete-variable system (fi-
nite dimensional system). Note that the first framework
for understanding quantum coherence is quantum op-
tics which must require quantum states in a continuous-
variable system (infinite dimensional system), especially
the Gaussian states which have arisen to a privileged po-
sition in continuous-variable quantum information [22–
25]. The primary tool for analyzing Gaussian states is
Gaussian operations. Indeed, Gaussian operations cor-
respond exactly to those operations that can be imple-
mented by means of optical elements such as beam split-
ters, phase shifts and squeezers together with homodyne
measurements [26–28]. Such operations are in principle
experimentally accessible with present technology [29].
Especially, Gaussian unitary operations can be realized
as a passive operation, a single-mode squeezing operation
on each of the n modes, and a subsequent second passive
operation [30]. In fact, phase rotation, the simplest and
most common Gaussian unitary operation is an optical
implementation which preserves coherence in the process
of conversion of coherent states [25]. For the process
of evolution of optical cat states, coherence is consumed
[31, 32].

In the outlook of [7], T. Baumgratz, etc. point out
that coherence theory of Gaussian systems is needed.
Closely mirroring the development of entanglement the-
ory, mathematical problems concerning continuity that
are inevitably emerging can be addressed by requiring
energy constraints [33] or by considering special, experi-
mentally relevant, subclasses such as Gaussian states [30].

The study of coherence theory of Gaussian systems is
moving ahead since the question is proposed [7]. Re-
cently, coherence theory of Gaussian systems including
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incoherent Gaussian states, incoherent Gaussian opera-
tions and coherence measures of Gaussian states is in-
troduced [34–36]. The main contribution of our paper is
to discuss conversion of coherence states in continuous-
variable systems under incoherent Gaussian operations
(IGOs).

The paper is organized as follows. In section II, we re-
view some background material and establish notations.
In particular, we review the definitions and characteriza-
tions of incoherent Gaussian states and incoherent Gaus-
sian operations obtained in [34]. In section III, an explicit
description of conversion of Gaussian states of one-mode
continuous-variable systems is provided and the no-go
theorem of purification for Gaussian states is built. In
section IV, we furtherly study the structure of IGOs in
two-mode continuous-variable systems and characterize
conversion of one kind of important Gaussian pure states
under IGOs. The last section is a summary of our find-
ings.

II. Background and notation

Let H be an infinite dimensional Hilbert space with
fixed orthonormal basis {|n〉}+∞

n=0. When we consider
the m-mode continuous-variable systems H⊗m, we adopt
({|n〉}+∞

n=0)
⊗m as its reference basis. For a quantum state

ρ on H⊗m, the characteristic function of ρ is defined as

Xρ(λ) = tr(ρD(λ)),
D(λ) = ⊗m

i=1D(λi),

D(λi) = e(λiâi
†−λiâi),

here âi and âi
† are the annihilation and creation operator

in mode i, λ = (λ1, · · · , λm)t, λi denotes the complex
conjugate of λi. A one-mode quantum state ρ is called
Gaussian state if its characteristic function

Xρ(λ) = exp−
1

4
(λx,λy)ΩV Ωt(λx,λy)

t−i(Ωd)t(λx,λy)
t

,

where λx = Re(λ) and λy = Im(λ) are the real and

imaginary parts of λ, Ω =

(
0 1
−1 0

)
, d = (d1, d2)

t ∈ R2,

V =

(
v11 v12
v12 v22

)
∈ M2(R). Recall that V is a posi-

tive definite matrix satisfying V + iΩ ≥ 0 (all eigenvalues
are nonnegative) and detV ≥ 1, detV = 1 if and only
if ρ is pure [25]. d and V are called the first and sec-
ond momemt of ρ which can describe Gaussian state ρ
completely. So ρ can be usually written in ρ(V, d).

The quantification of coherence is fundamental in the
resource theory of quantum coherence. For a given co-
herent Gaussian state, it is important to ask the amount
of coherence it has. Inspired by the idea of discrete-
variable systems [7], researchers have built the framework
for quantifying coherence of Gaussian states [34–36]. For
the convenience of reader, we give a brief overview of
results in [34]. The incoherent Gaussian states are de-
fined as diagonal Gaussian states. The set of incoherent
Gaussian states will be labelled by I. The nondiagonal

Gaussian states are called coherent Gaussian states. In
fact, I consists of all thermal states [34]. A thermal state
has the form

ρth(n) =

+∞∑

n=0

nn

(n+ 1)n+1
|n〉〈n|,

n = tr(â†âρth(n)) is the mean photon number. A Gaus-
sian operation is incoherent if it maps incoherent Gaus-
sian states into incoherent Gaussian states. A one-mode
incoherent Gaussian operation is fully described by

(T, N), T = tO, N =

(
ω 0
0 ω

)
,

where t is a real number, O is a 2 × 2 real orthogonal
matrix (OOt = OtO = I) and ω ≥ |t2 detO − 1| [34].
For a Gaussian state ρ(V, d), it performs on ρ(V, d) and
obtain a Gaussian state with the first and second moment
as follows:

d 7→ Td, V 7→ TV T t +N.

For m-mode case, every Gaussian state ρ(V, d) is de-
scribed by its first and second moment d and V , where
d is a 2m dimensional column vector, V is a 2m × 2m
real positive definite matrix with V + iΩ ≥ 0, Ω =

⊕m

(
0 1
−1 0

)
[25]. Furthermore detV ≥ 1 and detV =

1 if and only if ρ(V, d) is pure. In [34, 36], Xu has given
detailed characterizations of incoherent Gaussian states
and incoherent Gaussian operations (IGOs). The inco-
herent Gaussian states have the form ⊗m

j=1ρth(vj), vj is
the symplectic eigenvalue of ρth(vj). A Gaussian opera-
tion Φ(T,N, d) is incoherent if and only if

d = 0,
T = {tjOj}mj=1 ∈ T2m,
N = ⊕m

j=1ωjI2,
ωj ≥ |1−∑

k,r(k)=j t
2
k detOk|, ∀j,

where tj , ωj ∈ R, Oj is a 2 × 2 real orthgonal matrix
(OjO

t
j = I2), T2m denotes the set of 2m × 2m real ma-

trices such that, for any T ∈ T2m, the (2j − 1, 2j) two
columns have just one 2 × 2 real matrix tjOj located in
(2r(j) − 1, 2r(j)) rows for ∀j, r(j) ∈ {k}mk=1, and other
elements are all zero. For a Gaussian state ρ(V, d), it
performs on ρ(V, d) and obtain a Gaussian state with the
first and second moment as follows:

d 7→ Td, V 7→ TV T t +N.

Based on the definition of incoherent Gaussian states
and incoherent Gaussian operations (IGOs), any proper
coherence measure C is a non-negative function and must
satisfy the following conditions:
(C1) C(ρ) = 0 for all ρ ∈ I;
(C2) Monotonicity under all incoherent Gaussian op-

erations (IGOs) Φ: C(Φ(ρ)) ≤ C(ρ),
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(C3) Non-increasing under mixing of Gaussian states:
C(

∑
j pjρj) ≤

∑
j pjC(ρj) for any set of Gaussian states

{ρj} and any pj ≥ 0 with
∑

j pj = 1.
Furthermore, the relative entropy measure has been

provided by

CR(ρ) = inf
δ∈I

S(ρ||δ),

S(ρ||δ) = tr(ρ log2 ρ)−tr(ρ log2 δ) is the relative entropy.
For Gaussian states ρ(V1, d1), σ(V2, d2), if there exists

an incoherent Gaussian operation Φ such that Φ(ρ) = σ,

we denote it by ρ(V1, d1)
IGO−−−→ σ(V2, d2). And call ρ and

Φ(ρ) to be the input state and output state, respectively.

III. Conversion of Gaussian states of one-mode

continuous-variable systems

Our first result provides a complete classification of
conversion for pure Gaussian states. This offers an affir-
mative answer to the open question on coherence conver-
sion in continuous-variable systems [7, 13]. This question
is to study how can we determine if there exists an IGO
Φ such that Φ(ρ(V1, d1)) = σ(V2, d2) for pure Gaussian
states ρ(V1, d1) and σ(V2, d2).

Theorem 3.1. For pure Gaussian states

ρ(V1, d1), σ(V2, d2), ρ(V1, d1)
IGO−−−→ σ(V2, d2) if

and only if there exists an phase rotation operator

R(θ) =

(
cos θ sin θ
− sin θ cos θ

)
for some θ ∈ R such that

V2 = R(θ)V1R(θ)
t, d2 = R(θ)d1 or V2 = I and d2 = 0

(σ(V2, d2) = |0〉 ∈ I).
By Theorem 3.1, we obtain the following key peculiar-

ities of Gaussian continuous-variable systems.

(i) ρ(V1, d1)
IGO−−−→ σ(V2, d2) iff σ(V2, d2)

IGO−−−→ ρ(V1, d1)
for coherent pure Gaussian states ρ(V1, d1), σ(V2, d2).

(ii) For any coherence measure C, C(ρ(V1, d1)) =

C(σ(V2, d2)) if ρ(V1, d1)
IGO−−−→ σ(V2, d2). This implies

that the coherence of input state is equal to the coher-
ence of output state. It shows frozen behavior of co-
herence in Gaussian dynamical systems. Frozen coher-
ence in discrete-variable systems studied in [37] is to dis-
cuss when C(ρ) = C(Φ(ρ)) holds true. Frozen coherence
in Gaussian dynamical systems is also listed as an open
question in summary of [34].

(iii) There does not exist a maximally coherent Gaus-

sian pure state |ψ〉 such that |ψ〉 IGO−−−→ σ for any Gaussian
state σ. Here we identify a maximally coherent state as
a state that allows for the deterministic generation of all
other Gaussian states by means of incoherent Gaussian
operations. Note that maximally coherent states are in-
dependent of a specific coherence measure.

Above consequences demonstrate significant differ-
ences between discrete-variable systems and Gaussian
systems. One key reason for these differences is the fact
that Gaussian states are completely specified by their
first and second moments. Intuitively, since determinant
of the second moment for any pure Gaussian state is 1,

conversion of pure Gaussian states by IGO can be real-
ized by Gaussian unitary operations.

Theorem 3.1 is also a nice tool for conversion of pure
Gaussian states because the first and second moments of
pure Gaussian states have clear analytic formulas. In the
following, we exhibit conditions for realizing conversion
of pure states under IGOs.

For α−state

|α〉 = e−
1

2
|α|2

+∞∑

n=0

αn

√
n!
|n〉

(α ∈ C), the most important Gaussian states which are
generated by the vacuum state |0〉 and Weyl displacement

operator D̂(α) = eαâ
†−αâ, |α〉 = D̂(α)|0〉. Note that

d = 2(Re(α), Im(α))t, V = I [25].

Obviously |α〉 /∈ I, i.e., |α〉 is coherent. By Theorem 3.1,
one can see that

|α〉 IGO−−−→ |β〉 ⇔ |α| = |β|.

The most general pure Gaussian state |ψ〉 of one-
mode is a displaced squeezed state obtained by the com-

bined action of Weyl displacement operator D̂(α) and the
squeezing operator

Ŝ(β) = e
1

2
[βâ†2

−βâ2], β ∈ C,

on the vacuum state |0〉 [25]:

|ψα,β〉 = D̂(α)Ŝ(β)|0〉.

The first and second moment of |ψα,β〉 are [38]

2(Re(α), Im(α)),

(
ch(2|β|) + cos θ sh(2|β|) sin θ sh(2|β|)

sin θ sh(2|β|) ch(2|β|)− cos θ sh(2|β)

)
,

where β = |β|eiθ , ch(x) = ex+e−x

2 , sh(x) = ex−e−x

2 are
hyperbolic functions. By Theorem 3.1, one can deal with
conversion of pure Gaussian states efficiently.

A particularly key conversion of coherent states in
discrete-variable systems is purification which is the pro-
cess that extracts pure coherent states from general states
by IOs [8, 21, 39–41]. The importance of purification lies
in that the quantum systems are rather susceptible to
imperfect operations such as decoherence [42, 43] which
may jeopardize the reliability of quantum coherence and
so one key question is to extract coherent states with high
quality for application. Especially, in [21], Fang and Liu
show that it is impossible to exactly transform a full rank
coherent mixed state to a pure output coherent state by
IOs, even probabilistically. This builds no-go theorem
for coherent mixed states with full rank. An interesting
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question is how about purification of continuous-variable
systems?

Theorem 3.2. For a coherent pure Gaussian state
σ(V2, d2), if there exist an IGO Φ and a Gaussian
state ρ(V1, d1) such that Φ(ρ(V1, d1)) = σ(V2, d2), then
ρ(V1, d1) is a pure state.

Theorem 3.2 is a parallel result of no-go theorem of
purification for coherent mixed states of discrete-variable
systems [21]. It shows strong limit on the efficiency of
perfect coherent purification of Gaussian states.

In addition, by Theorem 3.2, there does not exist a
maximally coherent mixed Gaussian state which can gen-
erate all Gaussian states. Combining this with Theorem
3.1, there is not a maximally coherent Gaussian state
which can generate all other Gaussian states by means of
IGOs. It is a peculiarity of Gaussian continuous-variable
systems.

In practical applications such as evolution of quantum
coherence of optical cat states, people need to deal with
the mixed input and output states rather than pure ones
[31, 32]. We will provide structural characterization of
conversion for mixed Gaussian states in the following. It
is an answer to the question of characterizing mixed co-
herent state manipulation in infinite dimensional systems
[13]. That is, given two mixed Gaussian states ρ(V1, d1)

and σ(V2, d2), when ρ(V1, d1)
IGO−−−→ σ(V2, d2) holds true.

Firstly, we need to classify IGOs for a clear presenta-
tion. By the definition of IGOs, one can see any IGO of
one-mode has two kinds of types:

T = tO1, N = ωI (Type I)

with ω ≥ |1 − t2|, detO1 = 1 and O1 is a 2 × 2 real
orthogonal matrix;

T = tO2, N = ωI (Type II)

with ω ≥ 1 + t2, detO2 = −1 and O2 is a 2 × 2
real orthogonal matrix. Secondly, for Gaussian states
ρ(V1, d1), σ(V2, d2), there are real orthogonal matrices
U and W with detU = detW = 1 such that

UV1U
t =

(
λ1 0
0 λ2

)
, WV2W

t =

(
µ1 0
0 µ2

)
.

We also assume λ1 6= λ2, ‖d1‖ 6= 0 for generality, here
‖d1‖ is the Euclidean norm of d1.

Now, we are ready to give our results on conversion of
mixed Gaussian states.

Theorem 3.3. For Gaussian states
ρ(V1, d1), σ(V2, d2), ρ(V1, d1)

IGO−−−→ σ(V2, d2) by

type I IGO if and only if one of the followings holds true

(i) V2 = µI (µ ≥ 1), d2 = 0;

(ii)





‖d2‖
2

‖d1‖2 = µ1−µ2

λ1−λ2

,
‖d2‖

2

‖d1‖2 ≤ min{µ1

λ1

, 1+µ1

1+λ1

},
1− µ1 ≤ (1 − λ1)

‖d2‖
2

‖d1‖2 ;

(iii)





‖d2‖
2

‖d1‖2 = µ1−µ2

λ2−λ1

,
‖d2‖

2

‖d1‖2 ≤ min{µ1

λ2

, 1+µ1

1+λ2

},
1− µ1 ≤ (1 − λ2)

‖d2‖
2

‖d1‖2 .

Theorem 3.4 For Gaussian states
ρ(V1, d1), σ(V2, d2), ρ(V1, d1)

IGO−−−→ σ(V2, d2) by
type II IGO if and only if one of the followings holds
true

(i) V2 = µI (µ ≥ 1), d2 = 0;

(ii)

{
‖d2‖

2

‖d1‖2 = µ1−µ2

λ1−λ2

,
‖d2‖

2

‖d1‖2 ≤ µ1−1
λ1+1 ;

(iii)

{
‖d2‖

2

‖d1‖2 = µ1−µ2

λ2−λ1

,
‖d2‖

2

‖d1‖2 ≤ µ1−1
λ2+1 .

Theorem 3.3 and Theorem 3.4 are very helpful to fulfil
conversion of Gaussian states under IGOs. By [25], the
most general one-mode Gaussian state has the second
moment

V = (2n+ 1)R(θ)S(2r)R(θ)t,

S(2r) =

(
e−2r 0
0 e2r

)
, r ∈ R is called the squeezing

parameter. Note that R(θ) is real orthogonal, for Gaus-
sian states ρ(V1, d1), σ(V2, d2), one can decide whether
ρ(V1, d1) can be converted into σ(V2, d2) or vice versa by
parameters ni, ri, ‖d‖i, i = 1, 2.

IV. Conversion of pure Gaussian states of two-

mode continuous-variable systems

Originating from Theorem 3.1, an interesting question
is to describe conversion of pure Gaussian states of m-
mode continuous-variable systems (m ≥ 2) under IGOs.
We will firstly attempt to discuss two-mode case. The ex-
ploratory study reveals a big task for conversion of pure
Gaussian states of m-mode continuous-variable systems
(m ≥ 2). The difficulty lies in computational complexity
of finding determinant relationship between second mo-
ments of Gaussian states and its blocks. In this section,
we discuss the structure of IGOs of two-mode continuous-
variable systems further. Based on this, conversion of
one kind of important pure Gaussian states under IGOs
is described.

For generality, we assume that the second moment of
output state is not diagonal. By the definition of IGOs,
it is easy to check that IGOs of 2-mode have two kinds
of types:
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T =

(
t1O1 0
0 t2O2

)
, N =

(
ω1I 0
0 ω2I

)
(Type I)

with

ω1 ≥ |1− t21 detO1|, ω2 ≥ |1− t22 detO2|;

T =

(
0 t2O2

t1O1 0

)
, N =

(
ω1I 0
0 ω2I

)
(Type II)

with

ω1 ≥ |1− t22 detO2|, ω2 ≥ |1− t21 detO1|,

where O1, O2 are 2 × 2 real orthgonal matrices with
detOi = ±1, (i=1,2). We find that if the above IGOs
transform one pure state into the other pure state, then
detOi = 1(i = 1, 2) as following.

Theorem 4.1. For pure Gaussian states
ρ(V1, d1), σ(V2, d2), writing V1 and V2 in their block

form V1 =

(
V11 V12
V t
12 V22

)
, V2 =

(
V ′
11 V ′

12

V ′t
12 V ′

22

)
, V ′

12 6= 0,

where Vij and V ′
ij(i, j = 1, 2) are 2× 2 matrices, if there

exists some IGO Φ such that Φ(ρ(V1, d1)) = σ(V2, d2),
then detO1 = detO2 = 1.

Theorem 4.1 is useful to realize the conversion of pure
Gaussian states. An important class of two-mode Gaus-
sian states has second moments in standard form

V =

(
aI C
C bI

)
with C =

(
c 0
0 d

)
,

a ≥ 1, b ≥ 1, c, d ∈ R [25, 44, 45]. Any Gaussian state can
be transformed to the Gaussian state with the second mo-
ment in standard form by local linear unitary Bogoliubov
operations [44]. We will give a complete classification of
conversion for such kind of pure states. One can check
that such Gaussian states are pure if and only if

ab− c2 > 0, (ab− c2)(ab− d2) = 1, a2 + b2 + 2cd ≤ 2.

Let

V ′ =

(
a′I C′

C′ b′I

)
, with C′ =

(
c′ 0
0 d′

)

be the second moment of pure target states. The key

step for realizing ρ(V, d)
IGO−−−→ σ(V ′, d′) is

V
IGO−−−→ V ′.

We will firstly classify the transformation on second mo-
ments. Based on this classification, conversion of pure
Gaussian states can be investigated easily.

In the following, assume cd 6= 0, c′d′ 6= 0 and denote

α = c′
2

c2
or α = c′

2

d2 , there are four important closed inter-
vals which are needed to classify transformation between
V and V ′:

(1) [α(b+1)
b′+1 , min{1, a′−1

a−1 , α}],
(2) [max{α, α(b−1)

b′−1 }, 1],

(3) [max{1, α(b+1)
b′+1 }, min{α, a′+1

a+1 }],
(4) [max{α, α(b−1)

b′−1 , 1}, a′+1
a+1 ]

Theorem 4.2.

V
IGO−−−→ V ′ ⇔ Ω 6= ∅,

here Ω = (1) ∪ (2) ∪ (3) ∪ (4).
For ρ(V, d), σ(V ′, d′), if Ω 6= ∅ and the desired IGO is

type I, from the proof of Theorem 4.2 in appendix, then
we choose arbitrarily t1 ∈ Ω. t2, ω1, ω2 are decided by t1.
One can check easily that whether there exists suitable
T such that Td = d′. Therefore the conversion between
ρ(V, d) and σ(V ′, d′) can be ascertained. If the IGO is
type II, then we pick any t2 ∈ Ω. The existence of T
satisfying Td = d′ can be checked directly.

V. Summary

In this work, we have studied conversion of coher-
ent Gaussian states under incoherent Gaussian opera-
tions. An explicit description on conversion of one-
mode systems has been provided. Compared with the
finite dimensional results on conversion of coherent states
[7, 9, 12, 13], there are some peculiarities as following: (1)
There does not exist a maximally coherent Gaussian state
which can generate all coherent Gaussian states; (2) The
conversion between pure Gaussian states is reversible;
(3) The coherence of input pure state and the coher-
ence of output pure state are equal. This implies frozen
behaviour [37] in Gaussian dynamical systems which is
listed as an open question in [34]. Conversion of pure
Gaussian states of two-mode systems under incoherent
Gaussian operations is also discussed. We classify con-
version for an important class of two-mode pure Gaus-
sian states with second moments in the standard form
[25, 44, 45].

Our results raise some interesting questions. It would
be of great interest to classify conversion of pure Gaus-
sian states or mixed Gaussian states for m-mode (m ≥ 2)
continuous-variable systems. This is very helpful for com-
prehending behaviours of coherence of Gaussian dynam-
ical systems.
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Appendix: Proof of main results
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Proofs of all results in this paper are given in appendix.
The proofs of our theorems need structural classifica-

tion of real orthogonal matrices and determinant formula
of sum of two matrices borrowed from [46].

Proposition 1. Let R(θ) =

(
cos θ sin θ
− sin θ cos θ

)
, where

θ is a real parameter. O is real orthogonal if and only if

O = R(θ) or O =

(
1 0
0 −1

)
R(θ).

Proposition 2. For A,B ∈ M2(R),

det(A+B) = det(A) + det(B) + tr(A♯B),

where (·)♯ denotes the adjugate map given by

M ♯ =

(
d −b
−c a

)
, where M =

(
a b
c d

)
.

The following characterization of Gaussian states can
be found in [47, 48].

Proposition 3. For any Gaussian state with second

moment V =

(
A C
Ct B

)
, where A,B,C are real 2 × 2

matrices. Denoting ∆ = detA+detB+2detC, we have

V > 0, detV ≥ 1, ∆ ≤ 1 + detV.

Now we are in a position to give proofs of our theorems.
Proof of Theorem 3.1. “⇒” Assume that there ex-

ists an IGO Φ such that Φ(ρ(V1, d1)) = σ(V2, d2). By the
definition of IGO, we can obtain

t2OV1O
t + ωI = V2, tOd1 = d2, (1)

where O is a real orthogonal matrix, ω, t ∈ R, ω ≥
|1 − t2 detO|. We divide the proof into two cases by
Proposition 1.

Case (i) O =

(
1 0
0 −1

)
R(θ).

It is easy to see that detO = −1 and so ω ≥ 1 + t2.
Combining (1) with Proposition 2, one can get

1 = det V2 = t4 detV1 + ω2 + ωt2tr(V1)
= t4 + ω2 + ωt2tr(V1).

By ω ≥ 1 + t2, we have t = 0, ω = 1. Therefore V2 =
I, d2 = 0 and so σ(V2, d2) = |0〉 ∈ I.

Case (ii) O = R(θ) for some θ ∈ R.
It is evident that detO = 1 and so ω ≥ |1−t2|. Because

detV1 = 1, we can assume eigenvalues of V1 are λ1 and
1
λ1

(λ1 > 0). By (1) and spectral mapping theorem, we
have

(t2λ1 + ω)(
t2

λ1
+ ω) = 1. (2)

It follows that

ω2 + ω(λ1t
2 +

t2

λ1
) + t4 − 1 = 0.

This implies that

|t| ≤ 1.

From the relation of root and coefficient of quadratic
equation, we have

ω =
−(t2λ1 +

t2

λ1

) +
√
λ21t

4 + t4

λ2

1

− 2t4 + 4

2
.

From

−(t2λ1 +
t2

λ1
) +

√
λ21t

4 +
t4

λ21
− 2t4 + 4 ≥ 2(1− t2),

it follows that

λ21t
4 +

t4

λ21
− 2t4 + 4 ≥ [2 + t2(λ1 +

1

λ1
− 2)]2.

A direct computation shows that

t2(2 − λ1 −
1

λ1
) ≤ (2 − λ1 −

1

λ1
).

Note that λ1 +
1
λ1

≥ 2 and so

|t| ≥ 1.

Hence |t| = 1. By (2), we have ω = 0. From (1),

V2 = R(θ)V1R(θ)
t, d2 = R(θ)d1

if t = 1. If t = −1, replacing θ with θ + π, we also get
the desired.

“⇐” If

V2 = I, d2 = 0,

Taking T = tR(θ), t = 0, ω = 1, then the IGO induced by
T and ω has desired property. If there exists R(θ) such
that

V2 = R(θ)V1R(θ)
t, d2 = R(θ)d1,

then, choosing T = tR(θ), t = 1, ω = 0, we have the
desired.

Proof of Theorem 3.2. For coherent Gaussian pure
state σ(V2, d2), suppose that there exists an IGO Φ with
Φ(ρ(V1, d1)) = σ(V2, d2). Therefore

t2OV1O
t + ωI = V2, tOd1 = d2, (3)

where O is a real orthogonal matrix, ω, t ∈ R, ω ≥
|1−t2 detO|. We declare O = R(θ) for some θ ∈ R. Oth-

erwise O =

(
1 0
0 −1

)
R(θ). This indicates detO = −1

and so ω ≥ 1 + t2. By (3) and Proposition 2 , we get

1 = detV2 = t4 detV1 + ω2 + ωt2tr(V1) (4).
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Since ω ≥ 1 + t2, we have t = 0, ω = 1. Therefore V2 =
I, d2 = 0 and so σ(V2, d2) = |0〉 ∈ I, a contradiction. In
(4), for conciseness, denote tr(V1) = a, detV1 = b. It is
evident that a > 1, b ≥ 1. Hence

ω2 + at2ω + t4b− 1 = 0.

This indicates |t| ≤ 1 and so ω ≥ 1− t2. By the relation
between root and coefficient of quadratic equation, we
also obtain

−t2a+
√
t4a2 − 4t4b+ 4

2
≥ 1− t2.

It is equivalent to

t2(1− a+ b) ≤ 2− a.

The proof is divided into three cases in the following.
Case (i) 1− a+ b < 0.
In this case, we immediately have 2−a

1−a+b
≤ t2 ≤ 1.

Thus 1−a+b ≤ 2−a and so b ≤ 1. Since b = detV1 ≥ 1,
b = 1 and ρ(V1, d1) is pure.

Case (ii) 1− a+ b > 0.

This tells 2−a
1−a+b

≥ t2 and so a ≤ 2. From a ≥ 2
√
b, it

follows that b ≤ 1. Therefore b = 1 and ρ(V1, d1) is pure.
Case (iii) 1− a+ b = 0.
By the assumption, we have 0 ≤ 2−a. Using the proof

of case (ii), we obtain ρ(V1, d1) is pure.

Proof of Theorem 3.3. For Gaussian states
ρ(V1, d1), σ(V2, d2), let U and W be real orthogonal ma-
trices with detU = detW = 1 satisfying

UV1U
t =

(
λ1 0
0 λ2

)
, WV2W

t =

(
µ1 0
0 µ2

)
.

Note that

ρ(V1, d1)
IGO−−−→ σ(V2, d2)

if and only if

ρ′(UV1U
t, Ud1)

IGO−−−→ σ′(WV2W
t,Wd2).

Hence without loss of generality, we may assume

V1 =

(
λ1 0
0 λ2

)
, V2 =

(
µ1 0
0 µ2

)
.

“⇒” Suppose there exists an IGO Φ of type I such that
Φ(ρ(V1, d1) = σ(V2, d2), then

tOd1 = d2, t2OV1O
t + ωI = V2,

here O is a real orthogonal matrix with detO = 1, ω ≥
|1− t2| for some real number t. This implies that





t2 = ‖d2‖
2

‖d1‖2

t2(λ1 − λ2) sin 2θ = 0
t2(λ1 cos

2 θ + λ2 sin
2 θ) + ω = µ1

t2(λ1 sin
2 θ + λ2 cos

2 θ) + ω = µ2.

We divide the proof into two cases.
Case (i) t = 0.
It is evident that V2 = µI, d2 = 0, µ ≥ 1.
Case (ii) t 6= 0, sin 2θ = 0.
We can assume that θ = 0 or θ = π

2 . If θ = 0, then

{
t2λ1 + ω = µ1

t2λ2 + ω = µ2.

Hence

µ1 − µ2

λ1 − λ2
=

‖d2‖2
‖d1‖2

, ω = µ1 −
‖d2‖2
‖d1‖2

λ1.

From ω ≥ 0, we have

‖d2‖2
‖d1‖2

≤ µ1

λ1
.

Using ω ≥ |1− t2|, we can obtain

‖d2‖2
‖d1‖2

≤ 1 + µ1

1 + λ1
, 1− µ1 ≤ (1− λ1)

‖d2‖2
‖d1‖2

.

Therefore




‖d2‖
2

‖d1‖2 = µ1−µ2

λ1−λ2

‖d2‖
2

‖d1‖2 ≤ min{µ1

λ1

, 1+µ1

1+λ1

}
1− µ1 ≤ (1 − λ1)

‖d2‖
2

‖d1‖2 .

If θ = π
2 , then

{
t2λ2 + ω = µ1

t2λ1 + ω = µ2.

Hence

t2 =
µ1 − µ2

λ2 − λ1
=

‖d2‖2
‖d1‖2

.

Combining ω ≥ |1 − t2| with ω = µ1 − ‖d2‖
2

‖d1‖2λ2, we can
get





‖d2‖
2

‖d1‖2 ≤ µ1

λ2

‖d2‖
2

‖d1‖2 ≤ 1+µ1

1+λ2

1− µ1 ≤ (1− λ2)
‖d2‖

2

‖d1‖2 .

Therefore




‖d2‖
2

‖d1‖2 = µ1−µ2

λ2−λ1

‖d2‖
2

‖d1‖2 ≤ min{µ1

λ2

, 1+µ1

1+λ2

}
1− µ1 ≤ (1 − λ2)

‖d2‖
2

‖d1‖2 .

“⇐” If V2 = µI, d2 = 0, µ ≥ 1, then t = 0, ω = µ can
induce the desired IGO. If





‖d2‖
2

‖d1‖2 = µ1−µ2

λ1−λ2

‖d2‖
2

‖d1‖2 ≤ min{µ1

λ1

, 1+µ1

1+λ1

}
1− µ1 ≤ (1 − λ1)

‖d2‖
2

‖d1‖2 ,
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then t2 = ‖d2‖
2

‖d1‖2 , O = I, ω = µ1 − λ1
‖d2‖

2

‖d1‖2 can induce the

desired. If




‖d2‖
2

‖d1‖2 = µ1−µ2

λ2−λ1

‖d2‖
2

‖d1‖2 ≤ min{µ1

λ2

, 1+µ1

1+λ2

}
1− µ1 ≤ (1− λ2)

‖d2‖
2

‖d1‖2 ,

then one can choose t2 = ‖d2‖
2

‖d1‖2 , O =

(
0 −1
1 0

)
, ω =

µ1 − λ2
‖d2‖

2

‖d1‖2 .

Proof of Theorem 3.4. Using the same arguments
as the start of proof of Theorem 3.3, we suppose

V1 =

(
λ1 0
0 λ2

)
, V2 =

(
µ1 0
0 µ2

)
.

“⇒” Assume there exists an IGO Φ of type II such that
Φ(ρ(V1, d1) = σ(V2, d2), then

tOd1 = d2, t2OV1O
t + ωI = V2,

here O is a real orthogonal matrix with detO = −1,
ω ≥ 1 + t2 for some real number t. This implies that





t2 = ‖d2‖
2

‖d1‖2

t2(λ1 − λ2) sin 2θ = 0
t2(λ1 cos

2 θ + λ2 sin
2 θ) + ω = µ1

t2(λ1 sin
2 θ + λ2 cos

2 θ) + ω = µ2.

We divide the proof into two cases.
Case (i) t = 0.
It is evident that V2 = µI, d2 = 0, µ ≥ 1.
Case (ii) t 6= 0, sin 2θ = 0.
We assume θ = 0 or θ = π

2 and will treat them sepa-
rately. If θ = 0, then

{
t2λ1 + ω = µ1

t2λ2 + ω = µ2.

Therefore

µ1 − µ2

λ1 − λ2
=

‖d2‖2
‖d1‖2

, ω = µ1 −
‖d2‖2
‖d1‖2

λ1.

From ω ≥ 1 + t2, we have ‖d2‖
2

‖d1‖2 ≤ µ1−1
λ1+1 , as desired. If

θ = π
2 , then

{
t2λ2 + ω = µ1

t2λ1 + ω = µ2.

Hence

t2 =
µ1 − µ2

λ2 − λ1
=

‖d2‖2
‖d1‖2

.

From ω = µ1 − λ2
‖d2‖

2

‖d1‖2 and ω ≥ 1 + t2, we obtain

‖d2‖2
‖d1‖2

≤ µ1 − 1

λ2 + 1
.

“⇐” If V2 = µI, d2 = 0, µ ≥ 1, then t = 0, ω = µ can
induce desired IGO. If

{
‖d2‖

2

‖d1‖2 = µ1−µ2

λ1−λ2

‖d2‖
2

‖d1‖2 ≤ µ1−1
λ1+1

hold true, then t2 = ‖d2‖
2

‖d1‖2 , O =

(
1 0
0 −1

)
, ω = µ1 −

λ1
‖d2‖

2

‖d1‖2 can induce the desired. If

{
‖d2‖

2

‖d1‖2 = µ1−µ2

λ2−λ1

‖d2‖
2

‖d1‖2 ≤ µ1−1
λ2+1

are true, then we take t2 = ‖d2‖
2

‖d1‖2 , O =

(
0 −1
−1 0

)
, ω =

µ1 − λ2
‖d2‖

2

‖d1‖2 .

Proof of Theorem 4.1. Without loss of generality,
we assume that Φ is type I, the type II case can be treated
similarly. By a direct calculation one can obtain

V2 = TV1T
t +N

=

(
t21O1V11O

t
1 + ω1I t1t2O1V12O

t
2

t1t2O2V
t
12O

t
1 t22O2V22O

t
2 + ω2I

)

Combining Proposition 2 with Proposition 3, we have

det(t21O1V11O
t
1 + ω1I) ≥ 1,

det(t22O2V22O
t
2 + ω2I) ≥ 1,

det(t1t2O1V12O
t
2) ≤ 0,

∆ = t41 detV11 + ω2
1 + ω1t

2
1tr(V11)

+t42 det V22 + ω2
2 + ω2t

2
2tr(V22)

+2t21t
2
2 detO1 detO2 detV12

≤ 2.

In the following, we divide the proof into two cases .
Case (i) detV ′

12 6= 0.
Note that detV12 < 0, from

det(t1t2O1V12O
t
2) = t21t

2
2 det V12 detO1 detO2 ≤ 0,

we can get detO1 detO2 = 1. Suppose detO1 =
−1, detO2 = −1, then ω1 ≥ 1 + t21, ω2 ≥ 1 + t22. This
deduces

∆ ≥ t41 detV11 + (1 + t21)
2 + (1 + t21)t

2
1tr(V11)

+t42 det V22 + (1 + t22)
2 + (1 + t22)t

2
2tr(V22)

+2t21t
2
2 detV12.

≥ 2t21t
2
2(
√
detV11 detV12 + det V12) + 2

+2t21 + t41 + (1 + t21)t
2
1tr(V11)

+2t22 + t42 + (1 + t22)t
2
2tr(V22).

Since V > 0, we know that

√
detV11 detV22 + det V12 ≥ 0.
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This implies that ∆ = 2 and so t1 = t2 = 0, a contradic-
tion. Hence detO1 = detO2 = 1, as desired.

Case (ii) detV ′
12 = 0.

By Proposition 3,

1 = det(t21O1V11O
t
1 + ω1I) = det(t22O2V22O

t
2 + ω2I).

Thus

t41 detV11 + ω2
1 + ω1t

2
1tr(V11) = 1.

This tells |1− t21 detO1| ≤ ω1 ≤ 1. So detO1 = 1, other-
wise t1 = 0 and hence V ′

12 = 0, a contradiction. Analo-
gously, one can obtain detO2 = 1.

Proof of Theorem 4.2. “⇒” Assume the IGO is
Type I and

TV T t +N = V ′ (5).

By Theorem 3.1 and Proposition 1, we suppose

O1 =

(
cos θ − sin θ
sin θ cos θ

)
, O2 =

(
cosφ − sinφ
sinφ cosφ

)

for some real numbers θ, φ. A direct computation of (5)
shows that

{
c cos θ sinφ− d sin θ cosφ = 0
c sin θ cosφ− d cos θ sinφ = 0.

Therefore c2 = d2 or cos θ = cosφ = 0 or sin θ = sinφ =
0. We divide the proof into three cases.

Case (i) c2 = d2

From (5) and Proposition 3, the following equations
hold true

c = −d,

c cos θ sinφ+ c sin θ cosφ = 0,

ct1t2 cos θ cosφ− ct1t2 sin θ sinφ = c′,

and

ct1t2 sin θ sinφ− ct1t2 cos θ cosφ = d′.

Thus sin(θ + φ) = 0 and so ±ct1t2 = c′ = −d′. Denoting

α = c′
2

c2
, comparing the entry of diagonal position of (5),

one can obtain



at21 + ω1 = a′, ω1 ≥ |1− t21|
bt22 + ω2 = b′, ω2 ≥ |1− t22|
t21t

2
2 = α.

(6)

If t21 ≤ 1, t21 ≤ α, then

{
ω1 = a′ − at21 ≥ 1− t21
ω2 = b′ − b α

t2
1

≥ α
t2
1

− 1.

Hence

α(b+ 1)

b′ + 1
≤ t21 ≤ min{1, a

′ − 1

a− 1
, α}.

If t21 ≤ 1, t21 ≥ α, then b′t21 − bα ≥ t21 − α. Therefore

max{α, α(b − 1)

b′ − 1
} ≤ t21 ≤ min{1, a

′ − 1

a− 1
}.

If t21 > 1, t21 ≤ α, then

{
ω1 = a′ − at21 ≥ t21 − 1
ω2 = b′ − b α

t2
1

≥ α
t2
1

− 1.

So

max{1, α(b + 1)

b′ + 1
} ≤ t21 ≤ min{α, a

′ + 1

a+ 1
}.

If t21 > 1, t21 ≥ α, then b′t21 − bα ≥ t21 − α. Thus

max{α, α(b − 1)

b′ − 1
, 1} ≤ t21 ≤ a′ + 1

a+ 1
.

Case (ii) sin θ = sinφ = 0.

By a direct computation, one can get the same inter-
vals and α as case (i).

Case (iii) cos θ = cosφ = 0.

In this case, one can get the same intervals as case (i)

and α = c′
2

d2 = d′2

d2 by similar calculation.

If the IGO is type II, a direct computation shows that
we have the same intervals and α as Type I. The only
difference is that t1 is replaced by t2.

“⇐” If the desired IGO is type I, then one can choose
t1 ∈ Ω. t2, ω1, ω2 are fixed by (6). Next, according to
the interval that t1 belongs, we pick suitable θ and φ to
construct some IGO for conversion of pure states. If the
desired IGO is type II, then one can choose t2 ∈ Ω and
other parameters can be chosen analogously.
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