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Abstract A significant amount of technical lignins is

produced in the pulp and paper industries. However, most

technical lignins are burned for thermal recycling and a few

percent are used as materials, such as lignosulfonate as a

dispersant. Native lignin has a highly complex structure

and is susceptible to structural variations depending on the

pulping process, thus hindering the effective utilization of

lignins. The procedures used to convert lignins into func-

tional materials include depolymerization to monomeric

fragments followed by re-building to functional materials,

and chemical modifications to generate functional poly-

mers with retained polymeric properties. In this paper, the

latter is disserted. The characteristics of technical lignins,

which include kraft lignin, lignosulfonate, and organosolv

lignin, and their conversion to functional materials such as

polyesters, polyethers, polyurethanes, etc. and the appli-

cations of lignin-based materials in some fields are

discussed.
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Introduction

Almost 170 years ago, a French chemist named Anselme

Payen treated wood with concentrated nitric acid and

caustic soda to yield two different products, namely ‘‘cel-

lulose’’ and an ‘‘incrusting material’’. The latter possessed

a high carbon content and was termed ‘‘lignin’’, which was

derived from the Latin word lignum meaning wood. After

that, Kason studied the composition of lignosulfonates and

postulated that lignin is a macromolecular substance

composed of coniferyl alcohol. He also developed many

valuable procedures for lignin analysis that are still widely

used today. In 1930, Erdtman studied the oxidative

dimerization of phenols and concluded that lignin must be

formed from a,b-unsaturated coniferyl alcohols via enzy-

matic dehydrogenation. Freudenberg and co-workers con-

ducted comprehensive studies during 1940–1970 and stated

that the polymerization of lignin precursors is indeed car-

ried out in this manner and leads to carbon–carbon and

alkyl-aryl ether linkages. The structure of lignin is highly

complicated, and many researchers continue to investigate

its structure today [1, 2].

As mentioned above, the chemical structure of lignin

consists of three basic phenylpropane units, which origi-

nate from p-coumaryl, coniferyl, and sinapyl alcohols.

During biological lignification, the phenylpropane units

are connected via radical coupling reactions to form a

complex three-dimensional macromolecule [3]. The major

linkage types include b-O-4, b-5, b-b, and 5-5 linkages

among others. The lignin composition and content vary

according to species. For example, softwood lignin is

primarily composed of coniferyl alcohol with trace

amounts of p-coumaryl alcohol, whereas hardwood lignin

is made of coniferyl and sinapyl alcohols with trace

amounts of p-coumaryl alcohol. Furthermore, grass lignin

is composed of p-coumaryl, coniferyl, and sinapyl

alcohols.

A large amount of biomass is present on the earth, and

biochemicals derived from biomass are expected to reduce
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atmospheric carbon dioxide levels. Polysaccharides in

biomass, such as cellulose, have been used in many fields

including in the production of pulp, paper, fibers, and fil-

ters, while only a small amount of lignin is utilized to

produce commercial materials, even though they are the

main component of biomass. It is estimated that there is

about 3 9 1011 metric tons of lignin and 2 9 1010 tons is

biosynthesized per year [4]. As such, it is necessary to

determine effective ways to utilize lignin.

Nowadays, technical lignins can be generated as a by-

product of the pulping process. The major commercial

lignins include kraft lignin and lignosulfonate. Other lig-

nins such as organosolv lignins are obtained from the

pulping process using organic solvents such as ethanol,

acetic acid, and formic acid among others. The structure of

lignin differs depending on the isolation process. The

functional groups and molecular weight also vary among

the different types of lignins. The functional groups, type

of phenylpropane units, linkage between structural units,

and molecular weight distributions restrict the applications

of lignin as an industrial material. Table 1 details the

characterization of lignins.

The typical procedures carried out prior to the uti-

lization of technical lignins can be categorized into two

groups: (1) depolymerization to monomeric small frag-

ments followed by re-building into functional materials,

and (2) chemical modification to functional polymers with

retained polymeric properties. While both approaches

have advantages and disadvantages, energy consumption

may be lower in the latter system than in the former

system. In this paper, the latter method and applications

of functionalized lignin-based polymers in a variety of

fields as well as the characteristics of technical lignins are

discussed.

Characterization of technical lignins

Kraft lignin

The sulfur (1–2 %) in kraft lignin occurs as elemental and

organically bound sulfur [22, 23] and some extractives may

also exist in kraft lignin [24, 25]. During the kraft pulping

process, lignin is subjected to depolymerization. Simulta-

neously, the depolymerized lignin fragments are re-poly-

merized, thus resulting in a lower reactivity and thereby

limiting their potential for further condensation without the

use of a cross-linking agent. Some representative structures

are shown in Fig. 1 [26, 27]. The important reactions in

kraft pulping have been investigated using model com-

pounds (Fig. 2) [28, 29] and are described below.

Degradation reactions

– Formation of quinone methide intermediate by loss of

anion from the Ca-position of the phenolate ion.

– Addition of hydrogen sulfide ion in Ca-position leading
to re-aromatization.

– Sulfidolitic cleavage of phenolic b-aryl ether bond by

hydrogen sulfide.

– Alkali-promoted elimination of terminal c-hydrox-
ymethyl group of phenolic b-aryl ether resulting in

the formation of alkali-stable vinyl ether.

– Sulfidolytic cleave of methyl-aryl ether bond leading to

the generation of catechol structure and methanethiol.

Condensation reactions

– Reaction of quinone methide intermediate with other

nuclei, involving the 5-position of ring.

Table 1 The characterization of technical lignins

Species Hydroxyl group Molecular weight References

Total Phenolic Mw (9103) Mn (9103) Mw/Mn

(mmol/g)a (mmol/g)a

Kraft lignin Softwood 6.5–8.6 2.7–3.5 1.1–45.7 0.5–7.7 2.2–13.4 [5–11]

Hardwood 6.5–8.4 4.3–4.7 2.4–4.8 0.4–1.3 1.8–12.0 [5, 8, 12]

Lignosulfonate Softwood –b 1.2–1.9 10.5–60.2 2.7–6.5 6.7–22.3 [6, 11, 13]

Hardwood –b 1.4–1.5 6.9–7.8 2.4–4.6 1.7–3.0 [11, 13–15]

Ogranosolv lignin (ethanol) Softwood 6.3–10 2.7–3.1 2.9–5.4 1.8–3.1 1.6–1.8 [16, 17]

Hardwood 5.7 2.8 2.0–2.6 1.3–1.6 1.5–1.6 [12, 17]

(Formic acid) Miscanthus 3.7–4.9 1.6–2.4 2.8 1.1 2.5 [6, 7, 18]

(Acetic acid) Hardwood 5.5–5.8 3.5–4.0 0.9 –b –b [19, 20]

(Acetic acid/formic acid) Wheat straw 3.4 1.0 2.2 1.6 1.3 [21]

a Some data were modified unit from original references
b Not available
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– Reaction of formaldehyde, generated by elimination of

terminal c-hydroxymethyl group, with aromatic nucle-

us resulting in diphenylmethane structure.

Enol ethers are formed during the kraft pulping process via

formaldehyde elimination from b-O-4-containing struc-

tures in the reverse aldol reaction through the cleavage of

the Cb-Cc bond. The structures of the enol ethers are de-

tected in kraft lignin due to their stability under alkaline

conditions. However, the number of enol ethers in kraft

lignin is quite small as compared to the numbers observed

in experiments using model compounds [25, 30, 31]. Using

two-dimensional nuclear magnetic resonance spectroscopy

(2D NMR), it was revealed that the possibility for the

formation of diarylmethane structures is limited [25, 30].

The authors implied that this was due to the limited

formaldehyde elimination. On the other hand, some reports

have detailed the elimination of the c-hydroxymethyl

group as one of the major reactions during kraft pulping.

Terashima et al. [32] investigated kraft pulping using radio

tracer experiments. Using c-14C labeled lignin, they con-

cluded that a large portion of the eliminated c-carbon
fragments were converted to water-soluble compounds

with a low molecular weight. As such, much of the

eliminated c-carbon fragments may combine with low

molecular weight compounds, which may lead to solubi-

lization. A small portion of the c-carbon fragments formed

formaldehyde may participate in the formation of insoluble

diarylmethane in precipitated kraft lignin.

During kraft pulping, cellulose and hemicellulose are

degraded and some of the degraded compounds are modified

to carboxylic acids such as glycolic acid and lactic acid. The

total amount of carboxylic acids corresponds to about 20 %

of the wood weight in black liquor. To obtain kraft lignin, an

acid precipitation or enzyme treatment is typically carried

out. However, the complete removal of the carbohydrate

derivatives is difficult, resulting in contamination [33]. The

a-hydroxy carboxylic acids formed by aldol condensation

reactions between degraded aldehyde-containing lignin

fragments and keto or aldol type carbohydrate-derived

fragments, followed by benzylic acid rearrangement have

been observed (Fig. 3) [29, 33–36]. Lignin-carbohydrate

(LC) ether bond formation between lignins and carbohy-

drates at theb positionwas suggested based on reactionswith
non-phenolic model compounds [37].

Fig. 1 Partial structures of kraft lignin [26, 27]
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The possibility of the homolytic degradation of the

b-O-4 linkage of quinone methide moieties, especially

b-syringyl types, was proposed under alkaline cooking

conditions followed by the generation of coupling products

such as resinols [38–41]. Coniferyl alcohol was observed in

kraft black liquor [42]. Notably, coniferyl alcohol was

polymerized with another degraded fragment of lignin [43].

The b-O-4 linkage content in black liquor was reported

to decrease with increased cooking times, but was still

observed at the end of the cooking period. Taneda et al.

[44] reported that non-phenolic b-O-4 structures with hy-

droxyl groups in the a-position could be degraded easily

via kraft cooking. However, structures with a benzyl ether

bond between carbohydrates showed high resistance to

degradation. Such structures cannot form quinone methide

moieties during cooking, thus leading to the restricted

cleavage of the b-O-4 linkage. The b-O-4 linkage can be

cleaved via participation of c-hydroxyl groups, but the

reaction rate is slow. Thus, the remaining b-O-4 linkages

could be of the non-phenolic type with a benzyl ether bond

[25].

In some studies, kraft lignin was subjected to frac-

tionation prior to analysis. Lindberg et al. [45] fractionated

kraft lignin by soxhlet extraction with organic solvents.

Mörck et al. [23] separated softwood kraft lignin into five

fractions via successive extractions with organic solvents.

They reported that the polydispersity in the high molecular

weight fraction was higher than that in the low molecular

Condensation reactions

Degradation reactions

Fig. 2 Typical reactions of lignin during kraft pulping process [28, 29]

Fig. 3 Reactions between degraded lignin fragments and carbohy-

drate-derived fragments during kraft pulping process [36]
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weight fraction. The high molecular weight fraction con-

tained a considerable amount of carbohydrates (8.7 %).

The methoxy and acidic group contents decreased with

increased molecular weights. According to the 13C NMR

analysis, a saturated side chain was present, which indi-

cated that reductive reactions were likely occurring during

the kraft cooking. The saturated moieties were prevalent in

the low molecular weight fraction. The number of b-O-4
linkages increased with increasing molecular weight.

Phenylcoumaran (b-5) and pinoresinol (b-b), likely in their

etherified forms, were also found in the high or low

molecular weight fractions. a-ketones, a-aldehydes, and

o-quinone structures were also detected via 13C NMR.

Furthermore, c-ethers were proposed based on 2D NMR

[25, 46].

Lignosulfonate

Typically, delignification occurs under acidic or neutral

conditions during sulfite cooking. The reaction mechanism

and the structure of lignosulfonate have been studied using

model compounds [47–51]. The delignification reaction

mechanism during sulfite pulping is as follows (Fig. 4):

1. Quinone methide intermediates are formed by loss of

the hydroxyl group or cleavage of the a-ether linkage.
Under neutral conditions, the reaction proceeds with

phenolic-type substrates, while under acidic conditions

it proceeds with phenolic and non-phenolic-type

substrates via a benzylic cation.

2. Sulfite ions add to the quinone methide intermediates

at the a-position to produce benzyl sulfonic acid units.

3. When the sulfonation reaction proceeds under neutral

conditions, the electron withdrawing effect of the a-
sulfonic acid group of the b-O-4 moiety facilitates the

nucleophilic attack by the sulfite on the b-carbon atom

resulting in the sulfitolytic cleavage of the b-aryl ether
bond.

4. Under acidic conditions, a condensation reaction

occurs between the benzylic carbon and the carbon

in the 6-position of another nuclei owing to the

benzylic cation.

Upon introduction of the sulfonic acid groups, lignin

becomes hydrophilic, and exhibits enhanced water solubi-

lity. The number of sulfonated groups in lignosulfonate

varies from 0.4 to 0.7 per phenyl propane unit [11, 52].

Based on an investigation using radio isotope labeling,

Araki et al. [53] concluded that the changes in lignin during

the sulfite pulping process were smaller than those that

occurred in the kraft pulping process.

According to the aforementioned reaction mechanism of

sulfite pulping, the putative lignosulfonate structure based

on Sakakibara’s lignin model [54] is subjected to sulfite

pulping as shown in Fig. 5.

NMR analysis of lignosulfonate has been also reported.

Lutnaes et al. [55] characterized fifteen monomeric and

seven dimeric sulfonated model compounds by NMR.

However, the NMR study of lignosulfonate is little [52].

The overall structure and shape of lignosulfonate is not

well-established. Gardon and Mason [56] were the first to

Acidic condition
Sulfonation

Condensation reaction

Neutral condition
Sulfonation

Fig. 4 Typical reactions of lignin during sulfite pulping process

[47–51]
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report that lignosulfonates behave as flexible polyelec-

trolytes. They concluded that the degree of molecular

branching in high molecular weight lignosulfonates was

greater than that in the low molecular weight fractions. In

neutral aqueous solutions, the sulfonate groups are ionized

and lignosulfonates possess an overall negative charge.

According to previous studies, lignosulfonate is believed to

form microgels in solution [57, 58]. Recently, Kontturi

et al. [59] showed that lignosulfonate exhibits a confor-

mational change from a compact sphere to an unwinding

coil under electric fields. This transformation does not

occur if the lignosulfonate is in a gel with cross-links. To

resolve this contradiction, Myrvold [60] proposed a ran-

domly branched polyelectrolyte structure, in which the

sulfonate groups were less prevalent in the backbone than

in the side chains, suggesting that the backbone was more

hydrophobic. In aqueous solutions, polymeric lignosul-

fonate molecules coil to form a spherical shape with the

sulfonate groups on the surface. As such, the randomly

branched polyelectrolyte model suitably explains the so-

lution behavior of the macromolecule.

Organosolv lignin

Organosolv lignins can be obtained from the black liquor

of biomass using organic solvents such as ethanol, acetic

acid, and formic acid among others. Organosolv lignins can

be recovered by precipitation by adjusting conditions such

as temperature, pH, and concentration. Generally, organo-

solv lignins have high purity and with solubility in organic

solvents as well as a low molecular weight and a low

polydispersity. They are insoluble in water due to their

Fig. 5 Putative structure of softwood lignosulfonate inferred from sakakibara lignin model [54]
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hydrophobicity. Organosolv lignins do not contain sulfur,

which is a significant advantage for environment

applications.

The Alcell process is a typical organosolv process using

aqueous ethanol, which was developed by Repap Enter-

prises and was commercialized in 1989 [61]. The Alcell

process involves organosolv pulping with delignification

using aqueous ethanol as the cooking liquor. The pH of the

cooking liquor is relatively low, owing to the generation of

organic acids from hemicellulose. As such, the cooking

process is carried out under acidic conditions. The pro-

tolignin can be subjected to condensation reactions be-

tween the a-position of the side chain and the 6-position of

another aromatic ring [62, 63]. Liu et al. studied the con-

densed phenolic groups in solubilized and residual lignin

during the Alcell process by 31P NMR. Accordingly, the

condensed phenolic OH content of Alcell lignin (solubi-

lized lignin) was lower than that of kraft lignin because

some of the protolignin was condensed during the Alcell

process, which led to issues with solubility and pulp re-

tention [64].

Acetic acid has been employed to obtain acetosolv lig-

nins from hardwood, softwood, and grass. In the presence

of a catalytic amount of a strong acid such as sulfuric acid,

extensive and selective delignification can be accomplished

[20, 65–70]. The delignification mechanism and the

structure of acetic acid lignin have been investigated using

model compounds [71–73]. The reactions include acety-

lation of hydroxyl groups, acidolysis, hydrolysis, and ho-

molytic cleavage of b-aryl ethers, as well as elimination of

the hydroxyl group at the c-position as formaldehyde. In-

ter- and intra-molecular condensations also occur during

acetic acid pulping.

In the early 1900s, Pauly developed a delignification

process using formic and acetic acid, and Freudenberg

et al. used formic acid as a wood pulping solvent [74].

Recently, BioligninTM was produced by the CIMV process

from wheat straw by cooking it with a mixture of acetic

acid, formic acid, and water on a pilot scale [21]. Bi-

oligninTM was characterized by a low molecular weight,

low polydispersity, and numerous free hydroxyl groups.

Functionalization of technical lignins

Major conversion reactions including phenolic resination,

esterification, etherification, urethanization, and radical

polymerization will be discussed in this section (Fig. 6).

Phenolic resination

Lignin contains phenolic OH, making it an interesting alter-

native to phenol in the production of phenol–formaldehyde

(PF) resins [75]. In the 1970s, after 6 years of basic re-

search and development, the Finnish Pulp and Paper Re-

search Institute developed a lignin-based adhesive called

Karatex. Accordingly, the high molecular weight fraction

of lignosulfonate or kraft lignin could be used to displace at

least 40 %, and on occasion as much as 70 %, of phenol in

PF resin [75, 76]. The commercial plant for the production

of Karatex was established in Finland and had an annual

capacity of 2000 tons of purified kraft lignin.

Formaldehyde reacts with lignins in the presence of

alkali species, both by substitution at the free 5-position in

the phenolic nuclei via a Lederer-Manasse reaction, and by

the Tollens reaction on the side chains bearing carbonyl

groups, which results in the introduction of a hydrox-

ymethyl group. Kraft lignin has an extremely low reac-

tivity, as it was estimated that there are only 0.5 mol per

OCH3 reactive sites on pine kraft lignin available for re-

action with formaldehyde [77]. Studies conducted by

Marton and co-workers revealed that about 30 and 10 hy-

droxymethyl groups are introduced by the Lederer-Mana-

sse reaction and by the Tollens reaction, respectively [77].

Zhao et al. reported a kinetic study regarding the hydrox-

ymethylation of pine kraft lignin. They concluded that

about 0.36 mol of CH2OH/C9 units was introduced under

the optimal reaction conditions, of which about 0.33 mol

was introduced on the C-5 of guaiacyl moieties via the

Lederer-Manasse reaction [78].

The reactivity of kraft lignin towards formaldehyde

depends on the wood species, owing to the difference in

methoxy group substitution and the number of condensed

linkages between the phenyl propane units. The use of

softwood lignin is more advantageous in the production of

PF resins containing lignin than that of hardwood lignin

because hardwood lignin contains syringyl units, which

results in a reduced number of free 5-position in the

Technical Lignins

Polyesters

Polyuretanes

Polyeters

Phenol resins

Other polymers

Condensation with formaldehyde or furfurals 

Ring opening polymerization

Polymerization with diisocyanates

Polymerization with ethylene/propylene oxide

Radical polymerization

or dicarboxylic acids
Polymerization using carboxylic acid chloride

Cross-linking using diglycidyl ethers

Fig. 6 Functionalization of technical lignins as polymers
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phenolic moieties. However, some studies have reported

the use of kraft lignin from Eucalyptus [79, 80], alkali

bagasse lignin [81, 82], kraft lignin from bamboo [79], and

straw [83] for production PF resins that contained lignins.

Lignosulfonate can be also used to produce lignin-con-

taining PF resins. Alonso et al. [13] evaluated the reactivity

of various lignosulfonates towards formaldehyde. Soft-

wood lignosulfonates exhibited higher reactivity towards

formaldehyde than hardwood lignosulfonates, and soft-

wood ammonium lignosulfonate showed the highest reac-

tivity. Peng et al. studied the kinetics of lignin

hydroxymethylation. They reported that lignosulfonates

could be hydroxymethylated at a lower temperature than

phenol owing to the lower activation energy of lignosul-

fonates [84]. Ultra-filtrated high molecular weight ligno-

sulfonate (LS) can be used to manufacture insulation

boards based on mineral wool, as it forms an adhesive

when combined with phenol resin [85]. Notably, LS/PF

resins with compositions ranging from 10/90 to 30/70 have

appropriate technical and commercial properties.

Organosolv lignin can be used for PF resin. Ethanol

lignin, which is obtained from ethanol–water pulping, can

be applied in the production of adhesives. Ayla reported

that a resin composed of 90 % ethanol lignin (isolated from

beech or pine wood) and 10 % phenol led to boiling proof

bond according to the German Standards [86]. Formacell

and Acetocolv lignins from Eucalyptus can be used in PF

resins [19, 87, 88]. Sano and Ichikawa prepared PF resins

containing cresol lignin, which was obtained from

solvolytic pulping of hardwood chips with aqueous cresols.

They showed that at least 90 % of the phenol resins could

be replaced by the cresol lignin [89]. During solvolysis

using a cresol-water system, a significant amount of cresol

(10–30 % cresol) was introduced onto lignin, resulting in

an improved reactivity towards formaldehyde. This system

showed comparable performance to commercial PF resins,

however, cresol lignin could not be commercially avail-

able. Upon addition of resorcinol to cresol lignin-phenol

resins, moderate-temperature setting adhesives (room

temperature setting followed by hot press) could be pre-

pared. Sano et al. [90] also reported moderate-temperature

setting lignin-based adhesives based on resorcinol and

cresol lignin.

In general, the adhesive bonding strength of PF resins

containing lignin is comparable to that of commercial PF

resins. However, unmodified lignin is not viable for com-

mercial adhesive applications due to the requirement of a

high hot-press temperature and long curing time [91].

To overcome this disadvantage, modifications to the

chemical structure of lignin have been attempted. Numer-

ous reports have been published regarding the preparation

of modified lignins for applications as PF adhesives [91–

93].

Notably, phenolation has been shown to increase the

reactivity of PF resins towards formaldehyde. Specifically,

under acidic conditions, phenols were introduced at the a-
position of lignin [94–100]. Phenolation can also occur

under alkaline conditions, and the reaction mechanism is

similar to that of condensation that occurs during kraft

cooking [101, 102]. Kobayashi et al. [103–105] subjected

kraft lignin to phenolation and observed a 2–2.5 times

higher reactivity than that of unmodified kraft lignin.

Another potential modification is demethylation. Shashi

et al. [106] used dichromate in the presence of acetic acid

to decrease the amount of methoxy groups in kraft lignin

from 11.9 to 2.8 % and to increase the amount of phenolic

hydroxyl groups from 2.4 to 11.2 %. Hayashi et al. [107]

reported the demethylation of lignosulfonate using

K2Cr2O7. An adhesive can be manufactured using

demethylated softwood kraft lignin with increased reac-

tivity towards formaldehyde [108]. Through this pretreat-

ment, the replacement of the demethylated lignin by phenol

increased to 90 % [109]. Demethylation is an effective way

to improve the qualities of lignin-containing PF resins.

However, Cr is toxic. Lignin can be demethylated and

degraded by treatment with alkali species at high tem-

peratures [110–113]. Pine kraft lignin was subjected to

pretreatment using a 10 % solution of sodium hydroxide at

125 �C for 1 h to demethylate the guaiacyl unit, resulting

in the generation of a catechol unit. The pretreated kraft

lignin was used to manufacture a PF resin. The bonding

ability of the PF resin in which 40 % of the phenol moieties

was replaced was comparable to that of commercial PF

resins [114].

Partially depolymerization has also been reported as an

effective route towards highly reactive lignin species. Pine

ethanol lignin was degraded in aqueous ethanol with cat-

alysts, Ru/c-Al2O3 and Ni/activated carbon, at [300 �C
under an H2 atmosphere [115]. The molecular weight of the

ethanol lignin decreased by about half during the treatment,

and the phenol replacement in the PF resin was 75 %.

According to 1H-NMR analysis, hydrogenolytic/hydrolytic

cleavage of the aryl–alkyl ether, i.e., the b-O-4 linkage,

occurred to generate new phenolic and secondary hydroxyl

groups during the degradation.

Shinatani et al. [116, 117] investigated the use of a

hydroxymethylated softwood kraft lignin-phenol resin

(HLP resin) to prepare moderate-temperature and cold

setting wood adhesives (with the setting and pressing at

room temperature). They reported that the tensile shear

strength of 3-ply plywood based on HLP resin reached

24.3 kgf/cm2 in the dry test and 17.3 kgf/cm2 in the wet

test, both of which were comparable values to those of

commercial PF resins. The molecular weight (Mn) of the

ether insoluble fraction of the prepared HLP resin was

4000–6000.
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Phenolic foams are made from phenol and formaldehyde

with appropriate combinations of flowing agents. They

have excellent fire-resistant properties and do not produce

harmful smoke upon exposure to flames, while rigid plastic

insulation materials such as polystyrene, polyurethane, and

polyethylene do produce smoke. Moreover, they also

possess other outstanding characteristics such as thermal

insulation, heat resistance, chemical resistance, weather-

ability, and workability. Phenolic foams are widely used in

a broad range of applications including as building mate-

rials, in automobiles, and in aircraft [118]. For example, Hu

et al. [119, 120] utilized phenolated lignosufonate in phe-

nolic foams as a replacement for phenol. They showed that

the produced foams had a lower density, superior tough-

ness, and excellent thermal insulation as compared to those

of foams obtained from conventional resol resins, and thus

were useful for practical applications. A 30 wt% reduction

in the molecular weight was accomplished via replacement

of phenol with oxidatively degraded lignosulfonate [120].

Several procedures have been developed for the pro-

duction of phenolic adhesives and resins without the use of

formaldehyde. It is well-known that starch can be hy-

drolyzed into monosaccharides, which can be further de-

hydrated into furfural derivatives. Thus, hydrolysates could

be used in phenolic resins [121]. Zhang et al. reported the

replacement of formaldehyde with hydrolyzed starch using

liquefied phenolated lignosulfonate to produce a PF resin

[122] with acceptable physicochemical specifications,

thermal resistance, and mechanical properties as compared

to the PF resin.

Esterification

Typically, three procedures are applied to produce lignin-

based polyesters: ring opening reactions with cyclic esters,

condensation polymerization using carboxylic acid chlo-

ride, and dehydration polymerization with dicarboxylic

acids.

Oliveira and Glasser [123] reacted e-caprolactone with

hydroxypropylated softwood kraft lignin to yield lignin-

based polyesters. This polyester formed a star-like shape

with hydroxypropylated lignin as the core of the star and

polycaprolactone as the hard arm segments. They estimated

the average number of arms per core ranged between 2 and

7, and the Tm increased with the arm length as the degree of

polymerization of e-caprolactone increased to 50. Hirose

et al. [124] prepared alcoholysis lignin-based polyesters

using e-caprolactone and investigated the thermal degra-

dation behavior of the polyesters using thermogravimetry-

Fourier transform infrared spectroscopy (TG-FTIR). The

mass residue at 500 �C decreased with increasing e-
caprolactone/hydroxyl group ratios. The thermal degrada-

tion of the polycaprolactone chain began at 430 �C.

Matsushita et al. [125] prepared lignin-based polyesters

using alkali hydrothermalized acid hydrolysis lignin with

e-caprolactone. Following the alkali hydrothermal reaction,

acid hydrolysis lignin could be dissolved in water at a

neutral pH owing to the introduction of carboxylic acid

moieties [126]. Based on differential scanning calorimetry,

swelling tests, and dynamic mechanical thermal analysis,

the obtained polyester formed a three-dimensional network

via interactions between the hydroxyl and carboxyl groups

of the lignin and polycaprolactone chain, and did not dis-

solve in organic solvents or melt at high temperatures. In

addition to e-caprolactone, lactide also has been used for

copolymerization with lignin. Chung et al. [127] produced

a lignin-polylactide polyester in a metal- and solvent-free

system using triazabicyclodecene as a catalyst.

Guo et al. [128] prepared lignin-based polyesters from

softwood kraft lignin and dicarboxylic acid chlorides, se-

bacoyl chloride, and terephthaloyl chloride via condensa-

tion polymerization in organic solvents. The obtained

polyesters were mostly cross-linked polyesters owing to

participation of the aliphatic and phenolic hydroxyl groups

as well as the dicarboxylic acid chlorides. Moreover, they

were thermally stable up to 200 �C under a nitrogen at-

mosphere. Guo et al. also investigated the use of poly-

ethylene glycol as a co-monomer and solvent for kraft

lignin. However, the obtained polyesters exhibited a low Tg
and formed elastomers at room temperature. The lignin

content was only 35 % [129]. Recently, Luong et al. [130]

produced lignin-based polyesters using kraft lignin and

sebacoyl chloride.

Several dehydration polymerization procedures using di-

carboxylic acids have been proposed. Fang et al. [131] syn-

thesized a dicarboxyl acid by the dimerization of unsaturated

fatty acids derived from natural oils. The dimeric acid was

applied in the coesterification with enzymatically hy-

drolyzed, steam-exploded cornstalk lignin. This dicarboxylic

acid had a long alkyl chain, which made the co-ester flexible.

The lignin content reached approximately 60 %. Hardwood

kraft lignin could be reacted with carboxytelechelic polybu-

tadiene to produce lignin-based polyesters. The use of high

molecular weight kraft lignin or pre-polymerized kraft lignin

using formaldehyde facilitated the preparation of free

standing films. An ionic linkage between the lignin and car-

boxytelechelic polybutadiene was formed, in addition to

covalent linkages, which had an effect on the properties of the

polyesters [132]. To improve the thermal–mechanical prop-

erties, dehydration copolymerization of lignin with hyper-

branched prepolymers containing carboxylic acid moieties,

which were synthesized from triethanolamine, tris(hydrox-

ymethyl)aminomethane, and dicarbonic acid by melt poly-

condensation, was proposed [133, 134].

Esterification of lignin using e-caprolactone, maleic

anhydride, and succinic anhydride can be carried out to
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increase the reactivity for the production of lignin-based

epoxy resins [135–137] and polyurethanes [138].

Etherification

The primary procedures utilized for the preparation of

lignin-based polyethers include the following: (1) poly-

merization using ethylene oxide and propylene oxide, (2)

polymerization using epichlorohydrin, (3) cross-linking

using diglycidyl ethers, and (4) solvolysis of wood chips

with ethylene glycol to introduce ethylene glycol chains

into lignin. In most cases, a combination of the afore-

mentioned procedures is utilized.

The aromatic moieties within lignin improve the thermal

and mechanical properties of epoxy resins. Hofmann and

Glasser [139] prepared epoxy resins from steam explosion

lignin by hydroxyalkylation using propylene oxide and

ethylene oxide. Subsequently, the reaction mixture was

treated with epichlorohydrin and was cured with m-phe-

nylene diamine for cross-linking. The modulus and ulti-

mate strength of the prepared epoxy resin increased with

increasing lignin contents, while the ultimate strain de-

creased. The strength of the resins was comparable to those

of the diglycidyl ether of bisphenol A-based resins.

The phenolic hydroxyl groups in lignin allow for the

partial substitution of bisphenols in epoxy resins. Lignin-

epoxy resins were synthesized by the poly-addition reac-

tion between epichorohydrine and lignosulfonate in an al-

kali medium to obtain lignin-epoxy prepolymers, which

were used in the cross-liking reaction with phthalic anhy-

dride or diaminodiphenylmethane [140]. The resulting

films absorbed atmospheric humidity to a small extent. The

shear strengths of wood samples glued with the lignin-

based epoxy resin were above 20 kgf/cm2, which was

comparable to those of commercial epoxy adhesives.

To improve the reactivity of lignin, phenolation was

applied. Lignosulfonate was submitted to phenolation us-

ing phenol [141, 142], beta-naphtol [141], and bisphenol

[141] to increase the phenolic hydroxyl group content and

was then epoxidized using epichlorohydrin.

It is reported that organosolv lignin [143–146] and kraft

lignin [147–149] could be modified upon reaction with

several epoxylated polyethylene glycol (PEG) derivatives.

To reduce the cost of preparation, the modification was

also carried out using kraft cooking black liquors, since the

alkali species were retained and acted as catalysts [149].

Uraki et al. [143] produced amphiphilic lignin derivatives

from acetic acid lignin (AL) via reaction with polyethylene

diglycidyl ethers (PE) and lignin-based gels by increasing

the lignin concentration in the same reaction [144]. The gel

with a PE/AL ratio of 0.57 exhibited unique swelling

properties against aqueous ethanol. It swelled with in-

creasing ethanol concentrations, and reached the maximal

swollen state at 50–60 %. Nonaka et al. [147] reported the

viscoelastic properties of kraft lignin-based epoxy resins

using PE cured with dialiphatic amines. The peak tem-

perature of the loss modulus increased with increasing kraft

lignin contents and decreasing ethylene oxide chains of the

PEs. Those resins exhibited very broad relaxations due to

the glass transition, thus they could be applied as adhesives

or damping materials to reduce the emitted noise and vi-

brations. Lin synthesized a non-ionic dispersant by grafting

PEG on softwood kraft lignin using epichlorohydrin [150].

The direct grafting of ethylene glycol chains into lignin

from woody biomass was carried out by solvolysis using

ethylene glycol. Kubo et al. [151] proposed a biomass

conversion system using ethylene carbonate/ethylene gly-

col. Specifically, softwood meal was submitted to solvo-

lysis at 150 �C to dissolve the starting materials. Following

extraction with water, the lignin fraction was obtained as a

water-insoluble solid. Ethylene glycol chains were intro-

duced into the lignin primarily on the hydroxyl groups at

the a and c-positions. The average degree of polymeriza-

tion (DP) was approximately 3.0. Instead of ethylene gly-

col, polyethylene glycol can be used. Lin et al. [152, 153]

produced PEG-lignin using polyethylene glycol 400 (PEG

400).

Urethanization

It is well-known that polyurethane has a high tensile

strength, load-bearing capacity, and resistance to abrasion.

Typically, polyurethanes are prepared from polyols and

diisocyanates. Lignin possesses aliphatic and phenolic

hydroxyl groups, and thus can act as polyol-like material.

Saraf and Glasser [154] investigated the characteristics of

polyurethane films using pine kraft and aspen steam ex-

plosion lignin with hexamethylene isocyanate and tolylene

diisocyanate. The properties of the prepared polyurethanes

were dependent on the lignins and diisocyanates. While

lignin is a polyol polymer, it is also rigid. To improve the

mechanical properties of lignin-based polyurethanes, the

introduction of soft segments, via the hyroxyalkylations

and addition of other polyols, is effective [155–157].

However, high lignin contents were reported to result in

rigid and brittle polyurethanes, even with the addition of

polyether triols as a third component [158]. Thus the lignin

content in lignin-based polyurethanes is usually limited to

ca. 30 %. Glasser and co-workers showed that hydroxyl-

propyl lignin-based polyurethanes could be synthesized by

mixing PEG as a soft segment. By incorporation of PEG,

the Tg decreased, swelling in DMF increased, and the

mechanical properties improved as expected [159]. Fur-

thermore, they also investigated the effect of adding

polybutadiene glycol on the properties of the prepared the

lignin-based polyurethanes [160]. Kraft lignin-containing
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cardanol, which is a natural alkyl phenol from the liquid

produced from cashew nut shells, produced flexible poly-

urethane films with toluene diisocyanate as the long alkyl

chain of cardanol can act as a plasticizer [161]. This

treatment led to an increase in the lignin content in the

polyurethane films up to more than 30 %.

Evtuguin et al. [162] used oxygen-organosolv lignins,

which were obtained from oxygen pulping in organic sol-

vent–water media, to manufacture lignin-based poly-

urethanes. The oxygen-organosolv lignins were

functionalized with numerous carboxyl and hydroxyl

groups [163]; elastomeric polyurethanes could be prepared

upon combination with oligoethyleneoxide diisocyanate

(Mn = 600) without the addition of any other polyols. The

lignin content in polyurethane reached approximately

30 %. Chain-extended hydroxypropylated lignin, which

was obtained by reaction with propylene oxide, can be also

used to produce polyurethane films without any other

polyols [164, 165].

Hatakeyama et al. [166] investigated the relationship

between lignin content, NCO/OH ratio, and mechanical

properties in lignin-based polyurethanes. Using softwood

kraft lignin, a commercial propylene oxide-based polyether

triol, and polymeric methylene diphenyl diisocyanate, they

concluded that a low NCO/OH ratio (\1) had specific ef-

fects on the network formation and influenced the perfor-

mance of the polyurethane. High kraft lignin contents led

to hard and brittle polyurethanes, regardless of the NCO/

OH ratio.

Usually, polyurethane foams are prepared by the reac-

tion between polyols and diisosyanates with the addition of

a surfactant and water. Petroleum-based polyols can be

replaced with lignins. Pan and Saddler used hardwood

ethanol organosolv lignin and hardwood kraft lignin to

replace almost 30 % commercial polyols with the lignins

[12]. Addition of another biomass polyol to lignin was

investigated. Lignin-based polyurethane foams could be

prepared using kraft lignin or lignosulfonate, molasses,

PEG with poly(phenylene methylene), or polyisocyanate in

the presence of surfactants and a small amount of water

[167]. The apparent density, compression strength, and

elastic modulus of the polyurethane foams increased with

increasing lignin contents. The obtained polyurethane

foams exhibited thermal stability up to 300 �C. The poly-

urethane foams prepared using polyols derived from lignins

and molasses displayed water absorbent properties. By

adding microcrystalline cellulose, the water absorption rate

increased initially and kept larger amount of water over

long periods of time [168]. Polyols, except lignin, can af-

fect the mechanical and thermal properties of polyurethane

foams. Hatakeyama et al. [169, 170] investigated the me-

chanical and thermal properties of lignin-based poly-

urethane foams derived from sodium lignosulfonate mixed

with diethylene glycol, triethylene glycol, and PEG. The

glass transition temperatures and thermal stability in-

creased with decreasing oxyethylene chain lengths, and the

compression strength and compression modulus increased

with increasing oxyethylene chain lengths.

To produce lignin-based polyurethanes, a two-step re-

action system, similar to that used in industrial production,

has been applied and involved the synthesis of the pre-

polymer using isocyanate and a polyol followed by the

polymerization of lignin and this pre-polymer. Sarkar and

Adhikari [171, 172] prepared prepolymers with hydroxyl

terminated polybutadiene and 2,4-toluene diisocyanate

with an NCO/OH ratio[1. Then lignin was reacted with

the pre-polymer to obtain lignin-based polyurethane.

In an effort to realize unique polymer properties, inter-

penetrating polymer networks (IPNs) can be processed.

IPNs usually consist of a flexible elastomer and rigid

component with a high modulus. This combination may

have synergistic effects. Kelley et al. [173] investigated

IPNs prepared from lignin-based polyurethanes and

poly(methyl methacrylates). The dynamic mechanical

thermal analysis of these IPNs revealed two Tgs for both

the lignin-based polyurethane and poly(methyl methacry-

late). These Tgs were far from the Tgs of the pure com-

ponents, which indicated partial interactions between the

two components. The thermal and mechanical properties

varied according to the composition. Huang and Zhang

[158] also investigated IPNs using nitro lignin-based

polyurethane.

Radical polymerization

During the 1960s, Koshijima and Muraki conducted the

radical grafting of methyl methacrylate [174, 175], styrene

[174, 176–178], and vinyl acetate [174] onto hydrochloric

acid lignin via radiation with gamma rays in solvent-free

systems. Specifically, they investigated potential chemical

initiators for the grafting of styrene onto lignin, and con-

cluded that benzoylperoxide was the most effective [179].

They also found that the grafting of methyl methacrylate

progressed more effectively than styrene. Moreover,

methylation and the addition of a small amount of

methanol enhanced the grafting owing to the scavenging

effect of the phenolic hydroxyl group and the generation of

H� and �CH2OH from methanol by radiolysis. Furthermore,

they found that the graft polymerization process proceeded

by the addition of polystyrene radicals onto the aromatic

nuclei of lignin and propagation proceeded via the

branches grafted to the lignin side chain due to the hy-

drogen abstraction by polymer radicals or primary (initia-

tor) radicals. Phillips et al. [180] also investigated the effect

of methylation and the addition of methanol and reported

that an increase in the accessibility of styrene affected the
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graft. Softwood kraft lignin could be used for the radiation-

induced radical polymerization of styrene. The obtained

graft polymer possessed a starting lignin backbone with a

low molecular weight and short polystyrene chains, and it

could be dissolved in benzene [181].

The polymerization systems mentioned above produced

homopolymers as well as graft polymers. In those systems,

yields in the order of 25–40 wt% were common when more

than half of the monomer was added to the grafting reac-

tion using styrene [182]. Meister and Chen [183] developed

a quantitative graft polymerization system in aprotic, polar

organic solvents. They used softwood kraft lignin and

dimethyl sulfoxide as the solvent. Hydrogen peroxide and

chloride ions were used to prepare poly(lignin-g-styrene) in

nearly a 100 % grafting efficiency in a high yield (ca.

90 %) even when the styrene contents were more than

90 %.

Solution radical graft polymerization of acrylamide onto

softwood kraft lignin upon exposure to a xenon lamp and

calcium chloride was carried out in dioxane using hy-

droperoxidedioxanes prepared from dioxane. The addition

of a trace amount of ceric ions promoted the polymeriza-

tion owing to the production of hydroperoxide radicals.

The partially hydrolyzed lignin-acrylamide copolymer was

used as an additive in drilling mud [182].

The functionalization of hydroxyl groups is an effective

method to facilitate the radical copolymerization of lignin.

Notably, to introduce polymerizable groups on the hy-

droxyl groups, lignin was reacted with chloromethylstyrene

or methacryloyl chloride. When up to five moieties were

introduced per lignin fragment, a network copolymer was

formed owing to the incorporation of the lignin units in the

growing chains by means of the polymerizable groups.

When the number of polymerizable groups per lignin

moiety was as close as possible to one, a linear copolymer

was obtained [184]. Other studies showed that lignosul-

fonate could be used for radical polymerization [185–187].

Recently, atom transfer radical polymerization (ATRP)

was applied in the grafting copolymerization of lignin.

Kadla and Kim [188] prepared a thermo-responsive

copolymer of N-isopropylacrylamide (NIPAM) and hard-

wood kraft lignin in a DMF/water system. The obtained

copolymer possessed a high degree of polymerization of

NIPAM ([40) and thermo-responsive characteristics, with

a hydrophilic-to-hydrophobic transition at 32 �C. His

group also synthesized ionic-responsive lignin-based

nanofibers via the ATRP of NIPAM. NIPAM was grafted

on soft wood kraft lignin nanofiber prepared by electro-

spinning with a small amount of polyethylene oxide. The

number-average molecular weight and polydispersity of

the PNIPAM brushes reached ca. 34 9 105 Da and 1.22,

respectively. At low salt concentrations (0–0.5 M Na2SO4),

the surface of the PNIPAM brushes assumed an extended

form. However, when the salt concentration was increased

([0.3 M Na2SO4) the brushes exhibited hydrophobic fea-

tures, as the surface of the brushes formed a globular

contracted chain [189]. Enzymatic ATRP was also devel-

oped using catalase, peroxidase, and laccase with ascorbic

acid as the reducing agent. When laccase from Trametes

versicolor was used, the molecular weight and polydis-

persity of the obtained PNIPAM brushes were more than

1 9 105 Da and less than 1.3, respectively [190].

Applications of lignin-based materials

Dispersants

Lignosulfonate [191–194] was discovered by Scripture and

Mark [195]. It is generally used in the cement and concrete

industry as a dispersing agent to improve the workability

and reduce the water-cement ratio, which results in in-

creased strength. Sulfonated melamine formaldehyde con-

densate, naphthalene sulfonic acid derivatives, and

polycarboxylates are also utilized [196]. Lignosulfonates

have a hydrophobic, high molecular weight carbon back-

bone and hydrophilic moieties, such as sulfonate groups,

which result in surface activities. This characteristic

property is related to the utilization as a super-plasticizer in

concrete and gypsum with excellent dispersing properties.

The efficiency can be explained by the hypothesis that the

lignosulfonates adsorbed on the particles give rise to re-

pulsive steric and electrostatic forces [197]. The two forces

are dependent on the form of the lignosulfonate upon ad-

sorption on the particles [198–200].

Mollah et al. [201, 202] investigated the adsorption

mechanism and the effects of lignosulfonate on the hy-

dration of cement by FTIR and X-ray diffraction (XRD).

Accordingly, they proposed an adsorption model in which

the inner layer forms between Ca2? and the negatively

charged calcium–silica–hydrate (C–S–H) surface, while

the outer layer, which is composed of lignosulfonate an-

ions, forms concurrently. The adsorption leads to the in-

hibition of the hydration reaction resulting in the reduction

of the formation of Ca(OH)2. Zhang et al. [203] investi-

gated adsorption using zeta potential measurements and

proposed a similar model.

The molecular weight of sulfonated compounds sig-

nificantly affects their performance as dispersants and

plasticizers. Previous studies have shown that increasing

the molecular weight of sulfonated polymers, including

lignosulfonates, obviously improves the dispersion of ce-

ment particles, gypsum paste, and coal-water slurries [199,

204, 205]. Stránĕl and Sebök [206, 207] reported that the

high molecular weight portions in polydispersed lignosul-

fonates predominately adsorbed on cement particles.
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To improve the dispersibility of lignosulfonates, the

potential to increase the molecular weight of lignosulfonate

has been investigated. Zhou et al. [14] reported that the

polymerization of lignosulfonates proceeded efficiently

upon incubation with horseradish peroxidase/H2O2 under

mild reaction conditions and the dispersion properties were

significantly improved. Ji et al. [200] showed that the

dispersive properties of lignosulfonate were improved upon

grafting with sulfanilic acid-phenol-formaldehyde con-

densates, likely because of the high charge density and

large steric hindrance.

The relationship between the number of sulfonate

groups in lignin and the dispersing efficiency is compli-

cated. Stránĕl and Sebök [208, 209] suggested that the

amount of adsorbed lignosulfonates increased with in-

creasing numbers of sulfonate groups. However, with sul-

fonated lignin prepared from acid hydrolysis lignin, the

fluidity of gypsum slurry decreased upon introduction of

sulfonate groups. Based on the analysis of the surface

tension of an aqueous solution of the sulfonated lignin

derived from acid hydrolysis lignin, it was suggested that

the amount of the adsorbed sulfonated lignin on the gyp-

sum particles decreased with increasing numbers of sul-

fonate groups owing to the increased water solubility [198].

From these results, it was concluded that fluidity is de-

pendent on the molecular structure of the lignin, in addition

to the molecular weight and charge density [205, 210].

The air content of cement slurry increased upon addition

of lignosulfonate. Sebök and Stránĕl [209] implied that the

compressive strength of cement increased upon addition of

lignosulfonates. However, larger increases in the molecular

weight of lignosulfonate led to smaller rises in the strength,

possibly because the density decreased when high mole-

cular weight lignosulfonates were added to the cement

slurry.

Instead of sulfonate groups, carboxyl groups can be

introduced to polymers to generate dispersants [208, 209].

However, lignin with sulfonate groups performed better

than that with carboxyl groups.

Polyetherified lignins can be used as non-sulfur con-

taining and non-ionic dispersants. Acetic acid lignin [145]

or kraft lignin [148, 149] modified via reaction with several

epoxylated PEG derivatives showed high dispersibility.

The covalent attachment of amphiphilic polyoxyethylene

ether led to a significant improvement in the hydrophilicity

of kraft lignin. The prepared dispersant showed high dis-

persibility and a lower apparent viscosity with 50 %

dimethomorph suspension (a kind of agrichemical) as

compared to lignosulfonate [150].

Recently, it was reported that soda-anthraquinone lig-

nins from softwood exhibited about two times higher flu-

idity in mortar than that of commercial lignosulfonate

[211]. The high performance soda-anthraquinone lignins

had a molecular weight of approximately 4000–5000.

Surprisingly, the lignin with a molecular weight of 9000

did not show a high performance. Based on the chemical

analysis, the phenolic hydroxyl group content increased in

the species with the low molecular weight, suggesting that

the balance between the type and content of hydrophilic

groups and molecular weight is critical for suitable dis-

persing efficiencies.

Some grass soda lignins without any chemical modifi-

cations were investigated as dispersants and exhibited as a

water reducer in mortar [212].

Carbon fibers

Today, polyacrylonitrile (PAN) serves as a raw material for

the manufacturing of carbon fibers (CFs). Coal- and pet-

roleum-derived pitches and regenerated cellulose are also

used. One of the characteristic properties of CFs is that

they are light weight and strong. Plastics reinforced by CFs

possess mechanical performances that are superior to those

of plastics reinforced with steel or glass fiber. Moreover,

they also have excellent properties with regard to fatigue

resistance, dimensional stability and heat resistance, as

well as electric conductivity, and electromagnetic inter-

ference shielding, which surpass those of other structural

materials.

However, the production cost of PAN as a precursor

constitutes approximately half of the total production

cost of CFs. Due to the high production cost, the use of

CFs is limited to specific applications, such as in

sporting goods and high-end automotives [213, 214].

Thus lignin is more suitable as a raw material for the

production of CFs.

The process used to manufacture CFs using industrial

lignin consists of several steps: purification, refining, fiber

extrusion, oxidation for stabilization, carbonization, and

graphitization. A small-scale pilot plant production of CFs,

called Kayacarbon, was developed by Nippon Kayaku Co.

during 1967–1973. The fibers were dryspun from an

aqueous alkaline solution containing lignin with poly(vinyl

alcohol) as a plasticizer. Although the high sodium con-

tents create voids in Kayacarbon fibers as the sodium

burned off, the fibers exhibited average performances [215,

216].

Kadla et al. [217] produced CFs for the first time from a

commercially available hardwood kraft lignin without any

chemical modifications via a thermal pretreatment under

vacuum. They reported the effects of blending synthetic

polymers such as poly(ethylene oxide) (PEO) [217, 218],

poly(ethylene terephthalate) (PET) [219], and polypropy-

lene (PP) [219] as plasticizers into hardwood kraft lignin,

and concluded that blending with 5 % PET led to superior

mechanical properties [219].
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On the other hand, the use of softwood kraft lignin is

difficult in the production of CFs because it does not soften

during heating, but instead is subject to charring. It is well-

known that softwood lignin has a more branched and cross-

linked structure than hardwood lignin, which leads to a

decreased thermal mobility [220]. Recently, Sjöholm et al.

[221–223] manufactured CFs from softwood kraft lignin by

blending fractionated hardwood kraft lignin. The fraction-

ated lignin had a low molecular weight and low polydis-

persity, which enhanced its role as a softening agent. To

increase the mobility of the lignins, extracted lignin with

organic solvents can be used. The extracted lignin could be

spun at a high speed to form a species with a diameter of

about 10 lm [213].

Lin et al. produced a thermally fusible PEG-lignin,

which was obtained directly by the solvolysis of woodchips

with a mixture of PEG 400 and sulfuric acid. The PEG-

lignin could be melt spun at 145–172 �C without any

modifications. The fusibility was found to be dependent on

the number of polyethylene moieties. The lignin fiber could

subsequently be converted to CFs [152]. To improve the

strength of CFs, Lin et al. conducted chemical curing by

immersing CF into a solution of hexamethylenetetramine

and hydrochloric acid at 85 �C for 1 h to form a methylene

bridge between lignin molecules. Consequently, the

strength increased 1.5 times [153].

The stabilization step in manufacturing CF involves the

transformation of a spun fiber from a thermoplastic to a

thermoset character through cross-linking, oxidation, and

cyclization reactions. Lignin has a glass transition tem-

perature (Tg) that is far below the temperatures required for

carbonization. Therefore, it must be pretreated to prevent

softening. A low heating rate is required to render the

lignin fibers infusible. Increasing the thermostabilization

temperature at a slow heating rate led to an increase in the

Tg as the lignin fibers were maintained in the non-tacky

glassy state. Based on kinetic data, Braun predicted that a

heating rate of 0.06 �C/min or lower was required to

maintain Tg[T during thermostabilization in oxidations

under air [224]. Using X-ray photoelectron spectroscopy

analysis (XPS) of a cross-section of prepared fibers, Braun

et al. [224] reported that the oxidative stabilization of

hardwood kraft lignin fibers created a so-called skin–core

structure on the fiber that prevented further oxygen

penetration into the fiber. The skin–core structure pro-

longed the stabilization time or hindered the full stabi-

lization of the fibers [221].

The oxidative stabilization of softwood kraft lignin is

more facile than that of hardwood kraft lignin. Norberg

et al. [225] showed that under oxidative conditions, a

heating rate of 15 �C/min and 30 min holding time at

250 �C was sufficient for the stabilization of softwood kraft

lignin. Furthermore, when stabilization and carbonization

were conducted via a one-step process on softwood kraft

lignin, the production time and costs could be reduced.

To enhance the mechanical properties of CF, copoly-

merization of hardwood kraft lignin with polyacrylonitrile

was attempted [226]. Moreover, to increase the resistance

towards thermal degradation, the oxidative pretreatment of

kraft lignin with air was proposed [227]. Similar to kraft

lignin, acetic acid lignin can be used in the production of

CFs. Acetic acid lignin from hardwood lends facilitates the

preparation of CFs more so than that from softwood.

Hardwood acetic acid lignin could be spun via fusion

spinning without any chemical modifications [228], while

softwood acetic acid was infusible. The condensed and

aryl-ether structure of acetic acid could hinder the thermal

mobility [220]. To convert softwood acetic acid lignin into

a fusible material, the removal of the high molecular

weight fraction or re-cooking with aqueous acetic acid was

effective [220, 229]. CFs from softwood acetic acid could

be prepared by direct carbonization without thermal sta-

bilization [229]. Thermal hydrogenolysis [230] or phe-

nolysis [231] of steam-exploded lignin from birch was

conducted to improve the softening and melting properties.

Olganosolv lignin also can be used for the production of

CF [232].

Bioactive agents

Lignosulfonate has been used for many years as an additive

in animal feed. The acute and sub-acute oral toxicity of

lignosulfonate had been evaluated in rats. Specifically, the

acute oral lethal dose for 50 % (LD50) was found to be

[40 g/kg. In sub-acute toxicity tests, no adverse effects on

growth, organ weight, or hematology were observed [233].

Recently, the Food and Agricultural Organization of the

United Nations (FAO) and the World Health Organization

(WHO) reported the approved use of calcium lignosul-

fonate as a carrier (encapsulating agent) for fat-soluble

vitamins, carotenoids, and other functional ingredients in

animal feed due to the low toxicity, as the acceptable daily

intake is 20 mg/kg body weight based on a no-effect level

of 2000 mg/kg body weight per day. This information was

obtained from a 90-day toxicity study that revealed a safety

factor of 100 [234].

Lignosulfonate has several pharmacological effects.

Specifically, lignosulfonate was reported to prevent the

development of gastric ulcers when administered orally to

pyloric-ligated rats. It does not exhibit anti-lipemic effects

and results in minimal blood anticoagulation [235]. Lig-

nosulfonate also exhibits biological activities. Notably, it

affects a variety of cell-to-cell interactions including fer-

tilization and embryo development in a number of non-

mammalian species [236]. Suzuki et al.[237] reported that

lignosulfonate exhibits antiviral activities against human
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immunodeficiency virus in vitro. Moreover, Suzuki et al.

[238] showed that lignosulfonate could augment glycolysis

of macrophages in addition to the proliferation of bone

marrow cells. They also reported that water-soluble ba-

gasse lignin extracted from the culture medium of Lentinus

edodes mycelia exhibited immunological and antiviral ac-

tivities. Water-soluble lignin has a highly condensed and

polycarboxylated structure [239]. Using a dehydrogenated

polymer composed of phenylpropanoids as a model com-

pound, lignin with carboxylic acid moieties exhibited cer-

tain biological activities in the studies of stimulating of

polymorphonuclear cell iodination [240] and cy-

topathogenicity of human immunodeficiency virus (HIV)

infection [241].

Mitsuhashi et al. [242] reported that low molecular

weight high-boiling solvent lignin, which was obtained

from olganosolv pulping using aqueous 1,4-butanediol,

inhibited human immunodeficiency virus type 1 replication

through the suppression of HIV-1 transcription. Using

lignin dimer-like models, it was found that compounds

with a b-5 bond possessed more potent inhibitory activities.

Lignosulfonates facilitate the enzymatic saccharification

of lignocellulosic materials by the formation of lignosul-

fonate-cellulase complexes that can mediate the cellulase

adsorption between lignin and cellulose [243]. Lignosul-

fonate fractions with a low molecular weight and a high

degree of sulfonation can enhance enzymatic cellulose

saccharification. However, an inhibitory effect on saccha-

rification was observed upon using lignosulfonate with a

large molecular weight and low degree of sulfonation [244,

245]. Lignosulfonate led to an increase in the phenol oxi-

dase activity of a white-rot fungus, Polyporus dichrous,

which is an intracellular tyrosinase-like species [246].

Premjet et al. [247–249] showed that the addition of

high molecular weight lignosulfonate could affect the

growth of Acetobacter xylinum, resulting in an enhanced

bacterial cellulose production and an improvement in

crystallinity of the bacterial cellulose. Lignosulfonate also

acted as an antioxidant resulting in reduced concentration

of gluconic acid [250].

It was also reported that acetic acid lignin derivatives,

which react with several epoxylated polyethylene glycol

analogs, could act as cellulase-aid agents [143, 251].

Conclusions

Lignin is the second most abundant organic material on the

earth and approximately 70 million tons of technical lig-

nins are generated per year at pulp-making mills. However,

nearly all technical lignins are burned to obtain electric

power, and only a few percent are used as commercial

products [2]. Many researchers have investigated the

conversion of lignin into functional materials, but several

challenges lead to commercial level. Most of the difficul-

ties regarding the conversion stem from the structural

complexity of lignin. Lignin is a polyphenol-based polymer

with non-repeating units and the structure varies in dif-

ferent regions of plants such as in the cell wall [252], and is

influenced by the environment, for instance the reaction

wood, compression wood in softwood and tension wood in

hardwood [253, 254]. Unfortunately, lignin cannot be

treated in the same manner as homogeneous raw materials

such as steel or dissolved pulp.

Technical lignins can be functionalized via various

chemical reactions such as esterification, etherification, and

urethanization. Such functionalizations may lead to various

applications as dispersants, adhesives, plastics, resins,

carbon fibers, and bioactive agents among others. How-

ever, the production cost of lignin-based materials depends

on the type of lignin that is used. Moreover, the quality of

the produced materials must be equal to that of commercial

products. Further research is required before lignin-based

materials can replace commercial products. Towards that

end, understanding the characteristics of technical lignins

and the creation of new products based on their unique

properties are critical for the development of lignin-based

materials.
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69. Parajó JC, Alonso JL, Vázquez D (1993) On the behavior of

lignin and hemicelluloses during the acetosolv processing of

wood. Bioresour Technol 46:233–240

70. Shukry N, Fadel SM, Agblevor FA, EI-Kalyoubi SF (2008)

Some physical properties of acetosolv lignins from bagasse.

J Appl Poly Sci 109:434–444

71. Davis JL, Nakatsubo F, Murakami K, Umezawa T (1987) Or-

ganic acid pulping of wood IV: reactions of arylglycerol-b-
guaiacyl ethers. Mokuzai Gakkaishi 33:478–486

72. Yasuda S, Ito N (1987) Behavior of lignin in organic acid

pulping I: reaction of arylglycerol-b-aryl ethers with acetic acid.

Mokuzai Gakkaishi 33:708–715

73. Yasuda S (1988) Behavior of lignin in organic acid pulping II:

reaction of phenylcoumaran and 1,2-diaryl-1,3-propanediol with

acetic acid. J Wood Chem Technol 8:155–164

74. Erismann NM, Freer J, Baeza J, Durán N (1994) Organosolv

pulping VII: delignification selectivity of formic acid pulping of

Eucalyptus grandis. Bioresour Technol 47:247–256

75. Forss KG, Fuhrmann A (1979) Finnish plywood, particleboard,

and fireboard made with a lignin-base adhesive. Forest Prod J

29:39–43

76. Forss FG, Fuhrmann A (1976) KARATEX-the lignin-based

adhesive for plywood, particle board and fibre board. Pap Puu

58:817–824

77. Marton J, Marton T, Falkchag SI, Adler E (1966) Alkali-cat-

alyzed reactions of formaldehyde with lignins. In: Marton J (ed)

Lignin structure and reactions., Advances in Chemistry Series

59American Chemical Society, Washington, DC, pp 125–144

78. Zhao LW, Griggs BF, Chen CL, Gratzl JS (1994) Utilization of

softwood kraft lignin as adhesive for the manufacture of re-

constituted wood. J Wood Chem Technol 14:127–145

79. Gupta RC, Sehgal VC (1979) Effect of viscosity and molecular

weight of lignin-phenolformaldehyde resin on the glue adhesion

strength of plywood. Holzforsch Holzverwert 31:7–9
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