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Background: Although measuring albuminuria is the preferred
method for defining and staging chronic kidney disease (CKD),
total urine protein or dipstick protein is often measured instead.

Objective: To develop equations for converting urine protein–
creatinine ratio (PCR) and dipstick protein to urine albumin–
creatinine ratio (ACR) and to test their diagnostic accuracy in
CKD screening and staging.

Design: Individual participant–based meta-analysis.

Setting: 12 research and 21 clinical cohorts.

Participants: 919 383 adults with same-day measures of ACR
and PCR or dipstick protein.

Measurements: Equations to convert urine PCR and dipstick
protein to ACR were developed and tested for purposes of CKD
screening (ACR, ≥30 mg/g) and staging (stage A2: ACR, 30 to
299 mg/g; stage A3: ACR, ≥300 mg/g).

Results: Median ACR was 14 mg/g (25th to 75th percentile of
cohorts, 5 to 25 mg/g). The association between PCR and ACR
was inconsistent for PCR values less than 50 mg/g. For higher
PCR values, the PCR conversion equations demonstrated mod-
erate sensitivity (91%, 75%, and 87%) and specificity (87%, 89%,
and 98%) for screening (ACR, >30 mg/g) and classification into
stages A2 and A3, respectively. Urine dipstick categories of trace

or greater, trace to +, and ++ for screening for ACR values
greater than 30 mg/g and classification into stages A2 and A3,
respectively, had moderate sensitivity (62%, 36%, and 78%) and
high specificity (88%, 88%, and 98%). For individual risk predic-
tion, the estimated 2-year 4-variable kidney failure risk equation
using predicted ACR from PCR had discrimination similar to that
of using observed ACR.

Limitation: Diverse methods of ACR and PCR quantification
were used; measurements were not always performed in the
same urine sample.

Conclusion: Urine ACR is the preferred measure of albumin-
uria; however, if ACR is not available, predicted ACR from PCR or
urine dipstick protein may help in CKD screening, staging, and
prognosis.
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Increased urinary protein levels predict adverse kid-
ney and cardiovascular outcomes in various popula-

tions and settings (1–5). Albumin is the most abundant
protein in the urine in most types of proteinuric kidney
disease, and its laboratory assay was recently standard-
ized (6, 7). Thus, measurement of albuminuria is consid-
ered the gold standard for quantifying urinary protein.
Clinical practice guidelines recommend screening for and
monitoring of albuminuria and incorporate increased lev-
els of albuminuria into the definition and staging of
chronic kidney disease (CKD) (8–12). In addition, several
tools for assessing absolute risk for end-stage kidney dis-
ease, cardiovascular disease, and death require albumin-
uria as an input (13–16).

Rather than measuring albuminuria, many provid-
ers and research studies quantify urinary protein by us-
ing a total protein assay or semiquantitative urine dip-

stick. These methods may be used because of lower
cost, tradition, or other considerations; however, they
are probably less precise than those that measure urine
albumin directly. Total protein assays are not standard-
ized, and their sensitivity for different protein compo-
nents may vary (17). Dipstick protein measures provide
only a gross categorization of urine protein levels (17).
Furthermore, whereas urine protein and urine albumin
tests typically quantify a 24-hour collection, or are stan-
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dardized to urine creatinine to estimate 24-hour excre-
tion, dipstick protein measures are obtained at a single
time point and do not correct for dilution.

The Kidney Disease Improving Global Outcomes
(KDIGO) guideline notes that if albuminuria measure-
ment is not available, urine reagent strip results may be
substituted, with dipstick protein values of “trace to +”
and “+ or greater” assigned to albuminuria categories
of 30 to 299 mg/g and 300 mg/g and higher, respec-
tively (12). Likewise, protein–creatinine ratio (PCR) val-
ues of 150 to 500 mg/g and greater than 500 mg/g
may be assigned to the respective albuminuria catego-
ries (12). Single studies have examined the relationship
between PCR or urine dipstick protein categories and
urine albumin–creatinine ratio (ACR) (12, 18–28). How-
ever, the diagnostic performance of these thresholds
and the consistency of relationships across several co-
horts and health systems have not been established.
The aim of this study was to develop equations to con-
vert urine PCR and dipstick protein to ACR and to eval-
uate their performance for use in efforts to screen for,
categorize, and risk stratify patients with CKD.

METHODS
Participating Cohorts

The Chronic Kidney Disease Prognosis Consortium
(CKD-PC) includes study cohorts from around the world
containing information on kidney measures. The CKD-
PC's design was described previously (29); in brief, co-
horts were initially identified in 2009 through a litera-
ture search using key search terms. The consortium
continues to grow and remains open (criteria for join-
ing are available at www.ckdpc.org). The selection of
cohorts for this report is described in Supplemental
Appendix 1 (available at Annals.org). For this article,
cohorts are categorized by whether they contain partic-
ipant information primarily from data collected from
structured research cohort visits or as part of clinical
care (Supplemental Appendix 1) (29). For the current
study, cohorts were included if they contained at least
200 participants with measures of ACR and PCR or dip-
stick protein on the same day, and if they contained a
full range of ACR values (both <300 mg/g and ≥300
mg/g). The type of cohort was not restricted; thus, in-
cluded cohorts could be prospective studies, clinical
trials, or administrative health care data sets. Likewise,
there was no restriction on type of laboratory assay. All
analyses in the present study were restricted to partici-
pants aged 18 years or older. This study was approved
for use of deidentified data and the need for informed
consent was waived by the institutional review board at
Johns Hopkins Bloomberg School of Public Health, Bal-
timore, Maryland.

Procedures
Methods of collecting urine to assess ACR, PCR,

and urine dipstick varied by eligible cohort and in-
cluded collections of morning spot urine, random spot
urine, and 24-hour urine (Supplemental Appendix 1).
Estimated glomerular filtration rate (eGFR) was calcu-

lated by using the Chronic Kidney Disease Epidemiol-
ogy Collaboration creatinine equation (30). For cohorts
in which the creatinine measurement was not standard-
ized to isotope dilution mass spectrometry, values were
multiplied by 0.95 before eGFR was calculated (31). We
defined diabetes as a fasting glucose level of 7.0
mmol/L or greater (≥126 mg/dL), a nonfasting glucose
level of 11.1 mmol/L or greater (≥200 mg/dL), a hemo-
globin A1c value of 6.5% or greater, use of glucose-
lowering drugs, or self-reported diabetes. Hyperten-
sion was defined as blood pressure above 140/90 mm
Hg or the use of antihypertensive medications. Partici-
pants with a history of myocardial infarction, coronary
revascularization, heart failure, or stroke were consid-
ered to have a history of cardiovascular disease.

Statistical Analysis
Model Development

Within each cohort, the relationships between ACR
and PCR were modeled by using multivariable-adjusted
linear regression models (Supplemental Appendix 1). Af-
ter models were fit in each cohort, relationships were vi-
sually depicted to demonstrate intercohort variation. Be-
cause of low heterogeneity, a multivariate random-effects
meta-analysis using the restricted maximum likelihood for
estimation and inputs of point estimates and variances for
each cohort was performed by using the Stata (StataCorp)
command mvmeta (32). A similar procedure was followed
for urine dipstick protein, which was categorized as neg-
ative, trace, +, ++, or greater than ++. In sensitivity analy-
ses, we also evaluated the associations between mea-
sures from urine samples collected within 90 days of each
other.

Model Testing
Predicted levels of ACR and the prediction interval

(5th to 95th percentile) were calculated on the basis of
the crude and adjusted models for all combinations of
sex, diabetes, and hypertension (Supplemental Appen-
dix 1). To assess the real-world utility of the prediction
equations, we evaluated the sensitivity, specificity, and
positive and negative predictive values of PCR thresh-
olds for screening for CKD (ACR, ≥30 mg/g) and cate-
gorizing it as stage A2 (ACR, 30 to 299 mg/g) or stage
A3 (ACR, ≥300 mg/g). For the crude model, we used a
single threshold for all participants; for the adjusted
model, we varied the threshold to be the PCR level
corresponding to the predicted ACR of 30 mg/g and
300 mg/g for each combination of sex, diabetes, and
hypertension. For urine dipstick protein, we evaluated
the trace and greater, trace to +, and ++ categories for
CKD screening and staging, respectively. Sensitivity,
specificity, and positive and negative predictive values
were summarized across cohorts by using the interco-
hort median and interquartile range. Sensitivity and
specificity were meta-analyzed by using the Stata com-
mand metandi, fitting a 2-level mixed logistic regres-
sion model with independent binomial distributions for
the true-positives and true-negatives conditional on the
sensitivity and specificity in each study and a bivariate
normal model with the logit transforms of sensitivity
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and specificity across studies (33). Analyses were also
performed in subgroups of sex, eGFR, diabetes, and
hypertension.

Among participants with an eGFR below 60 mL/
min/1.73 m2 in cohorts that supplied data on serum
creatinine and same-day PCR and ACR, we plotted the
2-year 4-variable kidney failure risk equation (KFRE) us-
ing the predicted ACR versus the equation using the
observed ACR (13, 34). We evaluated sensitivity, spec-
ificity, and positive and negative predictive values for
the clinical thresholds of 20% and 40% 2-year risk for
kidney failure separately in cohorts sending data to the
Data Coordinating Center and in the 12 OptumLabs
Data Warehouse (OLDW) cohorts. Finally, we com-
pared the discrimination of the KFRE using predicted
ACR to that using observed ACR in the cohorts with
data on end-stage kidney disease outcomes.

All analyses were performed in Stata 15. Statistical
significance was determined by using a 2-sided test
with a threshold P value of less than 0.050.

Role of the Funding Source
The funders had no role in the study design, data

collection, analysis, data interpretation, or writing of the
report.

RESULTS
Participant Characteristics

The study included 919 383 participants in 33 co-
horts, including 12 research (n = 36 592) and 21 clinical
cohorts (n = 882 791), with data collected between
1982 and 2019 (Table 1). Overall, mean age was 61
years (SD, 15); 50% of the participants were female,
4.8% were black, 56% had diabetes, and 72% had hy-
pertension. Among the 919 383 participants, 147 066
pairs of ACR and PCR tests and 1 903 359 pairs of ACR
and urine dipstick tests were performed. Median ACR
was 14 mg/g (25th to 75th percentile of cohorts, 5 to 25
mg/g); median PCR was 197 mg/g (25th to 75th per-
centile of cohorts, 89 to 682 mg/g); and 7.0% of urine
dipstick tests indicated the presence of trace proteins,
3.9% of +, 1.8% of ++, and 2.2% of greater than ++
(Table 1 and Supplement Table 1, available at Annals
.org).

Relationship Between PCR and ACR and
Between Urine Dipstick Category and ACR

For PCR values above 50 mg/g, the relationship
between PCR and ACR was nearly linear on the log
scale, with a shallower slope for values greater than 500
mg/g than for those from 50 to 500 mg/g and relative
consistency across cohorts (Figure, Supplement Figure
1 [available at Annals.org], and Supplement Table 2
[available at Annals.org]). Below a PCR of 50 mg/g, little
consistency in association was seen across cohorts. The
crude model showed a 2.99-fold increase in predicted
ACR for each doubling of PCR in the range of 50 to 500
mg/g, and a 2.18-fold increase in predicted ACR for
each doubling of PCR over 500 mg/g. In the adjusted
model, the respective increase in predicted ACR for
changes in PCR was similar (2.96-fold and 2.16-fold)

and the effects of sex, diabetes, and hypertension on
the relationship were relatively small (Supplement Ta-
ble 3, available at Annals.org). The relationship be-
tween PCR and ACR remained highly similar across all
combinations of sex, diabetes, and hypertension status
(Supplement Figure 2, available at Annals.org). The
meta-analyzed associations between PCR and ACR
were also similar when values measured within 90 days
were used (Supplement Table 4, available at Annals
.org).

A graded relationship was observed between urine
dipstick protein categories and ACR, with some heter-
ogeneity across cohorts (Supplement Figure 3 and
Supplement Table 5, A, available at Annals.org). The
relationship between dipstick category and ACR re-
mained largely similar in the adjusted model, with rel-
atively small effects of sex, diabetes, and hypertension
(Supplement Table 5, B, available at Annals.org). The
relationship between dipstick category and ACR was
also similar when all values measured within 90 days
were used (Supplement Table 6, available at Annals
.org).

Prediction Model Performance
Table 2 shows the prediction equations for con-

verting PCR to ACR and urine dipstick protein catego-
ries to ACR on the basis of meta-analyzed associations
of same-day measures, as well as the equations for pre-
dicted error. Scatter plots of observed versus predicted
ACR showed closer approximation in the higher than
lower levels in most cohorts (Supplement Figure 4,
available at Annals.org). Predicted ACR values and their
95% prediction intervals (incorporating both SE and
predicted error, interpreted as the interval in which a
95% chance existed that a concomitantly measured
ACR would fall into that interval) for various levels of
PCR and dipstick categories are shown in Table 3 and
Supplement Table 7 (available at Annals.org), respec-
tively. The predicted ACR levels corresponding to PCRs
of 150 mg/g and 500 mg/g were 33 mg/g (95% predic-
tion interval, 12 to 90 mg/g) and 220 mg/g (prediction
interval, 113 to 427 mg/g), respectively, in the crude
model. Thresholds of the PCR levels corresponding to
predicted ACRs of 30 mg/g and 300 mg/g used to test
performance were 142 mg/g and 660 mg/g, respec-
tively. The predicted values of ACR for trace, +, ++, and
greater than ++ dipstick protein categories were 25
mg/g (prediction interval, 8 to 80 mg/g), 67 mg/g (pre-
diction interval, 21 to 207 mg/g), 337 mg/g (prediction
interval, 132 to 860 mg/g), and 1229 mg/g (prediction
interval, 734 to 2057 mg/g), respectively. A tool for
converting PCR or dipstick values to ACR is available at
ckdpcrisk.org/pcr2acr.

Diagnostic Test Accuracy
Screening for CKD

The sensitivity, specificity, and positive and nega-
tive predictive values of the predicted ACR by using the
PCR conversion equation for detecting an ACR of 30
mg/g or greater (that is, CKD screening) varied by co-
hort but were similar between the crude and adjusted
models (Supplement Table 8, available at Annals.org).
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In the crude model, meta-analyzed sensitivity and spec-
ificity of the PCR-based equation for detecting an ACR
of 30 mg/g or above were 91.2% (95% CI, 87.3% to
93.9%) and 86.5% (CI, 81.4% to 90.3%), respectively,
and pooled median positive and negative predictive
values were 91.1% (25th to 75th percentile of cohorts,
87.5% to 94.5%) and 84.5% (25th to 75th percentile of
cohorts, 77.6% to 89.4%), respectively (Table 4 and
Supplement Table 8, available at Annals.org).

The sensitivity, specificity, and positive and nega-
tive predictive values for urine dipstick categories of
trace and greater for ACRs of 30 mg/g and above var-
ied across cohorts (Supplement Table 9, available at
Annals.org). The meta-analyzed sensitivity and specific-

ity of the urine dipstick categories of trace and greater
for detecting ACRs of 30 mg/g and above were 62.0%
(CI, 50.9% to 72.0%) and 87.8% (CI, 83.3% to 91.2%),
respectively, and pooled median positive and negative
predictive values were 70.8% (25th to 75th percentile
of cohorts, 65.8% to 73.6%) and 81.7% (25th to 75th
percentile of cohorts, 77.6% to 85.2%), respectively (Ta-
ble 5 and Supplement Table 9).

CKD Staging
The sensitivity and specificity of the crude PCR con-

version equation for identifying CKD stage A2 (ACR, 30
to 299 mg/g) were 74.9% (CI, 70.8% to 78.7%) and

Table 1. Baseline Characteristics in Participants With Urine PCR or Dipstick Measurements on the Same Day as the ACR
Measure*

Study† Participants,
n

Cohort
Type‡

Mean Age
(SD), y

Median ACR
(25th–75th
percentile of
cohorts), mg/g

Mean eGFR (SD),
mL/min/
1.73 m2

eGFR
<60 mL/min/
1.73 m2, n (%)

Female, % DM, % HTN, %

AusDiab 11 204 Research 55 (15) 5 (4–9) 84 (17) 944 (8) 55 9.7 36
CanPREDDICT 2648 Research 68 (13) 141 (27–769) 27 (10) 2236 (100) 37 49 97
CRIC 3772 Research 58 (11) 51 (8–449) 45 (15) 3200 (85) 45 48 88
IDNT 1706 Research 60 (8) 1380 (586–2682) 50 (19) 1166 (72) 34 100 100
MASTERPLAN 516 Research 61 (12) 77 (16–344) 36 (16) 479 (93) 31 44 95
NIPPON DATA2010 2796 Research 59 (16) 6 (3–18) 97 (17) 77 (3) 57 13 36
Nefrona 274 Research 59 (13) 184 (34–659) 33 (17) 241 (90) 39 30 98
NephroTest 1677 Research 60 (15) 83 (14–451) 43 (22) 1341 (80) 33 30 92
Pima 6081 Research 38 (15) 13 (7–38) 115 (21) 192 (3) 58 37 28
RENAAL 722 Research 61 (7) 1013 (375–2287) 42 (14) 617 (88) 38 100 100
SUN-Macro 896 Research 63 (9) 1405 (663–2516) 33 (11) 840 (99) 23 100 100
Takahata 4300 Research 64 (10) 9 (6–18) 97 (13) 65 (2) 55 9.3 62
CURE-CKD 429 Clinical 61 (18) 51 (11–223) 59 (32) 226 (58) 48 26 52
Geisinger 3128 Clinical 67 (15) 35 (9–221) 51 (25) 2195 (73) 52 67 95
ICES-KDT 589 989 Clinical 60 (16) 14 (5–25) 83 (23) 97 253 (17) 50 54 71
LCC 7384 Clinical 77 (10) 10 (4–35) 50 (13) 5821 (79) 59 51 96
Mt_Sinai_BioMe 1679 Clinical 61 (15) 61 (11–524) 49 (26) 1123 (70) 48 49 79
OLDW

Cohort 1 16 341 Clinical 62 (14) 16 (7–41) 75 (24) 4140 (27) 52 75 82
Cohort 2 16 396 Clinical 64 (14) 16 (7–52) 74 (26) 4906 (31) 50 84 85
Cohort 3 30 940 Clinical 60 (15) 9 (5–27) 81 (23) 5571 (18) 52 47 64
Cohort 4 57 673 Clinical 63 (14) 16 (7–49) 75 (25) 15 407 (28) 52 69 74
Cohort 5 27 204 Clinical 59 (15) 21 (7–45) 80 (28) 6596 (25) 53 76 82
Cohort 6 2318 Clinical 62 (15) 16 (7–63) 71 (27) 774 (35) 53 73 85
Cohort 7 12 226 Clinical 66 (13) 12 (6–35) 72 (23) 3803 (31) 50 74 82
Cohort 8 8083 Clinical 62 (15) 15 (6–60) 75 (25) 2230 (29) 51 71 80
Cohort 9 3971 Clinical 58 (14) 13 (6–31) 82 (25) 753 (20) 48 57 71
Cohort 10 26 396 Clinical 61 (15) 11 (5–35) 80 (24) 5098 (20) 51 58 69
Cohort 11 53 960 Clinical 61 (14) 12 (5–45) 76 (25) 13 925 (27) 46 53 70
Cohort 12 7942 Clinical 60 (15) 11 (5–45) 79 (27) 1853 (24) 53 65 75

PSP-CKD 1253 Clinical 76 (10) 18 (6–53) 50 (16) 503 (73) 52 45 83
RCAV 9361 Clinical 66 (11) 13 (6–56) 72 (20) 2436 (28) 3.6 81 92
Sunnybrook 2043 Clinical 58 (18) 82 (16–391) 59 (32) 1135 (56) 49 40 67
West of Scotland 4075 Clinical 67 (14) 19 (4–95) 33 (19) 3766 (92) 46 35 42
Total 919 383 – 61 (15) 14 (5–25) 80 (25) 190 912 (21) 50 56 72

ACR = albumin–creatinine ratio; AusDiab = Australian Diabetes, Obesity, and Lifestyle Study; CanPREDDICT = Canadian Study of Prediction of
Death, Dialysis and Interim Cardiovascular Events; CRIC = Chronic Renal Insufficiency Cohort; CURE-CKD = Center for Kidney Disease Research,
Education, and Hope; DM = diabetes mellitus; eGFR = estimated glomerular filtration rate; HTN = hypertension; ICES-KDT = Institute for Clinical
Evaluation Science, Kidney, Dialysis, and Transplant Program; IDNT = Irbesartan Type II Diabetic Nephropathy Trial; LCC = The Leicester City and
County Chronic Kidney Disease Cohort; MASTERPLAN = Multifactorial Approach and Superior Treatment Efficacy in Renal Patients With the Aid of
a Nurse Practitioner; NIPPON DATA2010 = National Integrated Project for Prospective Observation of Non-communicable Disease and Its Trends
in the Aged 2010; OLDW = OptumLabs Data Warehouse; PCR = protein–creatinine ratio; PSP-CKD = Primary–Secondary Care Partnership to
Prevent Adverse Outcomes in Chronic Kidney Disease; RCAV = Racial and Cardiovascular Risk Anomalies in CKD Cohort; RENAAL = Reduction of
Endpoints in Non-insulin Dependent Diabetes Mellitus With the Angiotensin II Antagonist Losartan; SUN-Macro = Sulodexide Macro-albuminuria
trial.
* If several measurements were done per person, a random visit was selected.
† For more details about the studies, including references, see Supplemental Appendix 2 (available at Annals.org).
‡ Cohort type indicates whether the data were collected as part of structured research cohort visits or as part of clinical care.
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88.7% (CI, 86.3% to 90.7%), respectively, and the posi-
tive and negative predictive values were 72.5% (25th to
75th percentile of cohorts, 69.2% to 75.6%) and 88.7%
(25th to 75th percentile of cohorts, 86.0% to 91.1%),
respectively (Table 4 and Supplement Table 10, avail-

able at Annals.org). The equations had slightly higher
sensitivity and higher specificity for detecting CKD
stage A3 (ACR, ≥300 mg/g), with meta-analyzed sensi-
tivity and specificity of 86.6% (CI, 83.5% to 89.2%) and
97.5% (CI, 96.2% to 98.3%), respectively, and pooled
median positive and negative predictive values of
90.4% (25th to 75th percentile of cohorts, 88.3% to
94.8%) and 95.1% (25th to 75th percentile of cohorts,
91.5% to 97.5%). Performance was similar when the ad-
justed equation was used (Table 4 and Supplement Ta-
ble 10 and Table 11, available at Annals.org).

Dipstick values of trace to + had lower sensitivity
and specificity for CKD stage A2 (Table 5 and Supple-
ment Table 12, available at Annals.org). Dipstick values
of ++ had meta-analyzed sensitivity and specificity of
77.6% (CI, 71.7% to 82.6%) and 97.5% (CI, 95.5% to
98.6%), respectively, for CKD stage A3 (Table 5 and
Supplement Table 13, available at Annals.org). Diag-
nostic performance was highly similar among sub-
groups based on sex, diabetes, hypertension, and CKD
G (glomerular filtration rate) stage (Table 5).

CKD Prognosis
The kidney failure risk estimates calculated by the

2-year 4-variable KFRE using predicted ACR versus the
KFRE using observed ACR showed agreement, particu-
larly in the OLDW cohorts (Supplement Figure 5, avail-
able at Annals.org). In the crude model, the sensitivity
and specificity for the 2-year 40% kidney failure risk
threshold were 80.5% and 99.6%, respectively, in co-
horts that sent data to the Data Coordinating Center
and 95.6% and 99.4%, respectively, in the OLDW co-
horts. The median c-statistic for the 2-year KFRE across
cohorts was 0.879 (25th to 75th percentile of cohorts,

Figure. Relationship between urine PCR and urine ACR
values in individual cohorts (multicolored lines) and after
random-effects meta-analysis (thick black line) in the crude
model.
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Associations were estimated by using log-transformed urine ACR and
urine PCR, with the latter modeled by using linear splines with knots at
50 mg/g and 500 mg/g. ACR = albumin–creatinine ratio; PCR = pro-
tein–creatinine ratio.

Table 2. Equations for Converting Urine PCR to Urine ACR and Urine Dipstick Protein to Urine ACR From the Crude and
Adjusted Models*

Model Equation†‡

PCR
Crude

Predicted ACR pACR = exp (5.3920 + 0.3072 × log (min (PCR/50, 1)) + 1.5793 × log (max(min(PCR/500, 1), 0.1)) + 1.1266 × log (max (PCR/500, 1)))
Predicted error pErr = sqrt (exp (−2.2996 + 0.1043 × log (min (pACR/30, 1)) − 0.4401 × log (max(min(pACR/300, 1), 0.1)) − 0.3897 × log (max

(pACR/300, 1))))
Adjusted

Predicted ACR pACR = exp (5.2659 + 0.2934 × log (min (PCR/50, 1)) + 1.5643 × log (max(min(PCR/500, 1), 0.1)) + 1.1109 × log (max (PCR/500, 1))
− 0.0773 × (if female) + 0.0797 × (if diabetic) + 0.1265 × (if hypertensive))

Predicted error pErr = sqrt (exp (−2.0664 + 0.1658 × log (min (pACR/30, 1)) − 0.4599 × log (max(min(pACR/300, 1), 0.1)) − 0.3084 × log (max
(pACR/300, 1)) + 0.0847 × (if female) − 0.2553 × (if diabetic) − 0.2299 × (if hypertensive)))

Dipstick
Crude

Predicted ACR pACR = exp (2.4738 + 0.7539 × (if trace) + 1.7243 × (if +) + 3.3475 × (if ++) + 4.6399 × (if >++))
Predicted error pErr = sqrt (exp (−1.3710 + 0.6843 × log (min (pACR/30, 1)) − 0.1869 × log (max(min(pACR/300, 1), 0.1)) − 0.9220 × log (max

(pACR/300, 1))))
Adjusted

Predicted ACR pACR = exp (2.0373 + 0.7270 × (if trace) + 1.6775 × (if +) + 3.2622 × (if ++) + 4.5435 × (if >++) + 0.0822 × (if female) + 0.27249 ×
(if diabetic) + 0.33627 × (if hypertensive))

Predicted error pErr = sqrt (exp (−0.4525 + 0.5939 × log (min (pACR/30, 1)) − 0.1292 × log (max(min(pACR/300, 1), 0.1)) − 0.2610 × log (max
(pACR/300, 1)) − 0.0772 × (if female) − 0.2093 × (if diabetic) − 0.1624 × (if hypertensive)))

ACR = albumin–creatinine ratio; PCR = protein–creatinine ratio.
* In milligrams per gram.
† Diabetic is defined as a fasting glucose level ≥7.0 mmol/L (126 mg/dL), a nonfasting glucose level ≥11.1 mmol/L (200 mg/dL), a hemoglobin A1c
value ≥6.5%, use of glucose-lowering drugs, or self-reported diabetes. Hypertensive is defined as blood pressure >140/90 mm Hg or the use of
antihypertensive medications. Log refers to the natural log-transformation (ln).
‡ Prediction interval: exp (log (pACR) −1.96 × pErr), exp (log (pACR) + 1.96 × pErr).
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0.842 to 0.907) when observed ACR was used, 0.883
(25th to 75th percentile of cohorts, 0.844 to 0.909) for
ACR predicted with the crude equation, and 0.883
(25th to 75th percentile of cohorts, 0.845 to 0.909) for
ACR predicted with the adjusted equation. The
c-statistic for the use of predicted rather than observed
ACR was statistically worse in only 2 of 25 cohorts (Sup-
plement Table 14, available at Annals.org).

DISCUSSION
In this international collaborative meta-analysis of

919 383 participants from 33 cohorts, we found an
overall consistent relationship between PCR and ACR
for PCR values greater than 50 mg/g and between
urine dipstick protein categories and ACR across a
wide range of cohorts. We developed equations for
converting PCR or urine dipstick protein categories to
ACR and evaluated them for potential use in individual
screening and classification efforts and risk prediction.
For efforts to categorize patients into CKD stages A2
and A3, the PCR conversion equations demonstrated

moderate sensitivity and specificity (>74%) for detect-
ing ACRs of 30 to 299 mg/g and 300 mg/g and greater;
the urine dipstick categories of trace to + and ++ had
high specificity (>88%) but lower sensitivity (<78%) for
identifying ACRs of 30 to 299 mg/g and 300 mg/g and
greater, respectively. For individual risk prediction, the
estimated 2-year 4-variable KFRE using predicted ACR
was very similar to the one using observed ACR.

Our empirically developed equation for converting
PCR to ACR corresponded well with threshold esti-
mates in the current KDIGO guideline on CKD staging
(12). The guideline recommends use of ACR for defin-
ing and staging CKD, with ACR values of 30 mg/g and
300 mg/g defining albuminuria categories A2 and A3,
respectively. Our crude equation suggests that a
“trace” value on urine dipstick corresponds to an ACR
of 25 mg/g, “+” corresponds to an ACR of 67 mg/g,
and “++” corresponds to an ACR of 337 mg/g. Like-
wise, we estimate in the crude PCR equation that a PCR
value of 150 mg/g corresponds to an ACR of 33 mg/g,
albeit with a prediction interval of 12 to 90 mg/g, and

Table 4. Crude Model Sensitivity and Specificity for Detecting Different Urine ACR Levels From Equivalent Urine PCR Levels,
Overall and by Subgroup

Group Participants,
n

ACR >30 mg/g,
PCR >142 mg/g

ACR 30–299 mg/g,
PCR 142-660 mg/g

ACR >300 mg/g

Sensitivity
(95% CI)

Specificity
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

Overall 147 066 0.912 (0.873–0.939) 0.865 (0.814–0.903) 0.749 (0.708–0.787) 0.887 (0.863–0.907) 0.866 (0.835–0.892) 0.975 (0.962–0.983)
Male 87 621 0.914 (0.875–0.941) 0.880 (0.831–0.916) 0.755 (0.710–0.794) 0.891 (0.867–0.911) 0.858 (0.827–0.885) 0.977 (0.964–0.985)
Female 59 445 0.910 (0.871–0.939) 0.851 (0.798–0.892) 0.739 (0.699–0.775) 0.886 (0.858–0.909) 0.881 (0.847–0.908) 0.975 (0.962–0.983)
No diabetes 71 124 0.871 (0.828–0.904) 0.889 (0.849–0.920) 0.711 (0.667–0.751) 0.878 (0.848–0.902) 0.826 (0.791–0.856) 0.981 (0.969–0.988)
Diabetes 74 757 0.929 (0.900–0.950) 0.852 (0.795–0.895) 0.775 (0.742–0.804) 0.884 (0.863–0.902) 0.882 (0.853–0.906) 0.970 (0.957–0.979)
No hypertension 37 030 0.856 (0.806–0.895) 0.909 (0.872–0.936) 0.678 (0.626–0.727) 0.896 (0.865–0.920) 0.932 (0.785–0.871) 0.980 (0.966–0.989)
Hypertension 108 656 0.919 (0.884–0.944) 0.856 (0.803–0.897) 0.759 (0.719–0.795) 0.882 (0.859–0.902) 0.870 (0.839–0.896) 0.974 (0.961–0.982)
CKD

Stage G1–G2 61 299 0.863 (0.819–0.898) 0.911 (0.878–0.936) 0.733 (0.685–0.775) 0.889 (0.863–0.910) 0.818 (0.778–0.853) 0.987 (0.979–0.992)
Stage G3 44 032 0.918 (0.876–0.947) 0.826 (0.740–0.888) 0.752 (0.714–0.787) 0.876 (0.851–0.898) 0.860 (0.820–0.892) 0.974 (0.960–0.983)
Stage G4–G5 28 174 0.960 (0.943–0.971) 0.728 (0.637–0.803) 0.755 (0.717–0.790) 0.881 (0.853–0.905) 0.924 (0.900–0.942) 0.916 (0.873–0.945)

ACR = albumin–creatinine ratio; CKD = chronic kidney disease; PCR = protein–creatinine ratio.

Table 3. Predicted Urine ACR Values and Their Prediction Intervals for Various Urine PCR Levels From the Crude and Adjusted
Equations*†

PCR ACR

Crude Model Adjusted Model

Male Female

No HTN HTN No HTN HTN

No DM DM No DM DM No DM DM No DM DM

50 6 (2–15) 5 (2–15) 6 (2–14) 6 (2–15) 6 (3–15) 5 (2–14) 5 (2–14) 6 (2–14) 6 (3–14)
150 33 (12–90) 29 (9–96) 32 (11–89) 33 (12–94) 36 (15–88) 27 (8–93) 30 (10–87) 31 (10–92) 33 (13–86)
500 220 (113–427) 194 (90–419) 210 (108–408) 220 (113–428) 238 (134–424) 179 (79–407) 194 (96–394) 203 (100–413) 220 (119–407)
700 321 (174–592) 281 (139–571) 305 (165–562) 319 (172–591) 346 (202–591) 260 (123–552) 282 (147–540) 296 (154–567) 320 (182–563)
1000 480 (272–845) 418 (216–811) 453 (255–806) 475 (266–847) 514 (311–850) 387 (192–779) 419 (228–770) 439 (238–810) 476 (280–810)
2000 1047 (644–1703) 903 (501–1627) 978 (586–1632) 1025 (613–1714) 1110 (710–1736) 836 (449–1556) 905 (528–1554) 949 (551–1633) 1027 (641–1648)
3000 1653 (1059–2580) 1417 (818–2454) 1535 (952–2474) 1608 (995–2599) 1742 (1147–2643) 1312 (735–2342) 1421 (858–2351) 1488 (897–2471) 1612 (1038–2504)
5000 2940 (1975–4376) 2499 (1511–4133) 2707 (1748–4192) 2836 (1827–4403) 3072 (2096–4502) 2314 (1360–3935) 2506 (1579–3976) 2625 (1650–4177) 2843 (1899–4257)

ACR = albumin–creatinine ratio; DM = diabetes mellitus; HTN = hypertension; PCR = protein–creatinine ratio.
* All values are milligrams per gram; to convert to milligrams per millimole, divide by 8.84 mmol/g.
† The prediction interval was estimated as the predicted level of ACR ± 1.96 times the square root of the addend of the squared SE term and the
squared predicted error.
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that a PCR value of 500 mg/g corresponds to an ACR of
220 mg/g (prediction interval, 113 to 427 mg/g). These
conversions are quite similar to those suggested by
KDIGO, in which dipstick protein values of “trace to +”
and “+ or greater” and PCR values of 150 to 500 mg/g
and greater than 500 mg/g are assigned to albuminuria
categories 30 to 299 mg/g and 300 mg/g or greater,
respectively (12). In contrast, our results were slightly
different from the suggested value of nephrotic-range
proteinuria, noted as a PCR value of 3000 mg/g or an
ACR value of 2220 mg/g in the guideline (12). On the
basis of our crude model, a 3000-mg/g PCR corre-
sponded to a 1603-mg/g ACR (prediction interval,
1015 to 2532 mg/g).

Despite widespread awareness of the importance
of using ACR measurements as the gold standard to
assess and monitor CKD, inconsistencies still exist in
the measurement of ACR versus PCR in clinical practice
and in research studies across the world (22). Because
the costs of measuring total protein may be lower than
those for measuring albumin, financial considerations
may affect the implementation of ACR measurement
(12). Clinical reasons also may exist for practitioners to
use PCR instead of ACR to quantify and monitor clini-
cally significant levels of proteinuria (such as in cases of
glomerulonephritis or perhaps nephrotic-range pro-
teinuria). In this context, our PCR conversion equations
may have public health, clinical, and research implica-
tions from a practical and cost-effective perspective, fa-
cilitating the use of PCR as a screening, staging, and
prognostic tool for CKD.

Previous studies (based on an English-language
MEDLINE search through March 2020) investigating the
relationship between PCR and ACR reported inconsis-
tent results, with some showing strong correlation (18–
20, 22) and others not (21). In a recent study from a
population-based cohort of 47 714 adults in Canada,
Weaver and colleagues (35) derived equations to esti-
mate ACR from PCR, taking into account nonlinearity
and modification by several clinical characteristics. At
higher PCR levels, an approximately linear relationship
was seen between PCR and ACR, but the relationship

was less correlated at lower levels, with nearly no rela-
tionship at PCR values below 50 mg/g (35). Our results
were generally consistent with these observations but
further increased the generalizability to a large and di-
verse international population, confirming good con-
cordance of our PCR conversion equations with the cur-
rent KDIGO estimates (12). Of importance, these
equations might allow implementation of risk predic-
tion models in which ACR has been incorporated (13,
15, 16, 36), leading to increased opportunities for prac-
titioners who measure only PCR to use these tools for
better decision making and patient management. Our
results demonstrated similar estimates for the KFRE
when predicted (vs. observed) ACR was used, support-
ing the potential utility of predicted ACR in risk predic-
tion. Our PCR conversion equations also might facilitate
data integration across research studies in a broad
range of populations. Although the adjusted equation
incorporated sex, hypertension, and diabetes, the coef-
ficient values were small. Given that the crude model is
simpler and performs nearly the same as the adjusted
model, the crude equation may be preferable for ease
of implementation.

The urine dipstick test has been widely used as an
initial screening tool for evaluating proteinuria primarily
because of its low cost, simplicity, and ability to provide
rapid point-of-care information to both clinicians and
patients (24). However, commonly used reagent strip
devices for total protein measurement do not adjust for
urinary concentration and provide only semiquantita-
tive results. Studies have consistently shown that urine
dipstick testing has low sensitivity for CKD screening
(ACR, ≥30 mg/g) despite its high specificity (23–27). In-
deed, in our study, the dipstick category of trace and
greater had low sensitivity (62.0%) but high specificity
(87.8%) for detecting ACRs of 30 mg/g or greater. How-
ever, if detecting CKD stage A3 (ACR, ≥300 mg/g) were
the goal, the sensitivity of the ++ category was 77.6%,
with a specificity of 97.5%. In many settings, access to
laboratory services is limited, and low-cost diagnostic
tools, such as urine dipstick tests, are essential (24, 25).
The performance of these tools should be evaluated

Table 5. Crude Model Sensitivity and Specificity for Detecting Different Urine ACR Levels From Equivalent Dipstick
Categories, Overall and by Subgroup

Group Participants,
n

ACR >30 mg/g,
by Dipstick Trace or Greater

ACR 30–299 mg/g,
by Dipstick Trace or �

ACR >300 mg/g,
by Dipstick �� or Greater

Sensitivity
(95% CI)

Specificity
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

Overall 1 903 359 0.620 (0.509–0.720) 0.878 (0.833–0.912) 0.356 (0.296–0.421) 0.882 (0.843–0.913) 0.776 (0.717–0.826) 0.975 (0.955–0.986)
Male 974 381 0.663 (0.559–0.753) 0.875 (0.831–0.909) 0.385 (0.319–0.456) 0.881 (0.842–0.911) 0.803 (0.745–0.851) 0.971 (0.948–0.984)
Female 928 978 0.569 (0.453–0.678) 0.880 (0.834–0.915) 0.328 (0.272–0.390) 0.883 (0.843–0.914) 0.742 (0.682–0.794) 0.974 (0.958–0.984)
No diabetes 689 075 0.611 (0.490–0.720) 0.873 (0.826–0.909) 0.353 (0.283–0.429) 0.881 (0.837–0.914) 0.775 (0.719–0.823) 0.979 (0.961–0.989)
Diabetes 1 213 978 0.631 (0.524–0.726) 0.876 (0.833–0.910) 0.359 (0.301–0.421) 0.880 (0.845–0.909) 0.783 (0.723–0.832) 0.970 (0.948–0.983)
No hypertension 449 679 0.583 (0.460–0.698) 0.873 (0.822–0.911) 0.356 (0.297–0.420) 0.881 (0.838–0.914) 0.758 (0.696–0.811) 0.983 (0.965–0.992)
Hypertension 1 453 584 0.628 (0.523–0.723) 0.877 (0.833–0.911) 0.360 (0.299–0.426) 0.881 (0.843–0.911) 0.785 (0.727–0.834) 0.971 (0.947–0.984)
CKD

Stage G1–G2 1 431 248 0.578 (0.469–0.680) 0.881 (0.838–0.914) 0.366 (0.310–0.425) 0.884 (0.946–0.913) 0.720 (0.693–0.746) 0.983 (0.972–0.990)
Stage G3 346 405 0.656 (0.550–0.748) 0.869 (0.826–0.902) 0.377 (0.312–0.478) 0.873 (0.836–0.902) 0.799 (0.746–0.844) 0.967 (0.944–0.981)
Stage G4–G5 80 529 0.800 (0.716–0.864) 0.840 (0.784–0.884) 0.389 (0.306–0.480) 0.870 (0.825–0.904) 0.852 (0.809–0.887) 0.940 (0.900–0.964)

ACR = albumin–creatinine ratio; CKD = chronic kidney disease.
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within the local context of test availability, cost, and ob-
jectives in considering strategies for CKD screening
and staging.

The study results must be interpreted in light of
some limitations. We used pairs of PCR and ACR or
urine dipstick protein and ACR tested on the same day,
but not necessarily in the same urine sample. Thus, we
may have overestimated the error in conversion, be-
cause albuminuria is subject to intraindividual biologi-
cal variability, even on the same day, due to various
pathologic and nonpathologic factors (such as posture,
exercise, and fever). Across cohorts, ACR, PCR, and
urine dipstick protein were tested in different clinical
settings by using different laboratory assays, which may
also explain some of the observed intra- and interco-
hort variation. Substantial between-laboratory variation
has been reported in current assays to measure total
urine protein, mostly by using either turbidimetry or
colorimetry (17, 37). The main reason for this is a vari-
able mixture of protein in the urine, which makes it dif-
ficult to define a standardized reference material for
measuring total urine protein (17). Nevertheless, our
results show a fairly consistent relationship between
PCR and ACR across diverse cohorts, at least at PCR
levels of 50 mg/g and greater, allowing for the devel-
opment of ACR equations by combining meta-analyzed
�-coefficients with little heterogeneity. For PCRs less
than 50 mg/g, we found no consistent association;
however, it is fair to say that most corresponding ACR
values are below 30 mg/g. Finally, caution is warranted
in cases of non–albumin-predominant proteinuria (such
as �1-microglobulin, immunoglobulins, and monoclo-
nal heavy or light chains), which may also have diagnos-
tic or prognostic value (38).

In conclusion, we developed equations for convert-
ing PCR or urine dipstick protein categories to ACR by
using random-effects meta-analysis in 33 multinational
cohorts. Our PCR conversion equations demonstrated
relatively high specificity and sensitivity for detecting
CKD stage A2 and higher, and the 2-year KFRE using
predicted ACR performed similarly to that using ob-
served ACR. Although further testing is required to es-
tablish the robustness and utility of these equations,
our results suggest that if ACR is not available, pre-
dicted ACR may be useful and informative for harmoni-
zation across research studies, CKD screening and clas-
sification efforts, and use in risk prediction equations.
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38. Schrader J, Lüders S, Kulschewski A, et al; MARPLE Study Group.
Microalbuminuria and tubular proteinuria as risk predictors of car-
diovascular morbidity and mortality in essential hypertension: final
results of a prospective long-term study (MARPLE Study)*. J Hyper-
tens. 2006;24:541-8. [PMID: 16467658]

ORIGINAL RESEARCH Converting Urine PCR to Urine ACR

10 Annals of Internal Medicine • Vol. 173 No. 6 • 15 September 2020 Annals.org

rich4/zai-aim/zai-aim/zai01820/zai8168w20z xppws S=1 6/17/20 6:00 4/Color Figure(s): F Art: M20-0529

http://www.annals.org


Current Author Addresses: Dr. Sumida: Division of Nephrol-
ogy, Department of Medicine, University of Tennessee Health
Science Center, 956 Court Avenue, Suite A220, Memphis, TN,
38163.
Dr. Nadkarni: One Gustave L. Levy Place, Box 1243, New York,
NY 10029.
Drs. Grams, Ballew, Coresh, Ballew, Matsushita, and Surap-
aneni, and Ms. Sang: Chronic Kidney Disease Prognosis Con-
sortium, 2024 East Monument Street, Baltimore, MD 21287.
Dr. Brunskill: Department of Nephrology, Leicester General
Hospital, Gwendolen Road, Leicester, LE5 4PW, United
Kingdom.
Dr. Chadban: Kidney Centre RPA, Level 2, Professor Marie
Bashir Centre, Royal Prince Alfred Hospital, Missendon Road,
Camperdown, New South Wales 2050, Australia.
Dr. Chang: 100 North Academy Ave, Danville, PA 17822.
Dr. Cirillo: Department of Public Health, Azienda Ospedaliera
Universitaria Federico II, via Sergio Pansini 5, 80131 Naples,
Italy.
Dr. Daratha: Providence Sacred Heart Medical Center and
Gonzaga University School of Anesthesia, Providence Sacred
Heart Doctor's Building, 105 West 8th Avenue, Suite 6050W,
Spokane, WA 99204.
Dr. Gansevoort: Department of Nephrology, University Medi-
cal Center Groningen, P.O. Box 30.001, 9700 RB Groningen,
The Netherlands.
Dr. Garg: Department of Medicine, Epidemiology and Biosta-
tistics, Western University, 800 Commissioners Road E, ELL-
101, Victoria Hospital, P.O. Box 5010, London, ON N6A 5W9,
Canada.
Dr. Iacoviello: IRCCS Neuromed, Via dell’Elettronica, 86077
Pozzilli (IS), Italy.
Dr. Kayama: Global Center of Excellence Program Study
Group, Yamagata University School of Medicine, 2-2-2 Iida-
Nishi, Yamagata 990-9585, Japan.
Dr. Konta: Department of Public Health and Hygiene,
Yamagata University Graduate School of Medical Science,
2-2-2 Iida-Nishi, Yamagata 990-9585, Japan.
Dr. Kovesdy: Division of Nephrology, University of Tennessee
Health Science Center, 956 Court Avenue, Room B222, Mem-
phis TN, 38163.
Dr. Lash: Division of Nephrology, Department of Medicine,
University of Illinois at Chicago, 840 South Wood Street (M/C
793), Chicago, IL 60612.
Dr. Lee: Moanalua Medical Center, 3288 Moanalua Road, Ho-
nolulu, HI 96819.
Dr. Major: Department of Health Sciences, George Davies
Centre, University of Leicester, 15 Lancaster Road, Leicester,
LE1 7HA, United Kingdom.
Dr. Metzger: CESP INSERM U1018, Hôpital Paul Brousse, Bat
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