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Abstract

An essential problem in component-based design is how to com-
pose components designed in isolation. Several approaches have
been proposed for specifying component interfaces that capture be-
havioral aspects such as interaction protocols, and for verifying
interface compatibility. Likewise, several approaches have been
developed for synthesizing converters between incompatible pro-
tocols. In this paper, we introduce the notion of adaptability as
the property that two interfaces have when they can be made com-
patible by communicating through a converter that meets specified
requirements. We show that verifying adaptability and synthesizing
an appropriate converter are two faces of the same coin: adaptabil-
ity can be formalized and solved using a game-theoretic framework,
and then the converter can be synthesized as a strategy that always
wins the game. Finally we show that this framework can be related
to the rectification problem in trace theory.

1. Introduction

Composing Intellectual Property blocks is an essential element
of a design methodology based on re-use. The composition of these
blocks when the IPs have been developed by different groups inside
the same company, or by different companies, is notoriously diffi-
cult. Side effects often make the behavior of the resulting design
unpredictable. Design rules have been proposed that try to alleviate
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the problem by forcing the designers to be precise about the behav-
ior of the individual components and to verify this behavior under a
number of assumptions about the environment in which they have to
operate. While this is certainly a step in the right direction, it is by
no means sufficient to guarantee correctness: extensive simulation
and prototyping are still needed on the compositions. Several meth-
ods have been proposed for hardware and software components that
encapsulate the IPs so that their behavior is protected from the in-
teraction with other components. Interfaces are then used to ensure
the compatibility between components. Roughly speaking, two in-
terfaces are compatible if they “fit together” as they are.

Simple interfaces, typically specified in the type system of a sys-
tem description language, may describe the types of values that are
exchanged between the components. More expressive interfaces,
typically specified informally in design documents, may describe
the protocol for the component interaction [1, 2, 3, 4, 5, 6]. In [4,
5] we presented a formal methodology for specifying the protocol
aspects of interfaces in a way that supports automatic compatibility
checks. The key element of the approach is the interpretation of
an interface as a game between a component and its environment,
and the use of game-theoretic algorithms for compatibility check-
ing. With this approach, given interfaces for different IPs, one can
check whether these IPs can be composed.

When components are taken from legacy systems or from third-
party vendors, it is likely that the interface protocols are not compat-
ible. This does not mean though that we are doomed: approaches
have been proposed that construct a converter among incompatible
communication protocols. We refer the reader to [2] for references
and a discussion of related work and for a general overview and
description of the problem of protocol conversion. In [2] we pro-
posed to define a protocol as a formal language (a set of strings
from an alphabet) and to use automata to finitely represent such
languages. The problem of converting one protocol into another
was then addressed by considering their conjuction as the product
of the corresponding automata and by removing the states and tran-
sitions that led to a violation of one of the two protocols. While the
algorithm was effective in the examples that were tried, it lacked a
more formal and mathematically sound interpretation. In particular
this made it difficult to understand and analyse its limitations and
properties.

In this paper, we combine and extend the results of both [4]
and [2]. In particular, we apply the game-theoretic interface par-
adigm of [4, 5] not only to the checking of interface compatibility,
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but also to the synthesis of interface adaptors, should the original
interfaces be incompatible. Informally, two interfaces are adaptable
if they can be made to fit together by communicating through a third
component, the adaptor. If interfaces specify only value types, then
adaptors are simply type converters. However, if interfaces spec-
ify interaction protocols, then adaptors are protocol converters. The
converter may need state to re-arrange the communication between
the original interfaces, in order to ensure compatibility1. A novel
aspect of our approach is that the protocol converter is synthesized
from a specification that says which re-arrangements are appropri-
ate in a given communication context. For instance, it is possible
to specify that the converter can change the timing of messages, but
not their order, using an n-bounded buffer, or that some messages
may be duplicated. Following and extending the approach of [4],
we synthesize interface protocol converters using game-theoretic
methods. In this way we provide a general formalization and a uni-
form solution, based on game theory, for the protocol conversion
problem of [2].

In Section 2 we illustrate with an example the automata-based
approach to the synthesis of protocol converters [2]. Unlike [2],
here we derive the converter starting from a specification of what
constitutes an acceptable protocol conversion. We set up and solve
the conversion problem for send-receive protocols, where the sender
and the receiver are specified as automata. A third automaton, the
requirement, specifies constraints on the converter, such as buffer
size and the possibility of message loss. In Section 3 we recast the
problem of protocol conversion in a more general, game-theoretic
framework inspired by [4]. This approach also provides us with
ready-to-use solution algorithms. Here the solution consists of a
winning strategy that complies with both the receive protocol and
the requirement in a game against the sender (which must be al-
lowed to follow any sequence of actions permitted by the send
protocol). If a winning strategy exists, then the two protocols are
convertible and the winning strategy can be used to synthesize the
converter. This shows that convertibility verification and converter
synthesis are indeed two faces of the same coin. In Section 4 we
outline how the method can be extended to deal with fairness con-
straints on the converter. Finally, in Section 5 we adapt the solution
to the rectification problem of [9] to produce a protocol converter,
and we contrast this approach to our methodology.

2. Automata-based Solution

We illustrate our approaches to protocol conversion by way of
an example, which is an extension (and in some sense, also a sim-
plification) of the one found in [2]. A producer and a consumer
component wish to communicate some complex data across a com-
munication channel. They both partition the data into two parts.
The interface of the producer is defined so that it can wait an un-
bounded amount of time between the two parts. On the other hand,
the interface of the consumer is defined so that it requires that once
the first part has been received, the second is also received during
the state transition that immediately follows the first. Clearly, the
two protocols are incompatible. Below, we illustrate how to synthe-
size a converter that enables them to communicate correctly.

The two protocols can be represented by the automata shown in

1Hence the notion of protocol converter can be seen as a special
case of the notion of behavior adaptor introduced in [7] to charac-
terize a modeling approach for communication-based design that is
the basis of the Metropolis framework [8].

Figure 1. There, the symbols a and b (and their primed counter-
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Figure 1: Handshake and serial protocols

parts) are used to denote the first and the second part of the data,
respectively. The symbol > denotes instead the absence or irrele-
vance of the data. In other words, it acts as a don’t care.

Figure 1.a shows the producer protocol. The self loop in state 1
indicates that the transmission of a can be followed by any number
of cycles before b is also transmitted. We call this protocol hand-
shake because it could negotiate when to send the second part of the
data. After b is transmitted, the protocol returns to its initial state,
and is ready for a new transaction. The ability to handle multiple
transactions is also an extension of our previous work.

Figure 1.b shows the receiver protocol. Here state 1 does not
have a self loop. Hence, once a has been received, the protocol as-
sumes that b is transmitted in the cycle that immediately follows.
This protocol is called serial because it requires a and b to be trans-
ferred back-to-back. Similarly to the sender protocol, once b is re-
ceived the automaton returns to its initial state, ready for a new
transaction.

We have used non-primed and primed versions of the symbols in
the alphabet of the automata to emphasize that the two sets of sig-
nals are different and should be connected through a converter. It
is the specification (below) that defines the exact relationships that
must hold between the elements of the two alphabets. Note that in
the definition of the two protocols nothing relates the quantities of
one (a and b) to those of the other (a0 and b0). The symbol a could
represent the toggling of a signal, or could symbolically represent
the value of, for instance, an 8-bit variable. It is only in the inter-
pretation of the designer that a and a0 actually hold the same value.
The specification that we are about to describe does not enforce
this interpretation, but merely defines the (partial) order in which
the symbols can be presented to and produced by the converter. It is
possible to represent explicitly the values passed; this is necessary
when the behavior of the protocols depends on the data, or when
the data values provided by one protocol must be modified (trans-
lated) before being forwarded to the other protocol. The synthesis
of a protocol converter would then yield a converter capable of both
translating data values, and of modifying their timing and order.
However, the price to pay for the ability to synthesize data transla-
tors is the state explosion in the automata to describe the interfaces
and the specification. Observe also that if a and b are symbolic
representation of data, some other means must be available in the
implementation to distinguish when the actual data corresponds to a
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or to b. At this level of the description we don’t need to be specific;
examples of methods include toggling bits, or using data fields to
specify message types.

What constitutes a correct transaction? Or in other words, what
properties do we want the communication to have? In the con-
text of this particular example the answer seems straightforward.
Nonetheless, different criteria could be enforced depending on the
application. Each criterion is embodied by a different specification.

One example of a specification is shown in Figure 2. The al-
phabet of the automaton is derived from the Cartesian product of
the alphabets of the two protocols for which we want to build a
converter. This specification states that no symbols should be dis-
carded or duplicated by the converter, and symbols must be deliv-
ered in the same order in which they were received; moreover, the
converter can store at most one undelivered symbol at any time. The
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Figure 2: Specification automaton

three states in the specification correspond to three distinct cases.

� State 0 denotes the case in which all received symbols have
been delivered (or that no symbol has been received, yet).

� State a denotes the case in which symbol a has been received,
but it hasn’t been output yet.

� Similarly, state b denotes the case in which symbol b has been
received, but not yet output.

Note that this specification is not concerned with the particular form
of the protocols being considered (or else it would itself function as
the converter); for example, it does not require that the symbols a
or b are received in any particular order (other than the one in which
they are sent). On the other hand, the specification makes precise
what the converter can, and cannot do, ruling out for instance con-
verters that simply discard all input symbols from one protocol,
never producing any output for the destination protocol. In fact,
we can view the specification as an observer that specifies what can
happen (a transition on some symbol is available) and what should
not happen (a transition on some symbol is not available). As such,
it is possible to decompose the specification into several automata,
each one of which specifies a particular property that the synthe-
sized converter should exhibit. This is similar to the monitor-based
property specification proposed by Shimizu et al. [3] for the verifi-
cation of communication protocols. In our work, however, we use
the monitors to drive the synthesis so that the converter is guaran-
teed to exhibit the desired properties (correct-by-construction).

A high-level view of the relationship between the protocols and
the specification is presented in Figure 3. The protocol handshake

a,b,T a’,b’,T’Handshake
protocol protocol

Serial
Converter

Specification

a,b,T a’,b’,T’

Figure 3: Inputs and outputs of protocols, specification, and
converter.

produces outputs a and b, the protocol serial accepts inputs a0 and
b0. The specification accepts inputs a, b, a0, b0, and acts as a global
observer that states what properties the converter should have. Once
we compose the two protocols and the specification, we obtain a
system with outputs a, b, and inputs a0, b0 (Figure 3). The converter
will have inputs and outputs exchanged: a and b are the converter
inputs, and a0, b0 its outputs.

The synthesis of the converter begins with the composition (prod-
uct machine) of the two protocols, shown in Figure 4. Here the
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Figure 4: Composition between handshake and serial

direction of the signals is reversed: the inputs to the protocols be-
come the outputs of the converter, and vice versa. This composi-
tion is also a specification for the converter, since on both sides the
converter must comply with the protocols that are being interfaced.
However this specification doesn’t have the notion of synchroniza-
tion (partial order, or causality constraint) that the specification dis-
cussed above dictates.

We can ensure that the converter satisfies both specifications by
taking the converter to be composition of the product machine with
the specification. Figures 5 through 7 explicitly show the steps
that we go through to compute this product. The position of the
state reflects the position of the corresponding state in the protocol
composition, while the label inside the state represents the corre-
sponding state in the specification. Observe that the bottom-right
state is reached when the specification goes back to state 0. This
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procedure corresponds to the synthesis algorithm proposed in our
previous work [2]. The approach here is however fundamentally
different: the illegal states are defined by the specification, and not
by the particular algorithm employed.

The initial step is shown in Figure 5. The composition with the
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Figure 5: Interface cross Correctness, phase 1

specification makes the transitions depicted in dotted line illegal (if
taken, the specification would be violated). However, transitions
can be removed from the composition only if doing so does not re-
sult in an assumption on the behavior of the sender. In Figure 5,
the transition labeled >=a0 leaving state 0 can be removed because
the machine can still respond to a > input by taking the self loop,
which is legal. However, removing the transition labeled>=b0 leav-
ing the bottom-right state would make the machine unreceptive to
input >. Equivalently, the converter is imposing an assumption on
the producer that > will not occur in that state. Because this as-
sumption is not verified, and because we can’t change the producer,
we can only avoid the problem by making the bottom-right state
unreachable, and remove it from the composition.

The result is shown in Figure 6. The transitions that are left dan-
gling because of the removal of the state should also be removed,
and are now shown in dotted lines. The same reasoning as before
applies, and we can only remove transitions that can be replaced by
others with the same input symbol. In this case, all illegal transi-
tions can be safely removed.

The resulting machine shown in Figure 7 has now no illegal tran-
sitions. This machine complies both with the specification and with
the two protocols, and thus represents the correct conversion (cor-
rect relative to the specification). Notice how the machine at first
stores the symbol a without sending it (transition a=>0). Then,
when b is received, the machine sends a0, immediately followed in
the next cycle by b0, as required by the serial protocol.

3. Game-Theoretic Solution

We use game theory to reformulate the problem and the proce-
dure discussed in the previous section more precisely.
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Figure 6: Interface cross Correctness, phase 2
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Figure 7: Interface cross Correctness, phase 3

In the previous section we have used an automaton to describe a
protocol. Here we use a slightly enhanced version of an automaton
that provides a function that explicitly tells for each state the set of
available transitions; we call such structure a transition structure.
Given an alphabet �, a transition structure over � consists of the
following:

� A state space Q.

� An initial state q0 2 Q.

� A transition-availability function �: Q! 2�.

� A transition-outcome function Æ: Q� � ! Q.

Here the transition-outcome function corresponds to the traditional
transition relation of automata. The transition-availability function,
on the other hand, specifies for each state the set of symbols that
the transition structure is sensitive to. We say that a transition struc-
ture is non-blocking if for every q 2 Q we have �(q) 6= ;, so that
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there is at least one symbol available at every state. The transition-
outcome function is meaningful only for those symbols that are
available in a state. In the following, we will use the symbol “�” to
indicate that the actual value is immaterial.

It is easy to translate the two protocols of Figure 1 and the spec-
ification of Figure 2 in the above representation. For the handshake
protocol we have:

� �1 = f>; a; bg

� Q1 = f0; 1g

� q1 = 0

� �1 =
0 f>; ag
1 f>; bg

� Æ1 = > a b
0 0 1 �
1 1 � 0

For the serial protocol we have:

� �2 = f>0; a0; b0g

� Q2 = f00; 10g

� q2 = 00

� �2 =
00 f>0; a0g
10 fb0g

� Æ2 = >0 a0 b0

00 00 10 �
10 � � 00

And finally the specification is obtained as follows.

� �0 = �1��2 = f(>;>0); (>; a0); (>; b0); (a;>0); (a; a0);
(a; b0); (b;>0); (b; a0); (b; b0)g

� Q0 = f0; a; bg

� q0 = 0

� �0 =
0 f(>;>0); (a;>0); (a; a0); (b;>0); (b; b0)g
a f(>;>0); (>; a0); (a; a0); (b; a0)g
b f(>;>0); (>; b0); (a; b0); (b; b0)g

� Æ2 = (>;>0) (>; a0) (>; b0) (a;>0)
0 0 � � a
a a 0 � �
b b � 0 �

(a; a0) (a; b0) (b;>0) (b; a0) (b; b0)
0 0 � b � 0
a a � � b �
b � a � � b

In the previous section, the protocol conversion problem is solved
by constructing the product machine of the automata that represent
the protocols. Here we solve the same problem as a game between
two players. Intuitively, with reference to Figure 3, synthesizing
a converter corresponds to solving a game: can the converter, by

reading outputs a and b, provide inputs a0 and b0 that satisfy both
the protocols and the specification? The game is played between the
protocols and the specification, on one side, and the converter, on
the other side. A move of the protocols and specification consists in
choosing whether to emit a, b, or >, and is thus essentially a move
of the first protocol. A move of the converter consists in choosing
a conversion function f : fa; b;>g ! fa0; b0;>0g, that is used to
convert a symbol of the first protocol into one of the second. The
goal of the game, for the converter, consists in ensuring that, if the
first protocol emits a; b;> according to its definition (Figure 1.a),
then the symbol produced by the conversion function corresponds
to a transition both of the second protocol, and of the specification.
If the game can be won, the converter consists simply of an imple-
mentation of a winning strategy.

We represent a game using a structure similar to a transition
structure, but with two alphabets (one per player), two move avail-
ability functions, and a joint move-outcome function. Precisely,
given two alphabets �1 and �2, a game structure G over �1 and
�2 consists of the following:

� A state space Q.

� An initial state q0 2 Q.

� Two move-availability functions, �1: Q! 2�1 n ; for play-
er 1, and �2: Q! 2�2 for player 2.

� A move-outcome function Æ: Q� �1 � �2 ! Q.

Similarly to the transition structures, the move-availability func-
tions provide for each state the set of moves that each player is
allowed to play. We require that player 1 has at least one move
available at every state. The move-outcome function gives us the
state that is reached in response to a particular pair of moves of the
players. As for the transition-outcome function in transition struc-
tures, this is meaningful only in conjunction with moves that are
available in each state.

When does one player win the game? The two players start from
the initial state q0 and each chooses one of their available moves for
that state. The game then transitions to the state indicated by the
value of the function Æ corresponding to the current state and the
chosen moves. Player 2 wins if it always has a move available for
all the states that are reached during the game. Player 1, on the other
hand, wins if the game transitions to a state q such that player 2 has
no available moves (i.e. �2(q) = ;).

Instead of randomly choosing a move for each state during the
game, a player can play according to a strategy. A strategy for a
player is simply a pre-determined way of choosing the move for
each state. In general, a strategy is a function that maps the cur-
rent history of the game to one of the available moves. In prac-
tice, if only safety properties are considered in the specification,
a simpler strategy that only looks at the current state is sufficient.
These strategies are known as memory-less strategies. A memory-
less strategy for player 2 is a function �2 : Q ! �2 such that for
q 2 Q, if �2(q) 6= ;, then �2(q) 2 �2(q): in other words, the strat-
egy assigns only symbols that can be played by player 2, provided
at least one such symbol exists.

Given a strategy �2 for player 2, not all states in G can be
reached. We define the space reached in G under �2 to be the
smallest set R(�2) � Q such that (1) q0 2 R(�2) and (2) for
all q 2 R(�2) and m1 2 �1(q), we have Æ(q;m1; �2(q)) 2 R(�2).
We say that a strategy is winning if a player never loses when play-
ing according to the strategy. Given our definitions, �2 is a winning
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strategy for player 2 if for all reachable states q 2 R(�2) we have
�2(q) 6= ;. In other words, the strategy �2 steers the game in such
a way that player 2 has always moves available to play.

We are now ready to set up the protocol conversion problem as
a game. We will use the convention that if A = (Q; q0; �; Æ) is a
transition structure with alphabet M , then Q[A] = Q, q0[A] = q0
and so on. Thus, let A and B be the transition structures for the
sender and the receiver protocol with alphabets M and M0, respec-
tively; we require that the transition structure A for the sender is
non-blocking. Let C be the transition structure for the specifica-
tion, with alphabet M �M 0. Then the protocol conversion prob-
lem is defined as a game structure G with alphabets �1 = M and
�2 = [M ! M 0] (the notation [M ! M 0] denotes the set of all
functions from M to M 0) such that:

� Q[G] = Q[A]�Q[B]�Q[C].

� q0[G] = (q0[A]; q0[B]; q0[C]).

� �1[G](qA; qB ; qC) = �[A](qA) and �2[G](qA; qB ; qC) =
ff : M !M 0 j 8m 2M: f(m) 2 �[B](qB) ^
(m; f(m)) 2 �[C](qC )g.

� Æ[G](qA; qB ; qC ; m; f) =
(Æ[A](qA;m); Æ[B](qB ; f(m)); Æ[C](qC ;m; f(m))).

Note that the game structure is defined on the Cartesian product
of the states of the communicating protocols and the specification.
Intuitively, these definitions define, for each move of A, the set of
possible responses of the converter that agree with the protocol of
B while satisfying the specification C. It is possible that for some
of the states the set of possible responses is empty. The objective
is thus to find a strategy that avoids such states. In other words,
a protocol converter is a winning player-2 strategy for G. If no
such strategy exists, then the protocol conversion problem cannot
be solved, and the two protocols are thus not adaptable.

In the case of our example, the definitions translate to a game
structure G over �1 and �1 ! �2 with

� Q[G] = Q1 �Q2 �Q0

� q[G] = (q1; q2; q0)

� �1[G] =
(0; �; �) f>; ag
(1; �; �) f>; bg

� �2[G] =
(�; 00; 0) f(>! >0; a! a0; b! >0);

(>! >0; a! >0; b! >0)g
(�; 00; a) f(>! >0; a! a0; b! a0);

(>! a0; a! a0; b! a0)g
(�; 00; b) ;
(�; 10; 0) ;
(�; 10; a) ;
(�; 10; b) f(>! b0; a! b0; b! b0)g

According to the definitions, we must find a winning player-2 strat-
egy for this game structure. Let Tnonblock = fq 2 Q j �2(q) 6= ;g
be the set of states where player 2 is non-blocked. The game can
then be cast as a safety game: player 2 must never leave Tnonblock .
The solution to this safety game is entirely classical [10, 11]. To
solve the games, for a set of states U � Q we define the set

Cpre(U ) � Q of controllable predecessors of U as the set con-
sisting of all states q 2 Q where there is m2 2 �2(q) such that for
all m1 2 �1(q), we have Æ(q;m1;m2) 2 U . In formulas,

Cpre(U )

= fq 2 Q j 9m2 2 �2(q):8m1 2 �1(q):Æ(q;m1;m2) 2 Ug

Intuitively, q 2 Cpre(U ) if player 2 can reply to every move of
player 1 and ensure that U is not left. Then, we compute the se-
quence of sets U0; U1; U2; : : : � Q by letting U0 = Tnonblock and,
for k � 0, Uk+1 = Tnonblock \Cpre(Uk ). For each k � 0, the set
Uk consists of the states from which player 2 can stay in Tnonblock
for at least k rounds of the game: hence, the set of states where
player 2 can win is given by U� = limk!1 Uk . Since Uk+1 � Uk
for all k � 0, the limit can be computed in at most jQj steps, ter-
minating as soon as we reach k such that Uk+1 = Uk . Player 2
can win the game if the initial state is winning, that is, q0 2 U�; in
this case, a winning strategy �2 for player 2 can be constructed by
choosing, at each s 2 U� with �1(q) 6= ;, a move m2 2 �2(q)
such that Æ(q;m1;m2) 2 U� for all m1 2 �1(q); at other states
the strategy plays arbitrarily. A protocol converter can be obtained
directly by implementing this strategy. The converter keeps track
of the state of the game; at each state q, it uses the conversion func-
tion �2(q) to convert the move m1 chosen by the first protocol, and
then goes to the new state Æ(q;m1; �2(q)(m1)). The complexity of
synthesizing the interface adaptor is linear in the size of the game
structure G.

The resulting converter, in our example, can be represented as
the automaton of Figure 7. At state 0 the converter plays the move
f0 defined by f0(>) = >0, f0(a) = >0, f0(b) = >0 (this latter
choice is arbitrary). At state 1 the converter plays the move f1
defined by f1(>) = >0, f1(a) = >0 (arbitrary), and f1(b) = a0.
At state 2 the converter plays the move f2 defined by f2(>) = b0,
f2(a) = b0 and f2(b) = >0 (arbitrary). Once the moves m; f
are played, the strategy changes state according to the edge labeled
m; f(m) in Figure 7.

4. Fairness Constraints

The theory and the algorithms that we have presented so far are
appropriate for describing specifications that consist in safety con-
straints. It is often necessary in communication protocols to also
define liveness constraints, for example to specify that the transfer
of the data does eventually occur. Indeed, the specification automa-
ton of Figure 2 specifies that symbols should not be dropped nor
duplicated by the channel, but it does not specify that a symbol a
or b should be eventually delivered, if followed by infinitely many
occurrences of the symbol >. Our approach can be extended in this
direction, although the algorithms used to solve the protocol con-
version problem become more complicated, and may be non-linear
[12].

Figure 8 shows an automaton that is equivalent to the one that
we have used so far for the specification, and that is suitable for
specifying the eventual delivery of symbols. In particular, we had
to duplicate two of the states to separate the transitions on data from
those that occur when no data is present. Fairness constraints can
be defined in a variety of formalisms. Here we use temporal logic
[13], and insist that the automaton never stays in state a, aa, b or
bb forever. Formally:

23:a ^ 23:aa ^ 23:b ^ 23:bb:
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Figure 8: Specification for fairness constraints

When the specification includes a fairness condition � (such as
the above), we must modify the definition of winning strategy for
player 2. In particular, we need to consider history-dependent strate-
gies, that choose the move as a function not only of the current state,
but also of the past history of the game [12]. A (history-dependent)
strategy �i for player i 2 f1; 2g is a mapping �i : Q� ! �i that
associates with each sequence of states a move in the alphabet of
the player. Again, for i 2 f1; 2g we require that for all � 2 Q�

and q 2 Q, if �i(q) 6= ; then �i(�; q) 2 �i(q): in other words,
as long as at least one move is available, the strategy chooses only
moves that are available. Given two strategies �1 and �2 for players
1 and 2 and a state q 2 Q, we define outcome(q ; �1 ; �2 ) to be the
set consisting of the infinite sequences p0; p1; p2; : : : such that:

� p0 = q;

� for all k � 0, we have �1(pk) 6= ; and �2(pk) 6= ;;

� for all k � 0, we have
pk+1 = Æ(p; �1(p0; : : : ; pk); �2(p0; : : : ; pk)).

We note that the set outcome(q ; �1 ; �2 ) either contains a single se-
quence, which is entirely contained in Tnonblock , or it is empty. The
latter case arises when, starting from q, the strategies �1, �2 would
cause Tnonblock to be left. Then, a strategy �2 for player 2 is winning
if, for all player-1 strategies �1, there is p 2 outcome(q0 ; �1 ; �2 )
such that p j= �. Again, a protocol converter corresponds to a win-
ning strategy. Games with such fairness conditions and winning
conditions are examples of games with !-regular winning condi-
tions [11]. Such games can be solved by the methods of [11, 14, 15,
12]; a winning strategy can be easily derived from a game solution.
We note that, when fairness is present, the winning strategy may
require memory. Nevertheless, the protocol converter can again be
synthesized as an automaton, since the amount of required memory
is finite (see e.g. [12]).

5. Comparison with Trace Theory

As seen in the previous sections, the models of interfaces that
we use (including the ones found in [2] and [4]) constrain the set
of possible environments they can work with by considering illegal
those inputs that cannot be handled. This is unlike other state-based
models like I/O automata [16] that must always be ready to handle
any possible input. For this reason, the latter models are often called
input-enabled, or receptive.

Receptiveness and environmental constraints are not, however,
mutually exclusive. The two notions coexist and are particularly

well-behaved in the trace theory proposed by Dill [1]. In this frame-
work, developed for the verification of speed-independent asyn-
chronous circuits, a trace of a model (which corresponds to the se-
quence of inputs and outputs on a path in our automata) is defined
to be either a success or a failure. A model, called a trace structure,
contains a set of successes and a set of failures. A trace structure
must be receptive in that any sequence of inputs should be accepted
as either a success or a failure (by producing appropriate outputs).
However, the set of failures can be used to represent the behaviors
that should be avoided by an environment to work correctly with
the trace structure.

The theory defines several concepts that are relevant to our work.
Here we provide only a brief description and refer the interested
reader to [1] for a rigorous treatment of the subject.

Trace structures can be composed in parallel by taking the in-
tersection of the sets of the success traces. At the same time, the
composition contains the failures from the trace structures that are
being composed that are compatible with the behavior (successes
or failures) from the other. The result is shown to also be receptive.
A composition is called failure-free if the resulting set of failures is
empty.

A trace structure T is said to conform to a trace structure T 0 if
for all possible environments E, if the composition of E and T 0 is
failure-free, so is the composition ofE and T . Conformation can be
seen as a refinement relation, or substitutability relation, because if
T conforms to T 0, then we can replace T for T 0 without introducing
failures in any environment that composes with T 0 without failures.
Two trace structures are said to be conformation equivalent if they
both conform to each other.

In our state-based and game-theoretic models, the “failures” are
implicitly defined as those traces that are not accepted by the au-
tomaton because a transition on a symbol does not exist. The set
of failures is, in other words, determined by the set of successes.
The same is achieved in trace theory by a construction that takes
a trace structure and produces another trace structure in canonical
form, that is conformation equivalent to the original. In canonical
form, the set of successes and the set of inputs together determine
the set of failures, so they don’t have to be represented explicitly.
In addition, two trace structures in canonical form are shown to be
equal exactly when they are conformation equivalent.

Parallel composition of trace structures in canonical form is not
guaranteed to yield a trace structure that is again in canonical form.
If that is the desired result, the composition must be followed by
a conversion to canonical form. The same holds true for our mod-
els. In fact, it turns out that the process of removal of illegal states
outlined in the previous sections corresponds to that of autofail-
ure manifestation used to convert a general trace structure to one in
canonical form. An autofailure is a successful trace that becomes a
failure as a consequence of the occurrence of output symbols that
no environment can stop. From the standpoint of conformation, the
result doesn’t change if autofailures are added to the set of failures.

In the context of protocol specification, the concept of a mirror
plays an important role. The mirror of a trace structure T is the most
general environment (again a trace structure) that can be composed
with T with no failures. In other words, T can be composed without
failures with all and only the trace structures that conform to its
mirror. Computing the mirror is particularly simple once a trace
structure is in canonical form: it is enough to exchange the inputs
with the outputs.

The problem of the synthesis of the protocol converter can now
be analyzed in the context of trace theory. Specifically, we adapt
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the formulation of the rectification problem found in [9]. There,
rectification is defined as the process of replacing a subnetwork of
a circuit by another subnetwork such that the resulting system con-
forms to a certain specification. More formally, let k denote parallel
composition, � denote conformation and mir the operation of tak-
ing the mirror. Then, if T is the specification, T 01 the replacement
subnetwork and T2 the rest of the circuit

T 01 k T2 � T if and only if T 01 � mir(T2 k mir(T )):

The original theorem in [9] also includes the possibility of retaining
only part of the symbols in the alphabet. This is useful to make very
precise the set of signals (symbols) that the replacement subnetwork
can use to perform its function. If the function proj(A) retains only
the symbols in A, then if A is the alphabet of the specification T
and A01 the alphabet of the replacement subnetwork T 01, we have

proj(A)(T 01 k T2) � T

if and only if

T 01 � mir(proj(A01)(T2 k mir(T ))):

In our specific case, we take T2 to be the composition of the two
protocols and T to be the specification of a correct transaction.
Then the T 01 that is obtained by the above formula corresponds to
the trace structure for the converter.

Preliminary experiments show the viability of this approach and
that it produces results that are equivalent to our earlier procedures
when using the same examples. However a thorough comparison
is made difficult by the fact that the timing models used in the two
solutions are different (synchronous in our case, asynchronous in
trace theory verifier based on [1] that was available to us). Nev-
ertheless, the algebraic structure of the trace theoretic approach is
very convenient and the formulation in terms of the rectification
problem is clean and concise. A generalization of this approach is
part of our current research.

6. Conclusions

We presented a general, algorithmic framework for checking
whether incompatible interaction protocols of component interfaces
can be made compatible by inserting a converter between them
which satisfies specified requirements. The framework is based on
and extends the game-theoretic approach to interfaces of [4, 5]. If a
winning strategy for the game exists, then the interfaces are adapt-
able and the winning strategy yields the converter as a by-product.
The approach also extends and formalizes previous work on the
synthesis of protocol converters [2].

We noted an interesting relationship between our approach and
the one of [9]. In this work, trace theory was used to study the so-
called rectification problem, which can also be used to synthesize
protocol converters. Our research now concentrates on combining
and generalizing our approach and the trace-theory approach. In
particular, we are investigating frameworks that encompass multi-
ple models of computation and enable the synthesis of converters
across different models.
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