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Abstract. We first give a method for simulating, in the case of Biichi, an 
alternating automaton by a usual nondeterministic one. Then, to make the sat- 
isfiability problem of Linear Propositional Temporal Logic (LPTL) use this 
result, we give a method for translating any formula of this logic into an equiv- 
alent Biichi alternating automaton. 
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1. Introduction 

Automata on infinite sequences were introduced in the early sixties, first by Biichi (1960) 
and then by Muller (1963). Initially, the two types of automata on infinite words, Btichi 
automata and Muller automata, seemed not to have the same expressiveness. McNanghton 
(1966) showed that Biichi nondeterministic automata have the same expressive power than 
Muller automata. 

The theory of automata on infinite sequences is used in many areas of computer science. 
The satisfiability problem of many logics, which consists of testing whether a formula is 
satisfiable, can be translated into the emptiness problem of an automaton on infinite words; 
that is, the problem of testing whether such an automaton accepts a nonempty language. 

In the early eighties, alternating automata have been introduced as an extension to usual 
nondeterministic automata (Chandra et al 1981; Miyano & Ayashi 1984; Muller & Schupp 
1985, 1987). With the latter automata, states are only existential. The new with the former 
automata is that states can also be universal. The advantage of using alternating automata, 
especially as they are defined in (Muller & Schupp 1985, 1987), is that they offer a natural 
and straightforward way of translating a temporal formula into such an automaton Isli 
(1994). Another advantage is that complementation is easy, and requires linear time; it is 
performed by dualizing the transition function and complementing the accepting condition 
(complementation theorem (Muller & Schupp 1985, 1987)). 

In this paper, we first give a method for simulating a Btichi alternating automaton by 
a usual nondeterministic one. Then we describe a method associating to any formula of 
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Linear Propositional Temporal Logic (LPTL (Pnueli 1981)) a Btichi alternating automaton 
accepting its models. This clearly leads to an alternating automata approach for the satis- 
fiability problem of LPTL, which first translates the input formula into a Biichi alternating 
automaton and then simulates the alternating automaton by a usual nondeterministic one. 

2. Biichi automata on w-words: simulating an alternating by a usual 
nondeterministic 

Alternating automata (Chandra et al 1981; Miyano & Ayashi 1984; Muller & Schupp 1985; 
Muller & Schupp 1987) have been introduced as an extension to usual nondeterministic 
automata. With the usual nondeterministic automata, states are only existential, while with 
the alternating automata the states can also be universal. As defined in (Chandra et al 

1981; Miyano & Ayashi 1984), a state of an alternating automaton is either existential or 
universal, and cannot be intermediate: if E and Q are the alphabet and the set of states, 
respectively, then the transition function maps a pair (a, q) of E x Q into a subset of Q 
which has to be interpreted either universally or existentially. The definition of alternation 
in (Muller & Schupp 1985, 1987) is more natural, and allows states to be, say, existential- 
then-universal: the transition function maps (a, q) into a set of subsets of Q,1 the set being 
existential and each subset universal (first choose, nondeterministically, a subset, and then 
all the states of the chosen subset). Another advantage of defining alternating automata 
as in (Muller & Schupp 1985, 1987) is that translating a temporal formula into such an 
automaton is a straightforward and extremely easy task (the translation is given in § 3). 

A run of an alternating automaton on an infinite word is not, as it is the case for usual 
nondeterministic automata, necessarily an infinite sequence of states, but, in general, an 
infinite tree. The accepting condition concerns not only a unique infinite sequence but each 
branch of the tree form of the run. 

In this section, we propose, in the case of Btichi, an effective construction mapping an 
alternating automaton into a usual nondeterministic one simulating it. This transforms the 
emptiness problem of the former automaton to the well known emptiness problem of the 
latter. 

2.1 Alternating automata 

For reasons mentioned above, our definition of alternating automata follows (Muller & 
Schupp 1985, 1987). 

DEFINITION 1 
Let E be a countable set. The free distributive lattice £(E)  generated by E is defined as 
the least set satisfying: 

(1) each element of E belongs to £(E) ,  and 

(2) if f and g belong to/2(E), then so do both f / x  g and f v g. 

lln fact, the transition function maps (a, q) into an element of the free distributive lattice/~(Q) generated by Q; 
the disjunctive normal form of this element of £(Q), written in a set form, is a set of subsets of Q. 
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DEFINITION 2 
A Btichi alternating automaton on infinite words is a 5-tuple 
M = (£(Q),  E,  3, q0, F) defined in the following manner: 

(1) Q is a finite state set, 

(2) /2(Q)  is the free distributive lattice generated by Q, 

(3) E is the input alphabet, 

(4) ~ : E × Q > £ ( Q )  is a transition function, 

(5) q0 6 Q is the initial state of M, and 

(6) F is a set defining the accepting condition. 

The set F defining the accepting condition is defined in the same fashion as in the usual 
nondeterministic case. That is, F is a subset of Q, called set of distinguished states. 

DEFINITION 3 
A run of a B~ichi alternating automaton M = (£(Q),  E, S, q0, F) on an infinite word 
u = aoal  . . .  e E °J is an infinite labeled tree, with no leaf, verifying the following: 

(1) the labels (of the nodes) belong to the state set of M, 

(2) the label of the root is q0, the initial state of M, and 

(3) if 

- v is a node of level n labeled by q, 

- an is the n th letter of the word u, 

- { q l  . . . . .  q m }  is the set of labels of the immediate successors of v, and 

- tl v t2 v . . .  v tr is the disjunctive normal form of 8(an, q), 

then there exists j e {1 . . . . .  r} verifying {qi . . . . .  qm} = {P c Q : p occurs in t j};  

that is, the labels of the immediate successors of v are exactly the states occurring in 
a certain disjunct, t j ,  of the disjunctive normal form of 8(an ,  q ) .  

Figure 1 illustrates part (3) of definition 3. 

U n i f o r m  run 

A run of a Bfichi alternating automaton on an infinite word is said to be uniform if for 
all nodes vl and v2 at the same level and having the same label, and for all state q of the 
automaton, the following condition holds: vi has an immediate successor labelled by q if 
and only if v2 has an immediate successor labelled by q. 

H i s t o r y  

A history of a Biichi alternating automaton is an infinite sequence q i o q i i  . . .  q in • . .  of states 
of the automaton. 
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q 
level n 

level n+l 

ql q2 qm 

8(an, q) = tl v t2 v . . . v tr, 
with {ql . . . . .  qm} = {P ~ Q : p occurs in tj}, 

for a certain j ~ {1 . . . . .  r}. 

Figure 1. The immediate successors of a node in a run. 

History lying on a branch 

Let M be a BiJchi alternating automaton, and t a run of  M on an infinite word u. A branch 
of t is an infinite path starting at its root. The history lying on a branch/~ of  the run t is 
the history qioqil . . .  qij . . .  of the automaton M such that its j t h  element qij, J > O, is the 
label of the j t h  node of the branch/~. 

Accepting history 

To a history h of  a Biichi alternating automaton M = (Z~(Q), E,  8, q0, F)  are associated: 

- the mapping ch : ~ ~ Qsuch tha tch (n )  is the nth letter of h, and 

- the set I n f ( h )  = {q ~ Q: Ichl(q)l = co}, where ch l (q)  = {n ~ ~: ch(n) = q } .  

Then a history is accepting if l n f ( h )  A F ~ 0. 

Accepting run 

A branch of a run is accepting if the history lying on it is accepting. A run is accepting if  
all its branches are accepting. 
An infinite word u is accepted by a Biichi alternating automaton M if there exists an 
accepting run of M on u. The language accepted by M, denoted by L(M),  is the set of 
infinite words accepted by M. 

Remark 1. Let t be a uniform run of a Biichi alternating automaton M on an infinite word. 
If  Vl and v2 are two nodes at the same level and with the same label, then a history lies on 
a branch of the subtree t /Vl  of t at vl if and only if it lies on a branch of the subtree t /v2  

of t at 02. 
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Theorem 1 below shows that in an alternating automaton we can, without loss of gen- 

erality, restrict our attention to uniform runs only. 

Theorem 1. Let M be an alternating automaton. For each word u accepted by M, there 
exists an accepting uniform run of  M on u. 

Proof see appendix A. [] 

2.2 Run DAG of an alternating automaton 

We now need, in order to get our simulation method, to transform a uniform run of a Biichi 
alternating automaton from its tree form into a directed acyclic graph (DAG) form. This 
new form of a run will be called run DAG, and is defined in the following manner. A run 
DAG of a Btichi alternating automaton M on an infinite word is the quotient of a uniform 
run t of M on that word modulo the following equivalence relation Rt defined on the set 
of nodes of t: 

V l Rt  1)2 

if and only if 

Vl and 1)2 are at the same level, and labelled by a same state. 

2.2a Distinguished levels of a run DAG: Let G be a run DAG of a Btichi alternating 
automaton M = (£,(Q), E, 8, qo, F) on an infinite word u. G is said to be accepting if the 
uniform run of which it is a quotient is itself accepting. It is easily seen that G is accepting 
if and only if on all infinite path leaving the root we meet infinitely often an element of F. 
Let us now have a traversal of G. 

Let no the least level of G such that: 

every path joining the root to a node of level no has at least one labell from F. 

Let ni+l be the least level such that: 

1. ni < n i + l ,  and 

2. every path starting at a node of level (ni -+- 1), and terminating at a node at level ni+l, 
has at least one label from F. 

In the sequel, such levels ni (i > 0) are called distinguished levels of G. 

Theorem 2. A run DAG of a Biichi alternating automaton is accepting if and only if the 
number of  its distinguished levels is infinite. 

Proof Straightforward. Left to the reader. [] 

2.2b Characterizing the distinguished levels: The problem to deal with now is how 
to characterize the distinguished levels of a run DAG. The solution we propose to solve 
this problem consists of keeping track of the states met while traversing a run DAG, and 
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to give a special attention to the distinguished states. For this purpose, we make use of 
the booleans "0" and "1". Intuitively, these booleans will serve, respectively, to say "we 
are still soliciting a distinguished state" and "we have met a distinguished state". But 
another problem appears, which consists of what to do when on every path we have met 
a distinguished state. As it will be seen, the solution to this new problem consists of 
reinitializing the process of soliciting a distinguished state along every path. 

Let us consider a run DAG G of a Btichi alternating automaton 
M = (£(Q), E, 8, qo, F) on an infinite word u. We define a mapping UG associating with 
each node of G an element from the cross product Q x {0, 1 }. A node v labelled by q will 
be such that UG(V) ----- (q, 0) or UG(V) = (q, 1). The definition of the mapping UG is as 
follows. Let r be the root of G: 

uG(r) = [ (q0, 1) if q0 ~ F, 
[ (q0, 0) otherwise. 

If the mapping UG is known at each node at level n > 0, then for a node v at level (n + 1) 
labelled by q we have the following: 

- if every node v ~ of level n satisfies UG(V ~) 6 Q x {1}, then: 

(q, 1) ifq E F, 
UG(V) = (q,0) otherwise. 

- otherwise: 

(q, 1) i fq  6 F, or all immediate predecessor v ~ 
UG(V) = o f v  verifies UG(V t) 6 Q x {1}, 

(q, 0) otherwise. 

Clearly, a level n of G is a distinguished level if and only if for all node v of level n we 
have the following: 

UG(V) 6 O x {1}. 

2.3 The simulating method 

A simulation, in the case of Btichi, of an altemating automaton by a usual nondeter- 
ministic one follows straightforwardly from the characterization, given in § 2.2b, of 
the distinguished levels of a run DAG. Let us consider a Biichi alternating automaton 
M = (£(Q), E, 8, q0, F). We denote by EG(n), for a run DAG G and a level n, the set 
{u6 (v) : v node of level n }. We also consider the set G of all possible run DAGs of M, and 
define the equivalence relation RM on the cross product ~ x ~ in the following manner: 

(nl, G1)RM(n2, G2) if and only if EG~ (nl) = Ea2(n2). 

Intuitively, the equivalence class RM puts together the levels having, say, the same history. 
The equivalence class, RM((n, G)), of an element (n, G) of the cross product ~ x G, 
is represented by EG (n). This leads to the following theorem which gives an effective 
construction of a usual Biichi nondeterministic automaton simulating an alternating one. 
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In the theorem, the notation transi t ion(a,  Q1) stands for the set of subsets of Q × {0, 1} 
defined as follows: 

S • transi t ion(a,  Q1) 

3u (infinite word), n (nonnegative integer) such that 

QI = uG(n), S = uG(n + 1), and 

u = bob1. . ,  bn . . . .  with bn = a. 

Theorem 3. Let M = (Z3(Q), Z, 6, q0, F) be a Biichi alternating automaton. The usual 
Biichi nondeterministic automaton B = (Q, E, 3t, Qo, Fr) defined as follows: 

(1) Q = 2 Q×{0'I}, the set ofsubsets o f Q  × {0, 1}, 

(2) 3'(a, Q1) = transi t ion(a,  Q1), forall  (a, QI) ~ E × Q, 

{(q0, 1)}/fq0 • F, 
(3) Q0 = {(q0, 0)} otherwise, and 

(4) F ~ = 2 Q×{1}, 

simulates M. 

Proof Straightforward from the characterization of the distinguished levels of a run DAG, 
described in § 2.2b. [] 

2.4 Size of  the simulating automaton 

Let M = (£(Q), E, 3, q0, F) be a Bfichi alternating automaton, and n the cardinality of 
Q. From the construction of the nondeterministic automaton B = (Q, E, 3r, Q0, F f) sim- 
ulating M, in particular the construction of its transition function, it follows that for any 
state q of M, and for any reachable state Q1 of B, (q, 0) and (q, 1) cannot be simulta- 
neousely in Q1. It follows that the cardinality of the state set Q of B is bounded by the 
number of mappings f from Q into {0, 1, 2} defined as follows: 

0 i f  (q, 0) E Q l, 
f ( q ) =  l i f ( q ,  1) E Q1, 

2 otherwise. 
The number of such mappings is clearly 3 n. 
The following two points imply that this upper bound is better than 3 n: 

for all q E F, and for all Q1 • Q : (q, 0) q~ Q1. 

In summary, given a Btichi alternating automaton M whose state set is of size n, and whose 
set of distinguished states is of size d, the size of the Biichi nondeterministic automaton 
simulating M, constructed by theorem 3 is bounded by 2d3 n-d, i.e. (2/3)d3 n. 

3. Mapping an LPTL formula into a Biichi alternating automaton 

To make the satisfiability problem of LPTL use the result of the last section on the empti- 
ness problem of Biichi alternating automata, we investigate in this section the problem of 
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mapping an LPTL formula into a Btichi alternating automaton accepting its models. 

3.1 Background: the logic LPTL 

LPTL is an extension of the classical propositional logic. This extension is obtained by the 
adding of the temporal operators Q (the "next"), <> (the "eventually") and U (the "until"). 

Syntax 

LPTL formulas are built from the following alphabet: 

- a countable set P of atomic propositions p, q, r . . . . .  

- the boolean constructors/x and --,, and 

- the temporal operators Q), <> and U. 

The set of LPTL (well formed) formulas is defined as the least set verifying: 

(a) every atomic proposition p 6 7 9 is a formula, and 

(b) if f and g are formulas, then so are f / x  g, - , f ,  Q)f ,  ~ f  and fUg ,  

Remark 2. The temporal operator G (the "always") is used as an abbreviation of --,<>--,: 

G f =- -<>-~ f . 

Semantics 

LPTL is complete for the class E of structures ~ = (S, N, Jr) defined as follows (Manna 
& Wolper 1984; Wolper 1983): 

(a) S is a countable state set, 

(b) N: S > S is a successor function mapping each state s into a unique successor state 
N (s ), and 

(c) zr: S > 27' is a function mapping each state s into a set of atomic propositions. 

Remark 3. In a structure ~ = (S, N, Jr), the function zr partitions in each state s ~ S the 
set 7:' of atomic propositions into the set zr(s) of atomic propositions true in s, and the set 
P \ zr(s) of atomic propositions false in s. Hence, Jr is a function assigning truth values to 
atomic propositions in each state. 

Satisfiability 

Let ~ = (S, N, ~r) be a structure of the class E, and s a state from S. The satisfiability 
of an LPTL formula f by the state s of the stucture, denoted by (~, s) ~ f ,  is defined 
recursively as follows: 

(a) if f is an atomic proposition then: (~, s) ~ f if and only if f ~ zr(s), 

(b) (~,s) ~ f l / x  f2 ifand onlyif  (~,s) ~ f l  and (~,s) ~ f2, 
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(c) (~, s) ~ " f l  if and only i fnot((~, s) ~ f l) ,  

(d) (~,s)  ~ O f  1 i fand  on ly i f  (~, N(s)) ~ f l ,  

(e) (~,s) ~ ~ f l  if and only if (3i > 0)((~, Ni(s)) ~ f l ) ,  and 

(f) (~, s) ~ f lUf2  if and only if 

• (Vi > 0)((~, Ni(s)) ~ f l ) ,  or 

• (qi > 0)({~, Ni(s)} ~ f2 and 
V j ( 0  < j < i =~ {~, NJ(s)) ~ f l)) .  

Remark 4. In the definition above of  satisfiability: 

• N°(s) stands for s, and 

• Ni+l(s), i > O, stands for N(Ni(s)) .  

An interpretation t consists of  a structure ~ = (S, N, zr) and an initial state so: it is denoted 
by 

t = (~,  so ) .  

An interpretation t = (~, so) satisfies a formula f if and only if 

(~, sO) ~ f .  

An interpretation satisfying a formula is a model of  that formula. 
The satisfiability problem for LPTL consists of  answering the question of  whether a 

given formula of this logic is satisfiable; that is, whether it has a model. 

3.2 Biichi automata on interpretations 

The automata we are concerned with in this section are automata on interpretations. That 
is, automata of  infinite sequences of sets of  atomic propositions. 

Given a set A of literals built from a set 7 ~ of  atomic propositions, we define --,A as 
being the following set of  literals: 

- - ,A= {p :  p 6 ~ a n d - - , p ~ A } U { - , p :  p 6 7 ~ n A } .  

DEFINITION 4 
A BiJchi nondeterministic automaton on interpretations is a 5-tuple M ----- (Q, E, 8, q0, F)  
defned  as follows: 

- E is the input alphabet: E = P U -~P, 7' being a countable set of  atomic propositions, 

- Q is a finite state set, 

- S • Q ~ 2 2z × Q is a transition function, 

- qo ~ Q is the initial state of  M, and 

- F _c Q is a set of  distinguished states. 
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q ] 8(q)  

qo {({}, ql)} 
{({}, q2), ({}, q3)} qt  

q2 {({j}, q2), ({-',c, j}, q4), ({--,e, j}, q4), ({--,c, j}, qs), ({-,e, j}, qs)} 
q3 {({J}, q2), ({J}, q3), ({J}, q6)} 

{({J}, q2), ({--,c, j}, q3), ({--,e, j}, q3)} 
{({j}, q2), ({j}, q3)} 

{({j}, q2), ({--,c, j}, q3), ({--,e, j}, q3), ({J}, q6)} 

q4 
q5 
q6 

Figure 2. the transition function 8 of the automaton M of the example. 

The transition function maps each state into a set of subsets of 2 r~ × Q; that is, 8(q) has 
the form { ( A q , q j l )  . . . . .  (Aim,qj, , ,)lAik C__ E ,  qjk • Q , ¥ k  = 1 . . . . .  m}. As shown in 
the definition below, if (A, ql) • 8(q) then the intuitive meaning of the literal in A is the 
following: the positive literals give atomic propositions that are necessary, and the negative 
literals give the atomic propositions that are forbidden. 

DEFINITION 5 
A run of a BiJchi nondeterministic automaton M = (Q, z ,  8, qo, F) on an interpretation 
t = eoe I e 2 . . .  en . . .  is an infinite sequence c -- qio qil qi2 • • • qin " "  of states of M verifying 
the following: 

1. qio = qo, 

2. Vn > 0 3 ( A ,  q)  E 8(qin ) such that : 

(a) q = qin+l, and 

(b) for all atomic proposition p: 

i. (p  • A)  :=~ (p • en), 

ii. (-',p • A)  =:~ (p ¢ en). 

The point 5 says intuitively that the positive literals of A are necessary, and that the 
negative ones forbid their corresponding atomic propositions. The presence or absence 
of an atomic proposition for which neither of the two corresponding literals (neither the 
positive nor the negative) belong to A is irrelevent. 

Example.  Let us consider the following Biichi nondeterministic automaton 
M ' =  ( Q , E , & q o ,  F):  

- E = P tO - - , p ,  w i t h  P = { c ,  e ,  j } ,  

- Q = {qo ,  ql . . . . .  q 6 } ,  

- the initial state is qo, 

- the transition function is given by the table of figure 2, and 

- F = {q0 ,  ql, q4, q s } -  
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{J} 

{} 

{J} 

{ -c,j } 

{-e,j } 

( q2 ~ . )  {J} 

{} [ ~ "~ ){j} 

I -c.j } 

{ -co I 

{J} 

I ~c,j } 

{ -e,j } 

{j} 

{J} 

I-c,J } 
{-e,j } 

Figure 3. The graphical representation of the automaton M of the example. 

The graphical representation of the automaton M is given by figure 3. The dashed states 
are the distinguished states of M. The incoming arrow shows the initial state. 

The infinite sequence qoql (q2q4) '° is a run of the automaton M on each of the inter- 
pretations {c, e, j}2({c, j}{e,  j})~o, {c, e}{c, j } ({ j}{c ,  j})o~ and {j}{c}({j}{c, e, j})o~. The 
run qoql (q2q4) ~° is accepting, for it repeats infinitely often the distinguished state q4. 

DEFINITION 6 
A Bfichi alternating automaton on interpretations is a 5-tuple 
M = (£(E U Q),/~, qo, qv, F) defined in the following manner: 

- E is the input alphabet: E = 79 U --,79, 79 being a countable set of atomic propositions, 

- Q u {qv} is a finite state set, qv ¢ Q being a special state called "the valid state" of M, 

- I2(E U Q) is the free distributive lattice generated by Z U Q, 

- /~  : Q u {qv} ~ £ (E  u Q) u {qv} is a transition function verifying: 

3(qv) = qv, 

- q0 e Q is the initial state of M, and 

- F is a set of distinguished states including qv. 

DEFINITION 7 
A run ofa  Bfichi alternating automaton M = (£(E U Q), 8, qo, qv, F) on an interpretation 

t = e0el . . .  e n . . .  e (2~:) °~ is an infinite labelled tree defined as follows: 
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1. all node of the tree is labelled by a state of M, 

2. the label of the root is q0, the initial state of M, and 

3. (a) if 

i. 
ii. 

° . .  

111. 

iv. 

(b) then 

i. 

ii. 
111. 

v is a node of level n labelled by q, 
en is the n th element of the interpretation t, i.e. the n th element of the infinite 
sequence e0e l . . ,  en • •., 
{ql, . . . ,  qm } is the set of labels of of the immediate successors of v, and 
t l v  t2 v . . .  v tr is the disjunctive normal form of 8(q), 

there exists j • {1 . . . . .  r} such that: 

_- | {p • Q : p occursin t/} if{p • Q • p occurs in tj} ¢ 0, 
{ql qm} 

I {qv } otherwise, 
{p • 7 ) : p occurs in tj } c e n ,  and 
en fq {p • 79 : ~ p  occurs in tj} = 0. 

As in the usual nondeterministic case, the points 7 and 7 say intuitively that the posi- 
tive literals of tj give the necessary atomic relations, and that the negative ones give the 
atomic propositions that are forbidden; the presence or absence of the atomic propositions 
for which neither of the corresponding literals belong to tj is irrelevent. We need some 
other definitions before giving the construction mapping an LPTL formula into a Biichi 
alternating automaton accepting its models. 

DEFINITION 8 
The set S u b f ( f )  of subformulas of an LPTL formula f is defined recursively as follows: 

- if f is an atomic proposition then S u b f ( f )  = {f}, 

- S u b f ( O f )  = {Of} U S u b f ( f ) ,  0 E {7, O ,  <>}, 

- S u b f ( f O g )  = {fOg} U S u b f ( f )  U S u b f ( g ) ,  O E {/% U}. 

DEFINITION 9 
An elementary formula is a formula f either of the following forms: 

- f is a literal, or 

- f is prefixed by the temporal operator O ,  i.e. O is the main operator of f ( f of the 
form Og)- 

DEFINITION 10 
An eventuality is a formula of the form O f  or - ~ ( f U g ) .  

The following two definitions are the key points in the construction of a Biichi alternating 
automaton accepting the models of an LPTL formula. The first concerns the decomposition 
of a formula into elementary ones, and will be used for finding the transition function of the 
alternating automaton to associate to a formula. The second definition defines the closure 
of a formula, which will be used for determining the state set of the alternating automaton. 
These definitions are based on the following equivalences which are straightforward from 
the the definition of satisfiability: 
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(equiv 1) 
(equiv 2) 
(equiv 3) 
(equiv 4) 
(equiv 5) 

DEFINITION 11 

<>f - f v O < > f  
f l  u f 2  - f2 v f l  /x O(fl u f2) 
~<> f ---- - - , fm O"<> f 
- ' ( A  u f2 )  - --f2 ,x ( - -A v O - ~ ( A  u f2)) 
- ' O f  - O ~ f  

The decomposition, e l em( f ) ,  of  an LPTL formula f into elementary formulas is defined 
recursively as follows: 

- if f is a literal: e l e m ( f )  = f ,  

- elem(--,- ,f l)  = e l e m ( f l ) ,  

- e l e m ( f l / x  fe)  =e l em( f l )Ae lem( f2 ) ,  

- elem(-- ,(f l /x fe) )  =e lem(- - , f l )ve lem(- , f2 ) ,  

- elem(<>fl) = e l e m ( f l )  v O<>fl ,  

- e lem(f l  U f2) = e l e m ( f 2 ) v e l e m ( f l )  A O ( f l  U f2), 

- e l e m ( O f l )  = O f  1, 

- elem(--,Ofl)  =elem(-'-,fl) A O " ' ~ f l ,  

- elem(---,(fl U f2)) =elem(--,f2) A (elem(--,fl) v O - ' ( f l  Ufz)), 

- elem(--, O f l )  = O - " f l .  

DEFINITION 12 
The closure, c l ( f ) ,  of  an LPTL formula f is defined recursively as follows: 

- if f is a literal: c l ( f )  = 0, 

- c l ( ' - , - ' , f l )  = c l ( f l ) ,  

- c l ( f l  A f2) =c l ( f l )Uc l ( f2 ) ,  

- cl( '-,(fl /x f2)) =cl('- ' ,fl)Ucl("-,f2), 

- c l ( < > f l )  = c l ( f l )  U { ~ f l } ,  

- c l( f lUf2)  = c l ( f 2 ) U c l ( f l )  U {flUf2},  

- c l ( O f l )  = c l ( f l )  U { f l } ,  

- c l ( - - " ~ f l )  = c l ( - - ' f l )  U { " ' f l } ,  

- cl(-- '(flgf2)) =cl( ' - , f2)Ucl(- ' , f l )  U {- ' ( f lg f2)} ,  

- c l ( - ,  0 f l )  = c l ( " ' f l )  U { ' f l } .  

3.3 Biichi alternating automaton of an LPTL formula 

The following theorem gives an effective construction of  a Biichi alternating automaton 
accepting the models of  an LPTL formula. 
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T h e o r e m  4. Let f be an LPTL formula. The set of models o f f  is the language accepted by 
the Biichi alternating automaton Bf  = (/~(E U Q), 8, qo, qt,, F}, called Biichi alternating 
automaton of f ,  defined in the following manner: 

- E = 79 U --,79, 79 being the set of  atomic propositions occurring in f ,  

- Q = { ( f ) }  u {(g) : g 6 c l ( f ) } ,  

- 3((g)) is the result obtained by substituting, for  every h, (h) for each non-nested 
occurence 2 Oh,  

- qo = ( f ) ,  and 

- the set F of  distinguished states is: 

F = {(g) E Q : g is not an eventuality formula} U {qv}. 

Proof The only point we clarify is the choice of the set F of distinguished states. For the 
initial formula to be satisfied, there should exist an interpretation satisfying it, that is a 
model of it, on which one can construct a run of the automaton verifying the following: 
every time we meet on a branch a node labelled by a state (g) with g being an eventuality 
formula, we can find, along the suffix of that branch beginning at that node, a state label 
by (h) is such that h is not an eventuality formula. Stated otherwise, the run should repeat 
infinitely often, on each of its branches, states (g) such that g is not an eventuality. Hence 
the result. [] 

4. Re la ted  w o r k  

The problem of simulating, in the case of Biichi, an alternating automaton by a usual non- 
deterministic one has been investigated by other authors (Miyano & Ayashi 1984; Muller 
& Schupp 1993). However, we believe that our method offers an easier implementation. 
In fact, in (Miyano & Ayashi 1984; Muller & Schupp 1993), the authors were mainly 
interested in proving that alternating automata have the same expressive power than usual 
nondeterministic automata, and their purpose was not to give an easily implementable 
translation. 

Another automata-based approach to the satisfiability problem of LPTL is well-known 
in the literature Vardi & Wolper (1986). Vardi and Wolper's method maps an LPTL formula 
into a Btichi nondeterministic automaton by performing the cross product of a first au- 
tomaton called "local automaton" and a second automaton called "eventuality automaton". 
Each of the local automaton and the eventuality automaton (and the final Bfichi nonde- 
terministic automaton) is of size single-exponential in the length of the input formula. 
The Biichi nondeterministic automaton our alternating automata approach associates to 
an LPTL formula is also of size single-exponential in the length of the input formula. 
However, our method is more natural; furthermore, the intermediate automaton used (the 
Biichi alternating automaton) is of size linear in the length of the input formula (the size 
is the cardinality of closure). 

2An occurrence which is not in the scope of a temporal operator. 
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5. Conclusion 

The investigation of this paper can be viewed as an alternating automata approach to the 
satisfiability problem of Linear Propositional Temporal Logic (LPTL Pnueli (1981)). We 
first gave a method for translating, in the case of Btichi, any alternating automaton into a 
usual nondeterministic one. We then provided a method for mapping any LPTL formula 
into a Btichi alternating automaton accepting its models. 

Our current concern is the minimal model property for LPTL: we strongly believe that 
one can use the decreasing property of very weak alternating automata (see Isli (1993) for 
the class of very weak alternating automata, and (Muller et al 1988; Muller et al 1992) for 
the class of weak alternating automata which has at least an equal expressive power) to 
improve the minimal model property for LPTL. 

I am indebted to my thesis advisor Professor Ahmed SAOUDI, who has been a major 
contributor to this work. He passed away on August 11, 1993. 
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Appendix A: Proof of theorem 1 

Let M = (£(Q),  E,  8, q0, F)  be a Biichi alternating automaton, and u an infinite word 
accepted by M. There exists an accepting run of M on u: let t be such a run. We define a 
sequence (tn)n>_O of runs of M on u in the following fashion: 

(a) to = t, 

(b) for all n > O, tn+l is obtained from tn as follows: let N O D E S ( t n ,  n + 1, q) be the set 
of nodes Oftn of level n + 1 labelled by q. For all q e Q such that I N O D E S ( t n ,  n + 
1, q)l -> 2 ,  we perform the following operations: 

(bl) choose a node v from N O D E S ( t n ,  n + 1, q), 

(b2) for every node v' belonging to N O D E S ( t n ,  n + I, q) \ {v}, we substitute the 
subtree tn/V of tn at v for the subtree tn/V ~ of tn at v t. 

It is easy to see that for all n > O, tn is an accepting run of M on u. The limit of the 
sequence (tn)n>__O is clearly an accepting unform run of M on u. [] 


