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With the increasing availabilityof adaptive procedures
for estimating thresholds in perceptual tasks (King-Smith
& Rose, 1997; Kontsevich & Tyler, 1999; Treutwein &
Strasburger, 1999), there is a corresponding increase of in-
terest in the psychometric function underlying that percep-
tual process—that is, of the mathematical function relating
the probability of correct responding Pc(x) to the physi-
cal variable x under study. One reason for that interest is
as a means for the empirical comparison of thresholds that
were obtained under different operational threshold def-
initions(the set criterion Pc, the use of a yes/no vs. a forced-
choice task and the number of alternatives in the latter,
etc.). By knowing the psychometric function’s slope one
can, say, compare the thresholds obtained with a 75% cor-
rect criterion in one empirical study to the near-threshold
proportion-correct performance in another. A second rea-
son for the interest is that the steepness of the psychome-
tric function in itself seems to be a useful parameter, since
it can be viewed as a measure of the reliability of sensory
performance and might thus prove a valuable diagnostic in
the assessment of visual disturbances (e.g., Chauhan,
Tompkins, LeBlanc, & McCormick, 1993; Patterson, Fos-
ter, & Heron, 1980).

For the reliable assessment of the psychometric func-
tion’s slope, one needs statistical estimation procedures,
and these have become increasingly available (Foster,
1986; Harvey, 1997;Kontsevich & Tyler, 1999; Treutwein

& Strasburger, 1999). Basically, the observer’s binary re-
sponse data are acquired in a stimulus region around the
threshold, and some analytically given ogive function is
fitted by a suitable algorithm. A parameter in that func-
tion that controls the function’s slope can then be used as
an estimate of the underlying (“true”) slope. Since it is not
a priori obviouswhich analytical functionwill fit any given
set of data best, one needs to do these estimates by using
different analytical functions. For trustworthy estimates,
one further needs a way of comparing empirically found
values across different studies, and here lies a problem.
Since many analytical functions lend themselves as model
functions (in principle, any integral of a positive,unimodal
function seems suitable), there is a bewildering variety
of slope measures in use. Even though there is mostly a
one-to-one correspondence between any two of these,
which allows the comparison of empirically found values,
such comparisons are tedious and error prone, and one
must take considerable care in converting reliably from
one measure to another. Furthermore, the most popular
functions in use have unexpected similarities and differ-
ences that should be known when such comparisons are
made. In the present short article, I wish to give a number
of useful formulas and other information for such con-
versions that have arisen from the needs of an empirical
study on the psychometric function (Strasburger, 2001).
Note that the derivations presented here are purely ana-
lytical and are valid independently of how to fit the indi-
vidual functions to data.

Figure 1 and the following paragraphs explain the terms
that are used in this article. A general way of writing the
psychometric function is

(1)

where Pc = P is the proportion of correct responses
(shown on the ordinate), x is a measure of the stimulus
level, g is the guessing rate or chance performance, equal

Pc ( ) = + (1 ) ( ),x g g l xF
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to 1/n for an n-alternative forced-choice task (nAFC), set
to 10% in the figure, and l is the lapsing rate, which de-
scribes nonperfect performance. For simplicity, l is set
to zero in the following. Threshold a determines the
function’s horizontal position; a number of conventions
exist for its definition. Often, it is defined as the x coor-
dinate of the point “halfway up”—that is, at Pc = g + (1
g l) /2—but frequently some other criterion level is
used. A definition that is favored here is that of setting it
at the point of inflection—that is, the point of maximum
slope (which is, or is not, identical to the point halfway
up; see below). In the figure, stimulus level is normalized
to threshold, so that the log of threshold occurs at zero.

In principle, any sigmoid (S-shaped) function can be
used as F(x) in the above representation, and much of
the variety in slope measures stems from this fact. Pop-
ular functions are the logistic, the Weibull, and the cu-
mulative normal function, but others are also in use, like
the cumulative Poisson function (see Harvey, 1997, for
the four mentioned so far), the function given by Quick
(1974), and the hyperbolic tangent [(ex e x)/( ex + e x)].
Each of the functions can appear in log or linear scaling
on the abscissa, the logarithms being natural, or base 10.
The slope measure can be the corresponding parameter
in the used function, usually denoted by b, or that para-
meter’s inverse, in which case it is called a spread. There
are, furthermore, the slope measures that are data based,
like the 10%–90% range of the function or the interquar-
tile range (IQR).

A measure of psychometric function slope that is in-
dependent of the analytic representation is thus desir-
able, and it is straightforward to base it on the function’s
actual slope—that is, the function’s first derivative (in-
crement of proportion correct per unit stimulus increase).
Since a sigmoid’s actual slope varies between zero and
some maximum, a point at which slope is read off needs

to be designated, and it would seem natural to choose the
threshold as that point. There is a disadvantage to that
which is not so much that the resulting slope measure will
depend on how threshold is defined, but that it does not
uniquely characterize the function’s steepness: In partic-
ular, for the popular Weibull function, the value “half-
way up” (which is one definition of threshold) is not the
maximum, so that higher slope values occur elsewhere.
Thus, whether the slope at threshold is unique or not de-
pends on those additional conventions (which sigmoid
and which threshold convention are used). A slope mea-
sure that is unique and thus lends itself for comparing the
psychometric function’s steepness across all cases is the
maximum slope. Per definition, it occurs at the function’s
point of inflection (where the curvature changes from ac-
celerated to decelerated). I denote it by b ¢ here, to show
that it is related to the slope parameter b and can be de-
rived from it. Unlike the latter, b ¢ is independent of the
analytic representation, it is independentof the definition
of threshold, and because physical units can be specified,
its numerical value is unambiguous. From the function,
it is obtained by taking the first derivative and finding its
maximum (setting the second derivative to zero). Since the
functions considered here are usually used on a log stimu-
lus scale, I use the derivative with respect to log x—that
is, the maximum of DPc/Dlogx. Note that when threshold
a is defined as the x value at the point of inflection, as is
done here, maximum slope b ¢ occurs at threshold.

Weibull and Logistic Function
Two popular choices are the logistic and the Weibull

function:

(Weibull function), (2)

P x e s es( ) = + 1 1 , with =g g bx( )( )

Figure 1. The psychometric function (in detection tasks sometimes also called frequency-of-
seeing curve). Definition of terms: abscissa, stimulus level; ordinate, subject performance, here
as proportion Pc of correct responses; g, guessing rate; l , lapsing rate; a , the threshold, chosen
here as a , which is the point of inflection that is the point of maximum slope or the point where
the second derivative (curvature) is zero; DPc /logx, maximum slope, denoted by b ¢ here, is re-
lated to b in the psychometric function’s analytic representation. See the text for details.
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(logistic function), (3)

and

(4)

The functions are written such that the natural logarithm
loge(x) of the physical variable appears as term. One can
see that the inflection is obtained in the logistic function
by taking an inverse, whereas in the Weibull function a
second exponentiation occurs. On linear coordinates, the
functions are written as

(5)

and

(6)

By differentiation of Equations2 and 3 with respect to
log x and setting x = a, we obtain

(7)

for the Weibull function and

(8)

for the logistic function, on a natural-log scale. The bs are
those in the correspondingfunctiondefinitions(Equation2
or 3, respectively).For same slope b ¢, the b value of the lo-
gistic is thus, by a factor of 4/e � 1.47, larger than that of the
Weibull (see Figure 2).

On a log10 scale, the functions are compressed along the
abscissa by a factor of loge(10) = 1/log10(e) = 2.3026—
that is,

(9)

for the Weibull function and

(10)

for the logistic function, where b is defined as above.
A logarithmic unit that starts to become popular is the

decilog (dL), which is one tenth of a log10 unit and is about
25% increase. Equations 9 and 10 can be restated in deci-
logs to read

(11)

for the Weibull function and

(12)

for the logistic function.
So, for a numerical comparison of b values, care must

be taken as to which log base is chosen. As a numerical
example, b ¢ for the 10AFC in log10 units is

and in decilogs is

Logarithmic Versus Linear Abscissa
Is the definition of maximum slope given here tied to

the logarithmic x-axis on which it was defined? Stanley
Klein (2001) has pointed out a rather simple relationship

¢ = =b b b0 0762 0 0518. . ( / ).Wei Logi cp dL

¢ = =b b b0 762 0 518 10. . ( / log )Wei Logi cp c

¢ = ( )[ ]( ) × ( )b g b1 4 10 10/ log /e pc per dL

¢ = ( )[ ]( ) × ( )b g b1 10 10/ log /e pe c per dL

¢ = ( )[ ]( ) × ( )b g b1 4 10/ loge pc 10per log unit

¢ = ( )[ ]( ) × ( )b g b1 10/ loge pe c 10per log unit
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Figure 2. Analytic forms of the two popular psychometric functions, plotted on a log10 scale.
The point of inflection in both cases is at x = a . The logistic function is rotation symmetric about
that point; the point is thus halfway up (at 0.55 for g = .1). For a Weibull function with g = .1, the
point of inflection is at 0.67. When the functions are plotted relative to the threshold, they there-
fore appear shifted against each other. Slope is governed by parameter b; different values are
needed between the functions for same slope.
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between slope on linear versus logarithmic abscissa. On
normalized coordinates xt = x/a, we have

(13)

because the derivative of the natural log is dx /dxt =
dloge(xt)/dxt = 1/xt. At threshold, normalized stimulus
level xt =1 and so the slopes are equal on linear (nor-
malized to threshold) and natural-log scales!

Quick Function
A variant of the Weibull is the Quick function (Quick,

1974):

(14)

in which the natural base is replaced by base 2. The two
functions are compared in Figure 3. On a log abscissa,
the Quick function is identical to a Weibull shifted hori-
zontally by the value

(15)

The Quick function’s slope is thus the same as that of the
Weibull. Maximum slope occurs, however, not at x = a,
but slightly shifted at a + d. At a, the function is “halfway
up.” Consequently,when a Quick function is used for de-
scribing psychometric data, the threshold is usually de-
fined as that point (halfway up), rather than as the point of
inflection, as is more common for the Weibull function as
given in Equation 2. To complicate matters, some authors
refer to the Quick function (Equation 14) as a Weibull, so
that, effectively and mostly unnoticed, two different thresh-
old definitions are common for the Weibull function.

Cumulative Normal
The cumulative normal in its standard form is given

by the integral of the Gaussian

(16)

If we set b = 1/s and consider the function on a log stim-
ulus scale by using Equation 3, so that the representation
is similar to the other formulations given above, P(x) is

(17)

The cumulative normal plays a special role. Since it does
not have a closed analytic formulation, one will not, as
with the other functions, be in the situation to have a
slope parameter from a fitting routine that needs to be
converted. The derivation of maximum slope is straight-
forward, however: The first derivative is, by definition,
simply the Gaussian. At the threshold x = a, the expo-
nential vanishes, and the inflection point slope is ob-
tained as the Gaussian’s normalizing factor b/Ï2p,
weighted by (1 g)—that is,

(18)

with s = 1/b being the Gaussian’s standard deviation.
Thus, the psychometric function’s slope at the point of
inflection, for the case of the cumulative Gaussian, is the
inverse of the Gaussian’s standard deviation, weighted
by a factor (1 g)/Ï2p.

Hyperbolic Tangent Function
Another function that is sometimes used for the sig-

moid term F in Equation 1 is the hyperbolic tangent func-
tion F (x) = (ebx e bx )/(ebx + e bx ). By interpreting x as
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Figure 3. The Quick function.
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x = log(x/a) and observing that the hyperbolic tangent
ranges from 1 to 1, the psychometric function becomes

(19)

with x = log(x/a). It is noteworthy to realize that with the
proper conventions,the hyperbolic tangent is equivalent to
the logistic function. By some rearrangements, the iden-
tity of Equations 19 and 3 can be shown. The two func-
tions are shown in Figure 4 for comparison, using differ-
ent abscissas to not coincide. Note that b plays a different
role in the two functions (i.e., its numerical values will be
different for the same slope).

Through differentiation we obtain for Phyp the slope at
the point of inflection x = 0 as

(20)

Interquartile Range
Some studies (Chauhan & House, 1991;Chauhan et al.,

1993) provide the IQR as a measure of steepness, and it
is therefore useful to be able to convert between this and
the other slope measures. The IQR is defined as the dis-
tance, on the stimulus scale, corresponding to “1�4 up on
the psychometric function” versus “3�4 up.” For a yes/no
task (where g = 0), this corresponds to pc = .25 and pc =
.75, respectively. The distance on the stimulus scale in

¢ = ( )[ ]×b g b1 2/ .
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Figure 4. The hyperbolic tangent function.

Figure 5. Conversion from Pc to d ¢ for the two-alternative forced-choice task by d ¢ =
Ï2F-1(Pc). Note that, unlike in a psychometric function, the sigmoid plays the role of
linking two performance measures.
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the cited studies is specified in log units or in dB, where
the dB in perimetry (unlike in acoustics) corresponds to
1�10th of a log10 unit. Since the analytic functions consid-
ered here have different shapes, the relationshipbetween
the IQR and the slope is slightly different for each. For
the logistic, it is given by

(21)

(where P75, P25 stand for the values .75 and .25, respec-
tively). The relationship simplifies to

(22)

and the IQR is thus independent of g. b is for the logistic
function. Converted to log10 units, the IQR is

(23)IQR n n units.= ( ) ×( ) �1 91 10 1 0 954 10/ / . / logb b

IQR n units,= × ( ) �1 9 1 2 197/ . / logb b e

IQR n units,=
( )
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1 1
1

1

75 25
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P P
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Figure 6. Conversion of proportion correct Pc (top graph) to signal detection
d ¢ (bottom graph) for two-alternative forced-choice tasks. The top graph shows
four Weibull functions with the indicated b values. The dashed curve is the cu-
mulative normal from Figure 5, shifted appropriately.The dashed straight lines
in the top and bottom graphs illustrate a graphic conversion for one signal value.
Two steps, each with a nonlinear characteristic, are involved in the conversion.
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The conversion to b ¢ or to b of another analytic function
can be done by using the equations in the previous sec-
tions. As an example, a logistic for a yes/no task, plotted
on a log-10 scale, with b = 5.0, as in Figure 1, has an IQR
of 0.191 log10 units (Equation 23) or 1.91 dB. The IQR is
a measure of spread—that is, it is inversely related to
slope.

Proportion Correct to d ¢ Conversion
For forced-choice tasks, the signal detection measure d¢

can, under certain assumptions,be related to the proportion
of correct responses Pc, (see Green & Swets, 1966; Pelli,
1985; for >2 alternatives, see Elliot, 1964; see also Leek,
Hanna, & Marshall, 1992), and a conversionof Pc to d¢ has
become popular as a means to report results (e.g., Pelli,
1985). For n > 2 alternatives, there is no simple solution;

Elliot (1964, Equation 25) provides an approximation to
the general case:

(24)

where F(x) is the cumulative normal and an and bn are
regression coefficients that can be read off nomograms
(Elliot also gives convenient tables). For the 2AFC, the re-
lationship in Equation 24 is exact, with an = Ï2 and bn =
0, so by inverting one obtains

(25)

with F 1 denoting the inverse cumulative normal. The
conversion is illustrated in Figure 5, with d¢ on the ab-
scissa for the cumulative normal to appear in its familiar
representation. Note that d ¢ is usually assumed as >0.

For pointingout the relationshipbetween the b valuesof
psychometric functions and the slope of a d ¢ representa-
tion, I have chosen an empirical approach for simplicity.
Figure 6, top, shows four 2AFC Weibull functions of dif-
ferent slope (b values of 1, 2, 3.5, and 5, respectively),
together with a cumulative normal (dashed curve, from
Figure 5) on a separate abscissa scaled as d¢ = Ï2x, such
that a conversion of Pc to d¢ can be done graphically. The
dashed straight lines illustrate a sample conversion of x =
log x = –0.5 to d¢ = 0.5; two steps are involved at each
point (go up, left, and down, in the example). The bottom
graph shows the four Weibull functions converted to a d ¢
representation by Equation 25, plotted in log–log coor-
dinates. As can be seen, the ogives of the top graph trans-
late into nearly linear functions in the d¢ graph over the
range depicted.The slopes can be easily read off as Dlogd¢/
Dlogx. Note that the nonlinearityof the d¢-to-Pc conversion
linearizes the d¢-to-x relationship below, but not above,
threshold.

Figure 7 and Table 1 summarize the resultingslopes, read
off from the log–log d¢ curves in Figure 6, in the range of
0.1 £ d¢ £ 1, versus the b values of the corresponding
Weibull functions. The relationship is very well fit by a
straight line through zero, of slope 0.88:

(26)

This relationship is similar to that found by Pelli (1985,
p. 1,518, Equation 5.6). The conversion factor found here

D Dlog / log . .¢ =d x 0 88b

¢ = ( )d P2 1F c ,

P a d bn nc = ¢( )F ,

Figure 7. Slope of log d ¢ versus log stimulus level, read off from
Figure 6, bottom, versus the b values of the corresponding Wei-
bull functions in Figure 6, top.

Table 1
Slope of Log d ¢ Versus Log Stimulus Level,

From Figure 6, Bottom, and the Corresponding Weibull b
Values From Figure 6, Top

Weibull b d¢ Slope

1.0 0.8847722
2.0 1.837897
3.5 3.13087
5.0 4.420866

Table 2
Examples of Slope Conversions

Function b ¢ Conversion b ¢ Conversion IQR Dlog d ¢/
Function Equation g pc / loge by Equation pc /log10 by Equation Decilog loge Units Dlog x

Weibull Eq. 2
0.5 0.1839 b

Eq. 7
0.4235 b

Eq. 9
0.04235 b 1.4932/b 0.88 b

0.1 0.3311 b 0.7624 b 0.07624 b 1.4932/b –

Logistic Eq. 3 0.5 0.1250 b Eq. 8 0.2878 b Eq. 10 0.02878 b 2.1972/b 0.598 b
0.1 0.2250 b 0.5181 b 0.05181 b 2.1972/b –

Quick Eq. 14 Same as Weibull (but beware of threshold definition)

Cumulative normal Eq. 17 0.5 0.1995 b Eq. 18 0.4593 b ´ loge(10) 0.04593 b 1.3769/b 0.954 b
0.1 0.3590 b 0.8267 b 0.08267 b 1.3769/b –

Hyperbolic tangent Eq. 19 0.5 0.2500 b Eq. 20 0.5756 b ´ loge(10) 0.05756 b 1.0986/b 1.196 b
0.1 0.4500 b 1.0362 b 0.10362 b 1.0986/b –
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is slightly higher than Pelli’s (0.88 vs. 0.8 ± 0.15), the
reason probably being that Pelli included higher x values
(contrast values) into the fit where the (d¢-to-x) curves
are slightly curved toward lower slope. The conversion
of Weibull b in Equation 26, then, to other slope mea-
sures can be done by the equations given earlier.

Conclusion
To compare empirically found values of the slope of

the psychometric function for some sensory task, the
slope at the function’s point of inflection, denoted by b¢
here, can serve as a standard measure. It is specified in the
unit “increase of proportion correct per log unit increase
of x.” Since it is given in physical units, it is unambiguous,
and it is independent of which analytic representation is
chosen for modeling the psychometric function. To con-
vert, for example, from the Weibull function to the cumu-
lative normal, Equation 7 or 9, and Equation 18 would be
used. The equationsgiven above are hoped to help in these
conversions; Table 2 provides examples to verify the use
of the equations.
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