
Converting Sets of Polygons to Manifold Surfaces by Cutting and
Stitching

Andrk Gukziec ’ Gabriel Taubin ’ Francis Lazarus 2 William Horn 1

IBM T. J. Watson Research Center

Abstract

Many real-world polygonal surfaces contain topological singu-
laries that represent a challenge for processes such as simplifica-
tion, compression, smoothing, etc. We present an algorithm for
removing such singularities, thus converting non-manifold sets of
polygons to manifold polygonal surfaces (orientable if necessary).

We identify singular vertices and edges, multipry singular ver-
tices, and cut through singular edges. In an optional stitching phase,
we join surface boundary edges that were cut, or whose endpoints
are sufficiently close, while guaranteeing that the surface is a mani-
fold. We study two different stitching strategies called “edge pinch-
ing” and “edge snapping”; when snapping, special care is required
to avoid re-creating singularities.

The algorithm manipulates the polygon vertex indices (surface
topology) and essentially ignores vertex coordinates (surface geom-
etry). Except for the optional stitching, the algorithm has a linear
complexity in the number of vertices edges and faces, and require
no floating point operation.
Key-words : Polygonal Surface, Manifold, Cutting, Stitching.

1 Introduction

Polygonal surfaces are a common choice for representing three di-
mensional geometric models. Such models are used for generat-
ing pictures and animations, and are also used in CAD systems, in
Scientific Visualization and Medical Imaging. Many such polyg-
onal surfaces contain topological singularities, (e.g., edges shared
by more than two triangles, several triangle fans incident to a sin-
gle vertex) that represent a challenge for various algorithms that
operate exclusively on a manzjbld surface. A manifold polygonal
surface is such that the neighborhood of every vertex can be con-
tinuously deformed to a disk (to a half disk at the boundary: see
Section 2). In fact, this corresponds to an intuitive definition of
what a “surface” is, as opposed to an arbitrary collection of poly-
gons.

In this paper, we essentially ignore the coordinates associated
with the surface elements, and we look at the property of being a
manifold as a purely topological one. Topological degeneracies can
occur by design choice (e.g., vertex merging to avoid duplicating
coordinates, or polygon reduction tools), or they can be produced
by incorrect algorithms for building surfaces (e.g., iso-surfaces, tri-
angulation of scattered points), or by correct algorithms containing
software bugs, etc.

‘IBM T.J.Watson Research Center, P.O.Box 704. Yorktown Heights, NY 10598.
{taubin,gueziec,hornwp}@watson.ibm.com

‘IRCOM-SIC (UMR CNRS 6615), SPZMI, Bvd. 3, T&port 2, B.P. 179, 86960
Futuroscope Cedex, France, lazarus@sic .univ-poitiers. fr

O-8 186-9176-x/98/$10.00 Copyright 1998 IEEE

Some concrete examples of algorithms that fail on input con-
taining topological singularities are: algorithms for surface subdi-
vision [I]; algorithms that simplify surfaces ([2, 31); algorithms
for surface compression[4]; algorithms for progressive transmis-
sion (Hoppe [5] relies on each triangle having no more than three
neighbors); algorithms that (scan) convert a polygonal boundary
representation of a potential solid for Rapid Prototyping [6]. Other
algorithms yield undesired results when executed on non-manifold
input, such as surface smoothing [7] (see Section 6).

Several approaches are possible:(l) modifying algorithms to
handle non-manifold input; (2) trying to understand the source of
errors in modeling or CAD packages, and lobbying (and hoping)
for such errors to be corrected; (3) developing methods to correct
the input. Following the first approach is application-dependent,
and probably requires re-defining objectives (beyond just accept-
ing non-manifold input). For instance, a number of surface sim-
plification methods accept non-manifolds, but often they introduce
many more degeneracies than those originally present. The second
approach has little short term impact and may not be a complete
solution in the long term as well (there will always be software
bugs).

We have chosen the third approach. In this paper, we provide
the complete description of a novel and efficient method for au-
tomatically converting a non-manifold surface to a manifold SUT-

face. Although our ideas are conceptually simple, our experience
showed that implementing such algorithms without omitting any
special case can be complicated and error prone. We assume that
the topology of the surface is already built for the most part, and
concentrate on removing the singularities. However, we have de-
veloped a stitching method (edge snapping) to help build the topol-
ogy. In general, we assume that the corrections will involve a rela-
tively small number of surface elements.
The algorithm is decomposed into two main parts: cutting and
stitching. Cutting is a general method for disconnecting the SUT-

face topology along a set of marked edges or vertices. We mark
singular edges and vertices; an edge is singular if more that two
faces are incident to it; a singular vertex is defined in Section 2. In
Section 4 we describe two different methods for cutting: a global
method and a local method. The global method operates on all the
faces and vertices of the surface at once, by first breaking all con-
nections between faces and later joining adjacent faces that share
a unmarked edge. The local method operates only on marked ver-
tices and endpoints of marked edges, by counting the number of
(unmarked) edge-connected sets of faces incident to a vertex, by
multiplying the vertex, and by assigning a different copy of that
vertex to each connected set. The global method is more appro-
priate when there is a large number of topological singularities to
correct. The local method is more efficient when there are only few
singular elements in a generally correct topology.

As illustrated in Fig. I, several manifolds can be mapped to
the original non-manifold by identifying vertices. To reduce the
number of vertices, holes, or components, the cutting operation is
followed by stitching. As defined in Section 5, stitching consists of

383

El E2 E3

Figure 1: Converting to a manifold surface: A,B,C: cutting through
singular edges; For illustrative purposes, topologically discon-
nected vertices are shown apart. We implement two stitching strate-
gies: “pinching” edges along the same boundary (D) or “snapping”
together edges belonging to different boundaries (E).

taking two boundary edges and identifying them, while guarantee-
ing that the surface is a manifold. We have: observed that stitching is
a delicate operation: for instance, when using the “zipping” method
reported in [S], singular edges can be created when stitched mul-
tiple times. We show examples in Section 6 and provide sample
timings.

Fig. I is a diagram illustrating our method. We consider two
tetrahedra sharing an edge: we subdivide the surface of the tetra-
hedra into smaller triangles, resulting in the surface of Fig. IA. We
label singular edges and vertices and color them in red in Fig. 1B
(regular edges are orange). After multiplying singular vertices, we
have created two disconnected surface components in Fig. 1 C, each
of which has a boundary of length eight (in green); as explained in
Section 4, the three singular vertices in Fig. 1 B that are shared by
two singular edges are multiplied four times each. The two singu-
lar vertices shared by one singular edge only are multiplied twice.
After stitching along the same boundaries (or “pinching”), we have
created in Fig. 1 D two disconnected solids. Instead, when stiching
along different boundaries (or “snapping”), we create Fig. I E a sin-
gle surface without boundaries. All three surfaces C, D, and E are
manifolds with the same geometrical realization as A.

2 Polygonal Surfaces

For our purposes, a (polygonal) surface S({v; }, { fj }) is defined
with a set of vertices {vi} and a set of faces {fj}. Each vertex has
coordinates in R3. Each face is specified with a tuple of at least
three vertex indices. The face is said to be incident on such ver-
tices. A pair (vertex, incident face) is called a coyney. Each vertex
must have at least one incident face. The vertex indices in a face
must all be different. Otherwise the face is considered invalid. An
edge of a face is defined as a pair (vi, vj) of consecutive vertices of
that face, modulo circular permutation. ‘The face is said to be inci-
dent on the edge, and the edge incident on the vertices vi and uj . vi
and ~j are also said to be adjacent vertices. Edges sharing a vertex
and faces sharing an edge are said to be adjacent edges and faces.
There are two possible orderings for the vertices of a face module

@<1~8::B
A B C D E

Figure 2: A: the star vX of a regular vertex v of valence seven, B:
the link of v. C: the star w* of a singular vertex w. D: the link of
w, composed of two disconnected polygonal curves. E: the star u*
of a boundary vertex.

circular permutation, resulting in two orientations for that face. In
this paper, we call topology of a surface, the set of ordered sub-
sets of indices provided by the set of faces (fj}, modulo circular
permutation. We use the word geometry to mean the set of vertex
coordinates {vi}. There are no particular constraints on the ge-
ometry for our methods to apply: polygons can be warped. Cutting
and stitching operate on the topology only. Additionally, vertices or
faces may have a number of continuous or discrete properties, such
as colors, normals, and texture coordinates. Properties can also be
associated with comers. The data structures we use are described
in the Appendix.

We call the subset of faces of {fj } that share a vertex v the star
of v, noted v*. The number of faces in v* is called the valence of
the vertex v. To form the link of a vertex, we first take all edges
belonging to faces in v*, and then remove the edges incident on
v. The link is a graph made by linking up the ,remaining edges.
See Figure 2. A regular vertex has a link formed of one polygonal
curve; if the link is closed, then it must be of length at least three;
otherwise the vertex is a singulur vertex. We call an edge incident
on one single face a boundary edge. A regular vertex incident to a
boundary edge is called a boundary vertex. These cases are illus-
trated in Fig. 2. A surface is a manifold if each vertex is a regular
vertex; otherwise it is a non-manifold surface.

Two adjacent faces sharing an edge e have a compatible orien-
tation if the two vertices of e listed in one face appear in opposite
order in the other face. The surface is orientable if each face can be
oriented such that any two adjacent triangles have a compatible ori-
entation. An orientable manifold surface such that its faces are all
oriented in a compatible way is said to be orien&d. An orientable
manifold surface can be oriented in only two possible ways.

3 Conversion of Non-Manifold Surfaces

To remove topological singularities, our method begins by cutting,
or disconnecting, the surface along singular edges and at singular
vertices. After this operation, which is described in more detail in
Section 4, by construction each vertex has a star formed of a sin-
gle component of faces connected through regular edges, meaning
that the surface is a manifold according to our definition. A num-
ber of pre-processing steps may be necessary in the presence of
invalid faces, and to accomodate our two different methods of cut-
ting (locally or globally). Also, as mentioned above, stitching may
be useful to reduce the number of duplicated vertices, or to build
the topology from an input consisting of disconnected polygons.
The details of the conversion steps are as follows:
Step I: Processing Invalid Faces Faces of length three (triangles)
can only be invalid if they are geometrically degenerate, with two
or more coincident vertices; there are more cases for faces of length
four or higher as illustrated in Fig. 3: faces can ‘be invalid because
vertices are duplicated (Fig. 3A). In this case, the global cutting
method automatically produces the polygon marked in green in
Fig. 3A. Another possibility for an invalid face is to be incident
on the same edge multiple times (Fig. 3B). In this case, we mark
the edge and for each endpoint, we inquire whether there is another
marked edge of the invalid face incident on that endpoint; if this is

384

Figure 3: Invalid faces. A: duplicate vertex; the global method
automatically produces the correction shown in green. B: face in-
cident on the same edge e multiple times.

not the case, we mark an incident edge; marked edges are shown in
red in Fig. 3B; the global method produces the solution marked in
green in Fig. 3B.

These methods do not apply when using the local method: in
practice in this case we have simply eliminated invalid faces.
Step II Singular edges are marked when building the edge data
structure, as the edges that are shared by at least three different
faces.
Step III: Pre-Processing for the Local Method We label stan-
dalone vertices when looping through the face list by counting the
number of face incidences (valence) for each vertex. If the num-
ber of faces is less than the valence, then at least one additional
connected component exists, so the vertex is an isolated singular
vertex. We eliminate the standalone vertices, renumber the remain-
ing vertices, and update the vertex indices in faces in a second loop
through the face list.

Isolated singular vertices must be marked. To determine whether
a vertex w is singular, if it is not an endpoint of a singular edge, we
attempt to build its star n* by pivoting about v, starting with any
“first” face f incident on v. To pivot about 21, we locate in f an
edge e incident on v. From the edge data structure, we infer a face
g that together with f shares e; we then locate in g an edge incident
on u different from e. We continue until we encounter a bound-
ary edge or the first face f. We then count the number of faces that
were visited and compare this number to the valence of o. Note that
this method also works if the faces are not consistently oriented.
Step IV We apply either the global cutting method on the marked
edges or the local cutting method on the marked edges and vertices.
Step V (Optional): Building an Oriented Manifold We must ver-
ify that faces incident on each edge are consistently oriented. Af-
ter cutting through singular edges, we propagate the orientation of
faces of the resulting manifold using a spanning tree of faces. The
number of required operations is proportional to the total number
of faces. After propagating the orientation, some edges may have
inconsistently oriented incident faces. In a second step, we mark
these edges and cut along them (fewer edges are cut in this way
as opposed to marking and cutting edges before propagating face
orientations).
Step VI (Optional) We perform some stitching as described in Sec-
tion 5.

4 Cutting

As illustrated in Figs. 4 and 6 cutting consists of disconnecting the
surface along a collection of marked edges or vertices: multiple
copies of vertices are created and assigned new indices; vertex in-
dices in faces are modified to refer to the proper copy ‘. We de-
scribe a “local” and a “global” methods for cutting; we mark sin-
gular edges and vertices and cut through them to obtain a manifold.

4.1 Local Method for Cutting

We call this method local because it only operates on selected ver-
tices and faces. Starting with a list of marked edges, we mark ver-
tices that are endpoints of marked edges. Additional vertices may

‘A rigourous definition of cutting (and stitching) can be found in Agoston [9]

Figure 4: Local cutting. A: star of Vertex tag with marked edges in

Figure 5: A: It is not possible to cut through any collection of
marked edges: we need at least two adjacent edges if none of them
is incident to the boundary. B: an isolated singular vertex v.

be marked as described below. We visit each marked vertex in turn;
for each marked vertex w, we determine its star v*, which can be
obtained for each vertex by looping on the face array. We decom-
pose v* in subsets that are connected by unmarked edges. This
can be performed using standard methods: we collect all unmarked
edges incident on 21, and maintain a partition on the faces of w*,
considering two faces adjacent if and only if they share a unmarked
edge. Here we assume that all faces are valid. Invalid faces are
treated in Section 3.

Once the number of connected components nC is known, we
create n, - 1 additional copies of the vertex TV with the same coor-
dinates and same properties. Each instance of v is labeled from 0
to n, - 1. In v*, we revisit each face in turn and for each face f, we
locate the index of v, and we replace it with the instance of TV cor-
responding to the component number off. We call this operation
multiplying the vertex 21. Every time a vertex is multiplied, we cre-
ate n, - 1 new entries in a look up table of vertices; in this look-up
table we record that the ancestor of all copies of ZI is precisely v.

We illustrate the local cutting method on the star of a vertex 215
with six incident faces fc . . . fs in Fig. 4. In Fig. 4A, marked edges
are drawn bold. The unmarked edges incident on w5 are (wq, 2)s)
and (~5, VT). Four connected components of faces go . . ga are
identified in Fig. 4B. Accordingly, four copies of the original u5
are used: ~5, via, WI], ~12. Again, no vertex coordinate is actually
modified. We draw topologically disconnected faces as geometri-
cally disconnected for illustrative purposes. The cut is completed
once all marked vertices have been multiplied. Any two surface
portions that share a collection of marked edges and no other edge
or vertex will be disconnected by the cut. It is not possible to cut
through any collection of edges: see Fig. .5A, we need at least two
adjacent edges if none of the edges is incident to the boundary.

The cost to compute the number of connected components of
faces incident on every marked vertex is less than the number of
marked vertices times the largest valence of a marked vertex. Then,
for each vertex v, we need to know the relative position of the
corresponding corner in incident faces, in order to change the cor-
responding vertex index. The worst case complexity of the local
cutting is proportional to the number of marked vertices multiplied
by the largest valence of a vertex.

4.2 Global Method for Cutting

The global method for cutting requires the specification of a set of
marked edges. We call it a global method because it operates on all

385

Figure 6: Global cutting. A: corner groups are shown using circular
arcs. B: result of global cutting.

the faces and vertices of the surface. The result is a cut through the
marked edges as well as a cut through the isolated singular vertices.

This method first creates a new surf;ice C from the original sur-
face S by breaking all adjacencies between faces. There are as
many vertices in C as corners in S. In Fig. 6A, we show the cor-
ners wa . , , ~2~ obtained by completely disconnecting vg*.

We then define a partition of the face corners as follows: we
visit the unmarked edges in S one after the other. For each un-
marked edge, we retrieve the faces sharing that edge in S, and the
face corners corresponding to the edge: endpoints in C. For each
edge endpoint, we express that the corners corresponding to that
endpoint belong to the same group of corners. Once all the un-
marked edges are visited, the corner groups correspond to the ver-
tices in the surface resulting from the cut. In a look-up table, we
record the mapping from comer groups to the vertices of 5’ before
the cut.

We illustrate the result of the global cutting ‘method on w; in
Fig. 6B, where the comer groups go . . gie are shown. The exam-
ple configuration that we use is the same as in Fig. 4; however, as
the method is global, all vertices in the configuration are affected,
and not only ~5. The worst case complexity of the method is linear
in the total number of comers (to disconnect the surface entirely)
and in the number of unmarked edges.
Comparison of the two methods The labeling of vertices after the
cut is different in both methods, but this does not affect the surface
topology. Unlike the local method, the global method implicitly
cuts through isolated singular vertices, which are singular vertices
that are not endpoints of singular edges (see Fig. 5B). The global
method eliminates “standalone” vertices, which are vertices with-
out incident faces.

There are cases when one method will be preferred against the
other: when the cut covers a large portion of the surface, the global
method has a lower cost. The global method is more effective in the
presence of invalid faces (as discussed below), standalone or iso-
lated singular vertices. Alternatively, when the number of marked
edges or singular vertices is small with respect to the total num-
bers of surface edges and vertices, the: local method is less costly
because it visits only marked edges and vertices.

5 Stitching

Stitching corresponds to “identifying” boundary edges. The basic
stitching operation is called an edge stitch. As explained in Sec-
tion 4.2, the global cutting method operates by grouping comers.
At the end of this process, a surface is defined by identifying every
comer group with a new vertex. An edge stitch can be viewed as
a continuation of the grouping proces,s. After each stitch, a new
surface can be defined by identifying each comer group with a new
vertex.

When applying our conversion algorithm to the surface in Fig 7A,
we would obtain the surface in B after cutting using either method
of Section 4, and unfortunate stitching choices (labeled I, 2, 3 and
4) would create in C a non-manifold surface very similar to A (ex-

Figure 7: A: a non-manifold surface; after cutting through singular
edges, we obtain the surfaces of B. B: an incompatible sequence of
edge stitches (labeled 1,2 3 and 4), resulting in a non-manifold in
C. C: spirals indicate which comers are identihed (grouped) after
stitching.

cept that the red as well and green edges are not identified). We
address this problem specifically in Sections 5. I and 5.2. An edge
stitch is called valid if it creates no singularity. Since the vertex
identifications are induced by edge stitching, the link of every ver-
tex cannot be disconnected. Accordingly, no isolated singular ver-
tex can appear; we must only test for the creation of singular edges.

We propose two different greedy strategies for stitching. A
Pinching Strategy consists of keeping the components that were
created after cutting, and of stitching some of the boundary edges
created when cutting. We prove that it is impossible to create anon-
manifold using the Pinching Strategy. A Snapping Strategy consists
of stitching along different boundaries, whereby a test needs to be
developed to avoid creating singular edges, as illustrated in Figs. 7
and 10.

5.1 Pinching Strategy: Pinching Adjacent Bound-
ary Edges Created by Cutting

Edges are determined to be “stitchable” if we did cut through such
edges in the previous stage. We compute connected components
of adjacent boundary edges (i.e, boundaries). For each boundary,
we choose a pair of adjacent stitchable edges and pinch them along
their common boundary vertex: we diminish by two the length of
the boundary. Starting from the first edge stitch, we then verify
whether the adjacent pair of edges on the boundary are stitchable
and if so, we stitch them. We continue until the next pair of edges is
not stitchable. We repeat the operation of searching for an adjacent
pair of stitchable edges.

One advantage of this strategy is that we always obtain a mani-
fold, assuming that all singular edges and vertices were cut before.
Firstly, as we stitch adjacent edges, we only identify one pair of
vertices vi and va. Secondly, let us suppose that when trying to
identify ~1 and va we observe that they are both adjacent to 2ro, such
that (we, ~1) and (210, ‘~2) are not both boundary edges. Assuming
that we stitch only edges that were cut, we know that before cutting,
vi and 2)~ were identified, meaning that (ZJO, ~1) and (~0, we) were
the same singular edge. Accordingly, a cut was made through that
singular edge. Without loss of generality, we assume that (~0, ~1)
is not a boundary edge, meaning that some edge was stitched to it
after cutting. Using the Pinching Strategy, whe:n stitching an edge,

386

Figure 8: This configuration cannot be obtained by following Strat-
egy I of pinching adjacent boundary edges.

at least one endpoint must be an interior vertex. ‘ur is a boundary
vertex so 2rc must be an interior vertex. uc is an interior vertex that
is adjacent to WI and VZ, which are both boundary vertices. Af-
ter cutting, ZIO was a boundary vertex; now it is an interior vertex
adjacent to two boundary vertices WI and ~2: this configuration is
impossible using the Pinching Strategy (see Fig. 8).

More generally, applying the Pinching Strategy to a loop of
boundary edges (to a boundary), results in a loop of boundary edges
to which trees of stitched (formerly singular) edges are attached.
If the original surface before cutting represents a solid, this strat-
egy for stitching has the effect of breaking all connections of zero
width, and regularizing the solid by computing its interior (see
Fig. 1D.) This is not true if singular edges form a graph on the
surface that is not a forest: each loop of singular edges would yield
two disconnected boundaries after cutting.

Having many components may be useful for the following situ-
ations: in some cases (e.g., the iso-surface of Fig. 13), most compo-
nents except a few can be rejected because they correspond to noise
or have no impact on a visualization. Also, some algorithms per-
form better with many components, e.g., the surface simplification
of Rossignac and Borrel [lo].

5.2 Snapping Strategy : Stitching Edges Belong-
ing to Different Boundaries

It may be useful to allow stitching between edges that were not
previously identified, but which are geometrically close to one an-
other: for instance if the surface is specified by a set of discon-
nected faces and if the coordinates of vertices of such faces contain
small, unintended discrepancies. Also, to provide suitable input for
methods such as Taubin and Rossignac’s [4], that have an overhead
cost for every connected component, we wish to join disconnected
surfaces and minimize the number of connected components. We
next present the strategy that was implemented; we,describe tests
to insure that the stitches are valid. Our methods were success-
fully applied for pre-processing 332 VRML models before geomet-
ric compression: we report statistics pertinent to this application in
Table 1.
Strategy We start by deciding when a pair of boundary edges is
stitchable and the order in which such pairs will be stitched. We
consider two edges to be stitchable if each of their corresponding
endpoints are located within an e distance. We choose e to be a frac-
tion of the length of the shortest edge. To avoid a quadratic num-
ber of comparisons between boundary edges, we cluster the edges
in an octree-like structure constructed using the distance between
edge centers. To build the structure, we first compute a bounding
box containing all the edge centers and then recursively subdivide
it into two parts on the longest side. The boxes are enlarged by e/2,
such that neighboring boxes need not be visited when looking for a
stitching candidate as shown in Fig. 9. The subdivision stops when
either the side of a box becomes smaller than E or the number of
edges in a box is less than a fixed number p. In practice, we use
p = 20.

We consider in turn each pair of edges in each leaf box of the
octree. When we encounter a pair of edges whose endpoints meet
the e distance criterion we verify whether the edge stitch is valid,
and if so, we perform the stitch. To minimize the number of con-
nected components we visit the octree twice: in the first pass we

Figure 9: Stitchable edge pairs fall inside the same box.

D F

Figure 10: Different configurations for a proposed stitch between
(vo,~) and (w;,t&).

only try to stitch edges from different connected components; after
this pass all the stitchable edge pairs must belong to the same con-
nected component; in the second pass we attempt to stitch any pair
of edges.
Tests for Determining Valid Stitches At each step of the stitch-
ing process, each vertex of the surface corresponds to a group of
corners and each edge corresponds to two groups of corners. To
avoid any confusion with the edges of the original cut surface we
call such edges current edges. A stitch is performed by stitching
two current edges; this in turn is performed by merging each of the
two pairs of corner groups that define the endpoints of two current
edges. Since the surface is a manifold before the stitch, every cur-
rent edge is incident to one or two faces. This condition must also
hold after the stitch. Only current edges incident to one of the four
vertices involved in the stitch may be affected by the stitch. These
edges must, by definition, belong to one of the stars of the four ver-
tices. Suppose that we wish to stitch the two current edges (~0, 2rr)
and (vi, vh) by merging wc with vi and 211 with wb. As shown
in Fig. 10, several configurations may occur. In this figure circles
represent groups of comers (vertices) and lines represent bound-
ary edges of the cut surface. A current edge is represented by two
circles connected by at least one edge. The manifold property re-
quires that no more than two edges connect the same circles. The
configurations can be partitioned into three classes:
Class I The stars of vo and vr do not intersect the stars of wh and
vi. This case is illustrated Fig. 10A; the stitch is valid; it can be
performed.
Class II Either (~0, vi) or (VI, ~6) is a current edge. Fig. IOB
shows this configuration. The stitch cannot be performed since it
creates a self-loop edge which is prohibited in our surface model.
Class III There are two current edges of the form (w, ‘~0) and (v, vi)
or of the form (v, ~1) and (v, ub). Several such configurations are
shown in Figs. IOC,D,E and F. Fig. 1OC illustrates the case where
v = 211. Here the stitch is invalid, since the stitched edge would

387

be incident to three faces. For similar reasons, stitches cannot be
performed for the configurations of Fig. IOD and Fig. 10E. HOW-
ever, the configuration of Fig. IOF yields ‘no singular edge. In this
last case, stitching (210, ~1) and (vi, 1~;)) implies stitching (v, ~0)
and (v, vi). We call this last stitch an implicit stitch. In contrast,
we refer to the stitch between (VO,OI) and (vi, vh) as an explicit
stitch, Explicit stitches that yield a non-manifold surface are re-
jected. However, in the process of rejecting a proposed explicit
stitch we may encounter a valid implicit stitch, in which case we
merge the corresponding corner groups. This is the case for the
configurations shown in Figs. IOC and IOE. A procedure called
ClassifyMerging(v, v’) evaluates the effect of merging two corner
groups, v and v’ and classifies the merging as one of three types:
(1) creates at least one singular edge, (2) creates no singular edge
and creates no implicit stitch, (3) or crea’tes no singular edge and
creates one or two implicit stitches. Given two stitchable edges
(~0, ~1) and (vi, vh) we perform the following steps:
Step I We evaluate ClassifyMerging(vo, vi) and perform the merg-
ing if there is an implicit stitch (3).
Step II We evaluate ClassifyMerging(vl, 11;) and perform the merg-
ing if there is an implicit stitch (3).
Step III If one of the two mergings was performed (3) and if the
other does not create a singular edge and no implicit stitch (2) then
perform the merging.
Step IV If neither merging was performed and if both mergings
would not create any singular edges (2) then perform both merg-
ings.

It is important to perform the first two steps sequentially. In
the case of Fig. lOC, the above procedure will merge vo with vi in
Step 1. However, ClassifyMerging(v1, vb) will prevent the second
merging in Step II. Figure IOD shows another case where order is
important. ClassifyMerging works by maintaining a list of cur-
rent edges incident to the corners of a group. ClassifyMerging()
verifies whether any edge is repeated in two lists. for each repe-
tition, if both edges are boundary edges, then there is an implicit
stitch, otherwise, a singular edge would be created when merging.
Orientability If we wish to have an oriented surface, firstly, we en-
force the orientability of the input surface using the cutting methods
of Section 4. Secondly, we orient consistently the faces of the dif-
ferent surface connected components: we maintain a partition on
the faces into connected components; each face also carries an ori-
entation bit indicating whether the ordering of its vertices (its orien-
tation) should be kept or reversed. The arientations of the various
components are subject to change when stitching. The orientation
bit of a face composed with the orientation bit of the component
representative provide the current orientation of a connected com-
ponent, When stitching two disconnected components, we update
the current orientations to make them consistent across the stitched
edges: we update the orientation bit of the representative of one
of the components. When stitching edges of the same component,
implicit stitches do not affect the orientability, but explicit stitches
may affect the orientability: In Step IV, we retrieve the current ori-
entations of the faces incident on the (bou.ndary) edges (~0, ~1) and
(vi, &) and we make sure that they are consistent. Otherwise, we
do not perform the stitch.

6 Examples

Conversion of Non-Manifold Surfaces Invalid faces and singular
vertices and edges are frequent in real world geometric data. The
following examples illustrate some of these singularities and the
benefits of using our methods. We show three examples of conver-
sions, performed using the cutting algorithm followed with either
the Pinching or Snapping Strategies for stitching. As the effect of
the conversion is of pure topological nature, it is essentially “invis-
ible” in a display; however, we use the following artifices to show

@ia[1
E F G

Figure I I: Lamp model. A: general view. B, C, D: successive de-
tails showing edges shared by more than two faces. E,F,G: Singular
edges are shown in red and singular vertices in b1ac.k in increasingly
detailed views.

the various steps of our methods: we use different colors for bound-
ary edges, regular edges and singular edges; we highlight singular
vertices; in certain illustrations, we may disconnect geometrically
adjoining boundary edges; we may also use different colors for
painting the faces belonging to different connected components;

The first example is a polygonal CAD model of a desk lamp in
Fig. 1 IA. The original model had 5054 triangles and 28 IO vertices;
we discovered 125 singular edges and 128 singular vertices. After
conversion by cutting through singular edges and vertices, there
were 5052 triangles and 3058 vertices. Fig. 11A shows the various
connected components after conversion using different colors. The
conversion took less than one second with an IBM RS6000 580.

The second example is a polygonal model of the space ship En-
terprise with 12539 triangles and 1501 I vertices. Fig. 13A (on the
color page) is a global view of the model, where disconnected sur-
face components are painted with different colors. We discovered
594 singular edges and 1878 singular vertices. After removing in-
valid triangles, there were 435 remaining singular edges and I689
remaining singular vertices. After conversion and stitching using
the Snapping Strategy, there were 12552 triangl’es and 7429 ver-
tices. The conversion took 21 seconds using an IBM Power PC 42T.
This example is a good advocate for automated correction methods:
asking a user to decide on how to locally connect the surface 1800
times seems impractical.

The third example is a polygonal approximation of an iso-surface
extracted from a CT-scan of a fossil monkey jaw, illustrated in
Fig. 13A. The original model had 75842 triangles and 37624 ver-
tices. We discovered 462 singular edges and 563 singular ver-
tices; singular edges are shown in Fig. 13B and singular vertices
in Fig. 13C. Although non-manifold iso-surfaces are justifiable in
the general case, in this case singularities came from an incorrect
algorithm. Invalid triangles with duplicate vertex indices contribute
to the singular edge and vertex count: they are incident to the same
edge (consecutive vertex index pair) twice, and provided the trian-
gle shares that edge with neighboring triangles, the edge is singu-

388

lar. After removing invalid triangles, we discovered 2 remaining
non adjacent singular edges and 10 singular vertices. After cutting

through singular edges and vertices, we obtained 75371 triangles
and 37636 vertices. The conversion took 6 seconds with an IBM
RS6000 580 workstation, including the removal of invalid faces.

For this example, it is preferable to use the local cutting method

rather than the global cutting method, since the number of singular
edges and vertices is very small after removing invalid faces.

Digression: Surface Smoothing and Singularities We now de-
scribe another application for our methods: an algorithm can ter-

minate normally in the presence of singular edges and vertices but
deliver unintended results. We consider the surface subdivision and
smoothing algorithm of Taubin [7]: designed for use on a manifold
surface, it operates on a non-manifold as well; however, the result-
ing surface is not smooth in the vicinity of the singular edges and

vertices. We use the example of two spheres sharing two edges,
providing a non-manifold model in Fig. 12G. In Fig. 12H we at-
tempt to subdivide and smooth G, and notice the non-smooth be-
havior in the vicinity of the singular edges. In Fig. 121, we first
cut through the singular edges using the methods of Section 4 and
then subdivide and smooth. In Fig. 12J, we smooth after cutting
and stitching using the Pinching strategy. In Fig. 12K, we smooth

after cutting and stitching the Snapping Strategy. Fig. 12L illus-
trates another outcome when stitching using the Snapping strategy
as well.

7 Related Work

Our method is very different from most of the previous work as it
operates solely on the surface topology. The first category of prior
art methods operate both on the geometry and topology to modify
surfaces so that they can represent the boundary of solids [11]. This
is an important issue for Rapid Prototyping of models represented
using the .STL format consisting of topologically disconnected tri-
angles (see [12, 13, 6, 14]). As was duly noted, converting a non-
manifold surface to a solid is a difficult task with floating point
precision problems, computationally demanding tasks (e.g., poly-
gon intersections), and a number of open problems, as the problem
of filling a polygonal hole (boundary) with a “reasonable” polyg-
onal surface without creating intersections [15]. Relatedly, Butlin
et al. [16] attempt to “repair” CAD data in order to use it for engi-
neering analyses or to simplify data exchange. Barequet and Ku-
mar [17] operate on STL files; as with the global cutting method

of Section 4.2, they first stitch through regular edges, but they can

subsequently create a non-manifold after stitching additional edges.
Murali and Funkhouser [18] start from polygon faces to partition
the volume in cells, and determine if each cell is solid. From the

solid cells, they produce a manifold boundary representation.
The second category consists of tools to create and manipulate

surface models. The technique of Szeliski et al. [19] builds a new
polygonal surface from an existing surface by defining a collection
of point samples, using point repulsion methods to distribute the
points evenly. Subsequently, a manifold surface triangulation of

the remaining points is found. The technique of Welch et al. [20]

builds a polygonal surface starting from a simple surface, by apply-
ing a series of surface operations, that consist of adding, deleting or

morphing a portion of surface. They use mesh cutting techniques,
but cut only along simple curves. Both methods build new lists
of vertices and faces, while we manipulate an existing list of face

vertex indices. Veron and Leon [21] detect automatically singular
vertices and edges but they require user assistance for correcting
the singularities.

The last category of related work is in Solid Modeling, to de-

velop data structures and tools for building boundary representa-
tions of solids. It is related because conversions between mani-
fold and non manifold representations are discussed, for instance
in Hoffman [22] (see also [23, 24, 25]). Heisserman [26] devel-

oped a method for extracting a manifold boundary representation
from a set of intersecting solids. Our approach is different because

we do not assume to work with solids, and do not use the notions
of interior or complement.

8 Conclusion

We have used cutting and stitching for the automatic conversion of
a set of polygons to a manifold polygonal surface, that can poten-
tially exhibit self-intersections (which are not treated). All proper-
ties are passed on to the output surface. Face and corner properties
are unchanged, as our method preserves corners. When a vertex is
multiplied, the same properties are assigned to all copies.

We have successfully applied this conversion to extend algo-
rithms for surface simplification [3] and compression [4], to enable
processing of non-manifold surfaces. This method was success-
fully applied to pre-process non-manifold polygonal surfaces be-
fore simplification in IBM Data Explorer [27]. This method may
not be suitable if the original surface was intended to be a non-
manifold, i.e, if topological singularities (singular edges and ver-
tices) are an integral part of the model. Otherwise, it is general and
handles any type of topological singularity without user interven-
tion.

Aside from reducing the number of boundary edges after con-
verting to a manifold, another application of stitching is to join
topologically disconnected but geometrically adjoining surface com-
ponents, which we found useful for optimizing surfaces before com-
pressing them using Taubin and Rossignac’s method. Other strate-
gies can be developed for stitching, depending upon the applica-
tion.

A Data Structures

Our methods take as an input a surface represented with a list of
n, vertices and with a list of nf faces. Internally, the vertices and
faces are preferably represented using a “vertex array” and a “face
array”. The vertex array contains the vertex coordinates (three per
vertex). The face array contains the vertex indices for each face
stored contiguously. We also use a “face start array” to provide the

starting index of each face in the face array.
By looping through the face array, we build a structure of ne

surface edges, recording the number of incident faces. For effi-

389

r

Source of wwwmicrosoft. WWWWUiS. www.3dcafe.
VRML data COdV~l COIlI COIlI

Statistics
Models
Indexed Face Sets
Connected Components
Vertices
Singular Vertices
Edges
Singular Edges

Change in Components
Change in Vertices
Change in Edges
Total CPU Time

200 23 109
665 128 421

2146 29461 4525
2862 I 51015 59119
708 22960 4691

52610 31113 149690
601 0 1916

-1106 -29033 -2709
-3656 -40078 -1663
-2167 - 10968 1191
41s 37s lm5ls

Table 1: Statistics on conversion and stitching using the Snapping
Strategy applied to VRML 2.0 data available on the World Wide
Web. Timings were measured in minutes and seconds on an IBM
RS6000 590 in debug mode; they include parsing of VRML files
and scene graph operations.

ciency, the algorithm requires constant time access in average to
the edges indexed by the two endpoint indices. The edge data struc-
ture should also provide constant time access to the incident faces.
In our implementation, the edges are organized as a hash table in-
dexed by the sorted pair of endpoint indices (smaller vertex index
followed by larger vertex index). This hash table, and the list of
face incidences for each edge are constructed in O(nr) time by
visiting each face, and for each pair of consecutive vertices modulo
circular permutation, by retrieving the edge in the hash table and
updating its incidence list or inserting the edge in the hash table if
it was not present.

When cutting and stitching, we need to maintain a partition on
the faces of a vertex star or equivalently on all the comers associ-
ated to a vertex. We use the Union-Find algorithm for this purpose,
whose running time is essentially O(n), when 7~ elements are in the
partition [28]; once the partition is determined, access to represen-
tatives of faces or comers takes constant time. Partitions are also
used for orienting faces consistently when stitching in Section 5.2.

REFERENCES

[II

PI

[31

[41

PI

161

[71

PI

S. Doo and M. Sabin. Analysis of the behaviour of recursive
division surfaces near extraordinary points. Computer Aided
Design, 10(6):356-360, 1978.

A. Varshney. Hierarchical Geometric Approximations. PhD
thesis, University of North Carolina at Chapel Hill, 1994.

A. GuCziec. Surface simplification inside a tolerance volume.
Technical report, IBM T.J. Watson Research Center, York-
town Heights, New York, March 1997. revised version of
RC 20440.

G. Taubin and J. Rossignac. Geometry Compression through
Topological Surgery. Technical Report RC-20340, IBM Re-
search Division, January 1996.

H. Hoppe. Efficient implementation of progressive meshes.
Technical Report MSR-TR-98-02, Microsoft Research, Red-
mond, Washington, January 1998.

J.H. Bohn. Removing zero-volume parts from cad models for
layered manufacturing. IEEE Computer Graphics & Applica-
tions, 15(6):27-34, November 1995.

G. Taubin. A signal processing approach to fair surface de-
sign. In Siggruph, pages 351-358, Los Angeles, August 1995.
ACM.

X. Sheng and I.R. Meier. Generating topological structures
For surface models. IEEE Computer Graphics & Applica-
tions, 15(6):35-41, November 1995.

[91

PO1

u 11

WI

iI31

[I41

[I51

[If51

[I71

Ll81

[I91

WI

v-11

PI

[231

1241

r251

P61

l271

PI

M. K. Agoston. Algebraic Topology. A First Course. Pure and

Applied Mathematics. Marcel Dekker, Inc., New York, 1976.

J. Rossignac and I? Barrel. Multi-resolution 3d approxima-
tions for rendering. In B. Falcidieno and T.L. Kunii, editors,
Modeling in Computer Graphics, pages 4:%465. Springer-
Verlag, 1993.

M. Segal and C.H. Sequin. Partitioning polyhedral objects
into non-intersecting parts. iEEE Computer Graphics & Ap-
plications, 8(1):53-67, January 1988.

1. Makela and A. Dolenc. Some efficient procedures for cor-
recting triangulated models. In Proc. Symp. on Solid FEeform
Fabrication, pages 126-34, July 1993. Dept. of Mech Eng.,
Univ of Texas at Austin.

MC. Bailey. Tele-manufacturing:rapid proi.otyping on the in-
temet. IEEE Computer Graphics & Applications, 15(6):2&
26, November 1995.

V. Chandru, S. Manohar, and C.E. Prakash. Voxel-based mod-
eling for layered manufacturing. IEEE Computer Graphics &
Applications, 15(6):42-47, November 1995.

G. Barequet and M. Sharir. Filling gaps in the boundary of a
polyhedron. Computer Aided Geometric Design, 12(2):207-
229, 1995.

G. Butlin and C. Stops. CAD data repair. In 5th International
Meshing Roundtable, pages 7-l 2, 1996.

G. Barequet and S. Kumar. Repairing cad models. In Visual-
ization 97, Phoenix, AZ., act 1997. IEEE.

T.M. Murali and T.A. Funkhouser. Consistent solid and
boundary representations from arbitrary polygonal data. In
Symposium on Interactive 3D Graphics, pages 155-l 61,
Providence, RI., apr 1997. ACM.

R. Szeliski, D. Tonnesen, and D. Terzopoulos. Curvature
and continuity control in particle-based surface models. In
Geometric Methods in Computer Vision II,., volume 203 1 - 15,
pages 172-l 81. SPIE, July 1993.

W. Welch and A. Witkin. Free-form shape design using tri-
angulated surfaces. In Siggraph ‘94 Conference Proceedings,
pages 247-256, Orlando, July 1994. ACM.

P. Veron and J.C. Leon. Static polyhedron simplification us-
ing error measurements. Computer Aided Design, 29(4):287-
298, April 1997.

CM. Hoffmann. Geometn’c and Solid Modeling: An Intro-
duction. Morgan Kaufmann, San Mateo, California, 1989.

A.A.G. Requicha. Representations for rigid solids: Theory,
methods and systems. ACM Computing Surveys, 12(4):437-
464, December 1980.

C.M. Hoffmann, J.E. Hopcroft, and MS. Karasick. Robust set
operations on polyhedral solids. IEEE Computer Graphics &
Applications, 9(6):50-59, November 1989.

H. Desaulniers and N.F. Stewart. An extension of manifold
boundary representations to the r-sets. ACM Transactions on
Graphics, 11(1):40-60, January 1992.

J.A. Heisserman. Generative Geometric Design and Bound-
ary Solid Grammars. PhD thesis, Carnegie ‘Mellon University,
may 1991.

G. Abram and L. Treinish. An extended data-flow architecture
for data analysis and visualization. In Visualization 95, pages
263-270, Atlanta, GA., act 1995. IEEE.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L.
Rivest. Introduction to Algorithms. Mac Graw Hill, 1989.

390

553

