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Converting Vector and Tensor Equations to Scalar 
Equations in Spherical Coordinates” 

George E. Backus 

Sunzriiary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
We show how to represent a vector field in a spherical shell in terms of 
three scalar fields, and a second-order tensor field in terms of nine scalar 
fields. We derive the scalar representations of the most common algebraic 
and differential operations on vector and second-order tensor fields, and 
apply the results to obtain scalar formulations of various tensor problems 
in the continuum mechanics of the Earth’s mantle. We give an exhaustive 
catalogue of all possible equilibrium stress fields in the mantle, we deduce the 
scalar equations of elastic-gravitational oscillation of a transversely iso- 
tropic, radially stratified, spherically symmetrical Earth, and we give the 
scalar convection equations for a viscous, self-gravitating, spherically 
symmetrical mantle with radially variable viscosity. 

1. Introduction 

A Scalar Representation Theorem for tangent vector fields on the surfaces of 
spheres has been known for some time (Ahlfors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Sario 1960). Recently an analogous 
theorem for second-order tangent tensor fields has been proved (Backus 1966). It is 
the purpose of the present paper to show that these two theorems, Gibbs’ dyadic 
notation (Gibbs & Wilson 1925) for tensor calculus, and Einstein’s index conven- 
tions (Bergmann 1947) can be combined to give an economical formalism for dealing 
with vector and tensor fields in spherically symmetrical physical configurations. The 
formalism will be illustrated by applications zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto several problems involving the stress 
tensor in the Earth’s solid mantle. 

To describe the sort of problem in which the formalism is useful, let V be a spherical 
shell with centre 0 and boundary aV. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 be a linear partial differential operator 
on vector or second-order tensor fields T in V, while 98 is a linear partial differential 
operator on similar fields T defined on aV. Suppose that 9 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 commute with all 
rigid rotations about the point 0. Then the vector or tensor boundary value problem 

9 T = v  in V, (1 * 1) 

g T = w  on aV, (1.2) 

with given vector or second order tensor fields v and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw, can be reduced, with the aid 
of the formalism presented here, to a set of problems of the same form as (1.1) and 
(1.2), but with inhomogeneities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu and w, solutions T, and differentia1 operators 9 
and L?L9 which are scalars. The scalar operators 9 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA33 of the reduced problem 
commute with all rigid rotations about 0. Therefore in this scalar problem derivatives 
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72 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGeorge E. Backus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
with respect to colatitude 0 and longitude zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA# can only appear in the rotationally invariant 
combination 

Vs2 = (cosec zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8) 8, (sin 0) 8, + (cosec2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 )  a4*, 
where a, means the partial derivative with respect to 8. On the surface of the unit 
sphere the surface spherical harmonics form a complete set of eigenfunctions for Vs2. 
Thus the radial and angular variables in the scalar forms of (1 .1 )  and (1.2) are 
separable, and the radial equations for scalars with the angular dependence of different 
surface spherical harmonics are decoupled. The net result of the formalism is to 
reduce a spherically symmetrical partial differential equation for a vector or tensor 
field to a decoupled set of ordinary differential equations for scalar fields. 

We will develop the formalism in the following order: in Section 2 we combine 
the invariant tensor notation of Gibbs with Einstein’s index conventions, so as to be 
able to deal economically with three dimensional vector and tensor fields on two- 
dimensional surfaces in Euclidean three-space. 

In Section 3 we use the notation developed in Section 2 to calculate the results of 
algebraic and differential operations on vector fields and second-order tensor fields 
in generalized spherical co-ordinates. In Section 4 we state the Scalar Representation 
Theorems for tangent vector fields and second-order tangent tensor fields, show how 
these theorems lead to scalar representations of three-dimensional vector fields and 
second-order tensor fields, and calculate what operations on scalars correspond to 
the various algebraic and differential operations on the vector and tensor fields repre- 
sented by those scalars. 

In Section 5 the formalism is applied to various problems in the continuum 
mechanics of the Earth’s mantle. The problems considered are: (1) to produce a 
catalogue of all possible equilibrium stress fields in the Earth’s mantle, ( 2 )  to produce 
a simple derivation of the scalar equations of elastic-gravitational vibration of the most 
general perfectly elastic, spherically symmetrical Earth (such an Earth is transversely 
isotropic about all radii, but not necessarily completely isotropic), and (3) to obtain 
the scalar equations describing slow viscous convective yielding of the mantle, when 
the physical parameters vary with depth and the viscosity may be transversely isotropic 
lather than completely isotropic. Problems ( 2 )  and (3) can both be solved without 
using the formalism developed here, but at the cost of very heavy algebra. 1 do not 
know how to solve problem (1) without using the formalism developed here. 

For readers familiar with Gibbs’ invariant tensor notation and the notions of 
covariance and contravariance in differential geometry, the present paper is intended 
to be self-contained. In particular, the Scalar Representation Theoreps for tangent 
vector fields and second-order tangent tensor fields are stated in full, although the 
proofs (Backus 1966) are not repeated here. 

2. A notation for the differential geometry of surfaces 

A. Covariance, contravariance, and the metric tensor 

Let S be an oriented two-dimensional surface in three-dimensional Euclidean space. 
Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA(p) denote the positive unit normal to S at the point p on S. Let x1 and x2 be 
any curvilinear co-ordinates in an open region A of S. Choose a point 0, not neces- 
sarily on S, and let r(xl, x2)  be the position vector, relative to 0, of the point on S 
with co-ordinates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx’, .x2. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAai denote the ordinary partial derivative (not the covariant 
derivative) with respect to xi. We consider only right-handed nonsingular co-ordinate 
systems: that is, we assume that everywhere on A ,  A .  (a, r x 8, r) >O. 

A vector field v on S will be called a tangent vector field if at every point p of S, 
A(p>.v(p)=O.  A second-order tensor field T on S will be called a tangent tensor 
field if at evety point p of S, f i (p ) .T (p )  and T ( p ) . f i ( p )  are both the zero vector. If 
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Converting tensor and vector equations 73 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis the three-dimensional identity tensor (the second order tensor such that for any 
vector u, u .  I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= I . u =u), then the equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I,(p)=l-f i(p)fi(p) 

defines a second-order tangent tensor field on S,  called the surface identity tensor. 
If v is a vector tangent to S at p ,  

v.I,(p)=I,(p).v=v. 

Let V be the ordinary gradient operator in Euclidean three-space. The surface 
gradient V, at a point p on S is defined as the perpendicular projection of V onto S: 

v, = I , .  v = v - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATi ( p )  [T i  (p) . V]. (2.1) 

Since V, involves differentiations only in directions tangent to S, V, can be applied 
to any field defined on S, whether that field is defined elsewhere or not. 

Let Q be a scalar, vector or tensor field on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS .  As we move from a point p on S,  
with position vector r and co-ordinates xl,  x2, to a nearby pointp' on S,  with position 
vector r+dr and co-ordinates x1 + d . ~ ' ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx2 +A2, the field Q changes by a n  amount 
dQ which can be calculated either as dQ =dr. V, Q or as d Q  = d x i  (ai Q). Therefore 

dr. V, Q =ds' (ai Q). ( 2 . 2 )  

In equation (2.2) and hereafter, all italic indices take the values 1 and 2. If an equation 
contains an italic index only once, that equation is understood to hold for both values 
of the index. If an index appears twice in one term, once as a subscript and once as 
a superscript, that term represents the sum over both possible values of the index. 

In (2.2) if we set Q = xj we have d x j = d r .  (V, xj). Therefore, for any 0, we have 
dr. [V,Q-(V,xi)diQ] = 0. But from (2. I ) ,  Ti(p). [V,Q-(V,xi)(7iQ] = 0. Since 
dr is an arbitrary vector tangent to S at p ,  it follows that 

or 

V, Q - (V, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxi) aj Q = 0, 

v, = (V, xi) ai. ) (2.3) 

Since dr=(air)dxi, (2.2) implies that a iQ=(a i r ) .VVSQ.  In particular, if Q is xj,  

aixj=(air).(V,xj), or 

( a i r )  . (V, xi) =aij, (2.4) 

where ii is the Kronecker delta: 6, =a,, = 1, a,, =ii21 =O. 
If v is a tangent vector field and T a tangent tensor field on S ,  then with respect 

to the co-ordinate system xl, x2 the covariant components vi  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATi j  of v and T, the 
contravariant components ui and Tij, and the mixed components q j  and T\ are defined 
by the following equations: 

v = vi(Vs x i )  = vi  (air); 

T= ?;j(V,xi)(V,xj)= Tij(air)(ajr) 

= Ti' (V, x i )@,  r) = Tij (ai r)(V, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx'). 

From (2.4), (2 .5 )  and (2 .6 ) ,  

v i=v . (a i r ) ,  t i i=v .  (Vsxij, 

and 
qj== ( a i l ) .  T. (3,r). Ti'= (V,x'). T.  (V,x'), 

Ti'= (air). T.  (V,xj), T i j =  (Vsxi). T.  (8,rj. 

b 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
3
/1

-3
/7

1
/9

2
0
9
4
9
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



74 George E. Backus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
For historical reasons the components of the surface identity tensor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI, are usually 

written as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg. Thus, from (2.8) and the definition of I,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
g i j  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (ai r) . (aj r), g'j = (v, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxi) . (V, $1, 

g j  = (air). (V, xj), 9:. = (V,  xi). (ajr). 
(2.9j 1 

Equation (2.4) implies that g j  and gi j  are everywhere numerically equal to a i j  in 
any co-ordinate system. Therefore 

I,= (8, r)(V, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxi) = (V,  ,+)(ai r )  =V,r .  

If ( 2 . 7 )  is applied to the tangent vector fields a i r  and Vsxi ,  (2.9) implies 

(air)=gij (V,xj) ,  ( ~ , x ' ) = g ' j ( a ~ r ) .  (2. lo) 

gik zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg'k =gi'. (2.11) 

Therefore the symmetric matrix g ,  is the multiplicative inverse of the symmetric 
matrix g'j: 

Equation (2.11) is a special case of the general rule for calculating covariant compo- 
nents from contravariant or vice versa, the index-raising and -lowering rule. From 
( 2 . 5 ) ,  (2.6) and (2.10), 

. . .. 
v i = g . .  u', vl=gl.r vj,  

T..=g. I J  rk T k . = g .  J rk g j l  Tkr ,  

Tij=gik Tkj=gikgjl T ~ ~ .  

The distance ds between the points r(xl, x') and r(xl +dx', x' +dx2) on S is 
given by (ds)2=dr.dr= [(air)dxi]. f(ajr)dxj]=g,dxidxj. Therefore g i j  and g'j are 
the covariant and contravariant components of the metric tensor on S in the co- 
ordinates x ' ,  x'. Then the metric tensor is the surface identity tensor, and g i jdx idx j  
is the first fundamental form on S. 

B. Covariant diflerentiation on S 

For any i ,  a i r  is a tangent vector field on S. For any i and j ,  &aj r is a vector field 
on S ,  but not necessarily a tangent vector field. At any point p on S, aiaj r is a linear 
combination of the three linearly independent vectors a, r, a, r, A@): 

i 
(2.12) 

The symbols ( ) and f i j  are defined as the coefficients in the linear combination 

(2.12). Clearly 

From (2.12), 
f i j = A . ( a i a j r ) .  (2.13) 

Therefore f i j  are the covariant components, with respect to co-ordinates xl, x2,  of 
the tangent tensor field 

F = (V, V ,  r) . A =  (V, I,). A .  
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Converting tensor and vector equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA75 

The perpendicular distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd2n of We will call zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF the 'extrinsic curvature tensor'. 
the point r(x'+Ax', x 2 + d x 2 )  from the plane tangent to S at r(xl, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx2) is 

d2n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=+ f i j  dx'dxj,  

d2n being positive in the direction of f i .  Therefore +f i jdx'dxj  is the second funda- 
mental form on S. 

Since A . f i  = 1, then f i  .ail? =O. Therefore a, f i  is a tangent vector field on S. Since 
A.(ajr)=0, a i f i . ( a j r ) + f i . ( a i a j r ) = O .  Then from (2.7) and (2.13) 

sin= - - f i j ( V S X j )  (2.14) 

At any pointp on S, the vector a i ( V s x j )  is a linear combination of the three linearly 
independent vectors (V,x'), (V,x2) and f i (p) .  By differentiating with respect to x i  
the two identities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA. (V,x!) = O  and (a, r). (V, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxj)=g,j, and appealing to (2,12), (2.14) 
and the constancy of &' on S ,  we easily deduce that 

a,(v,X')= - (!&Xk)+f'jfi.  (2.15) 

SO F=-V,fi. 

To calculate ( t.) we note from (2.9) that 

a h g i j =  (akai r). tajr)+ (a i r ) .  (aja, r). 

Then from (2.9) and (2.12) 

a , g i j = ( j ,  k i )+ ( i ,  kj) 

where (k, ij) is an abbreviation for g,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(I ) .  Permuting indices gives 

a i g j k =  (k, id + ( j ,  ik), 

a j g k i = ( i ,  j k ) + ( k ,  ji). 

Since g i j = g j i  and (k ,  i j)= (k, j i ) ,  the three foregoing equations are three linear equa- 
tions in the three unknowns (i, jk), (j, ki)  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(k,  ij). Their solution is 

(k, u) =*(ai g j k  + a j  gih - a k  gij). 

Hence 

(2.16) 

Therefore (k, ij) are the Christoffel symbols of the first kind and (Is. ) are those of 

the second kind. Equation (2.12) is the equation of Gauss (see Willmore 1959, p. 112). 
If q, v, and T are respectively a scalar field, a tangent vector field, and a second- 

order tangent tensor field on s, we are now in a position to give explicitly the compo- 
nents of Vsq,  Vs(qA), Vs(qAA), Vsv, Vs(Av), V,(vA) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVsT in terms of q and the 
components of v, T, I, and F. 

From (2.3), if q is a scalar field on S,  

(2.17) 

6 
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76 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

J zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

George zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE. Backus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D i q  =ai zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. 

(2.25) 

(2.18) 

Further, Vs(qfi) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (V,xi)ai(qfi) = (V,q)A +q(V,fi) = (Vsq)fi - q F ,  so 

V,(qfi) = (Diq)(Vs xi> A -4 fij(V, xi)(V, xi)* (2.19) 

And V,(qAA)= (V,q)fifi +q(V,xi)[(aifi)A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+fi(a,fi)], so 

Vs(qfi A) = ( D 1 4) (V, x ’) f i  A - qfij [ (Vs xi) fi (V, x’) + (V, xi) (Vs x’) f i ] .  (2.20) 

From (2.3), (2.12) and (2.19, if v is a tangent vector field on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS ,  

(2.21) 
V,V= (f{vj)(VSxi)fi -f- ( D i ~ j ) ( V s ~ i ) ( V , ~ j )  

= (fi, v’)(V, xi) A +  ( D  v’) (V, xi)(aj r), 

where 

Moreover, from (2.3), 

V,(Av)=(Vsfi)v+(Vs.vi)fi(aiv)= - Fv+(V,xi)A(air).  (V,v). 

Hence, from (2.21), 

v,(Av)= ( f i k  vk)(v,xi)fifi + (Di ok)(vS Xi)fi(V,Xk)- (fij 2)k)(v~xi)(v~x’)(v,’j xk)v (2 * 23) 

Furthermore, from (2.3), Vs(vfi) = (V,v) A + (V,xi) v(ai A). Hence, from (2.14) 
and (2.21), 

vs(vh)= ( f i k  vk)(VSXi)fifi + (Dj vj)(V,x’)(V~X’)fi - (fikVj)(VSXi)(VSX’)(VSXk). (2.24) 

F 
Finally, if T is a second-order tangent tensor field on S ,  then 
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Converting tensor and vector equations 77 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
where 

(2.26) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi 
It is clear from (2.1 S), (2.22), and (2.26) that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD, is the operator of covariant differentia- 
tion on S .  

If u and v are tangent vector fields on S, V,(uv) is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnot (V,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu) v + u(V, v ) .  Rather 

v,(uv)= (v,u)v+ ( v , . ~ - ~ ) ~ @ ~ r ) .  ( v , ~ ) .  

From this equation i t  does follow that 

Di(Uj U k )  = (Di U j )  Uk Uj(  Di uk)j 

a result also obtainable by direct caiculation from (2.22) and (2.26). This product 
rule holds for covariant derivatives of two tensors of any order. 

Since V ,  I = O  and I , =  I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- R f f ,  therefore V ,  I ,= -Vs(AA). Setting q =  1 in (2.20) 
gives 

v, I,=fij(v,X')[(VSXj)A +A(V,xj)] .  

Comparison with (2.25) shows immediately that 

D . g .  = D.g."  = D.gj,= D . g j k  =O, 
I J k  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC J  

a result which can also be deduced directly from (2.16) and (2.26). 

(2.27) 

C .  The surface rotator 

The tensor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-I, xff = - I  xff is a second-order tangent tensor on S, called the 
surface rotator on S. We will use h to denote its components in the co-ordinate 
system XI, .?. We have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

hi,= (a i r ) .  (- I, x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA). (ajg = - (air x f l ) .  @,r) = f i  . (a i r  x air) 

= (ai r) . ( - A  x 8, r) = (a, r) . (-A x I , ) .  (aj r), 
so - I ,  x A = - A  x I,. Furthermore, 

hi = A . (a , r x 3, r), 

h i j = A . ( v , x i x a j r ) ,  

hi' = A .  (8, r x Vs  xj), 

h ' j = f i .  (V,.U' x v,xij. 

IfvisatangentvectoronS,hijujare thecovariantcomponentsof(-ri x I,).v= -A x v .  
Thus as a linear operator, - A  x I, rotates tangent vectors through -90" about the 
direction f l .  
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78 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGeorge E. Backus 

The length of a, r is g, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,+, that of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa2 r is g22i, and the cosine of 0, the angle between 
Hence sin0=gg,;*g2;* where g is the positive 

g=(detgjj)+= (detgii)-*. (2.28) 

Since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, r x a, r is parallel to Fi and has length g, l*g221 sin0, or g, therefore h12 =g. 
Similarly h12 =g-' ,  so 

h. .  LJ =gE.. U' hi' =g- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE . .  1J' (2.29) 

a , r  and a2r ,  is g,,g,;fg,;+. 
square root of the determinant of gij: 

where cij is the two-dimensional alternating symbol: 

& 1 1 = C 2 2 = 0 ,  & 1 2 =  -&*1=l .  

Since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI,= I --Ah, therefore I, x Fi = I x fi, and 

ai( - I, x Fi)= - I x aiA = [(akr)(V,Xk)+fiFi] x lfijV,XJj. 

But (V,.uk) x (V,xj)=lzkjfi and Fix (V,xj)=hjkakr. Consequently 

ai( - 1, x A) = f i j  hjk [h(ak r) - (a, r) A], 

and v,( - 1, x h) = f i j  hjk(V, Xi)fFi(akr)- ( a k r )  fi]. 

Comparison with (2.25) shows that 

D . h . = Di hik = Di h', = Di hjk = 0, 
1 Jk  

a fact which can also be deduced directly from (2.16), (2.26) and (2.29). 
Three very useful algebraic relations between hi' and g'j are these: 

hiihkf-gikgil+giIgik= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, 

hikhjk=g!, 

gijhkl +gikhV+gilhik = 0. 

To prove equation (2.31), denote the left side by Fijkl. Then 

Fi jk l= - F j i k l =  - F i j l k =  Fk l i j .  

(2.30) 

(2.31) 

(2.32) 

(2.33) 

Thus Fijk'=O unless i # j  and k# l ,  and we need only show that Fl2I2=0. But 
g g +gI2g2', which vanishes on account of (2.28) and (2.29). 

Equation (2.32) follows immediately from (2.1 l), (2.31) and the fact that g can be 
used to raise and lower indices on h. To prove equation (2.33), denote the left-hand 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 are all different. Since each of j, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk and 1 must be 1 or 2, therefore Gijkr=O. 

F1212=I212 /,12- 11 22 

side by Gijkl. Then Gijk'= - G i k j l z  -Gilkj= -Gijlk. Therefore Gijkl,O unless j ,  k 

D. The Riernann curuature tensor 

From (2.18) and (2.22), if q is a scalar field on S 

(DiDj-DjDi)q=O. 

From (2.22) and (2.26), if v is a tangent vector field on S,  

(DiDj-DjD,)~k=Ki jk l~~ 

(2.34) 

(2.35) 
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Converting tensor and vector equations 79 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
where 

Since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( D i  D j -  D j  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0,) v k  and uI are covariant components of tangent tensor fields, 
(2.35) implies that &jk' are the mixed components of a fourth-order tangent tensor 
field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK on S. This tensor field is the Riemann, or intrinsic, curvature tensor. By 
differentiating (2.12) once and using (2.14) and (2.36), we calculate that 

(aj& -aiaj)ak r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= ( K i j k '  - f i k  $ + f j k f i ' ) a l  r + (oj f i k  - D&) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl i. 

(ajai zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-ai aj)ak r= 0. 

But zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa is ordinary partial differentiation, so ai, 8, and ak commute and 

Therefore we have the Mainardi-Codazzi equations (Willmore 1959, p. 114): 

D i f j k  = Dj f i k ;  

and also, in terms of covariant rather than mixed components, 

K i j k l = f i k f j l - f j k f i l *  (2.37) 

This last is another equation of Gauss (Willmore 1959, p. 114). I t  implies that 
K . .  l J k l  = -K . .  JIkl  = -K.. lJ lk  =Kkl i j ,  so there is a scalar field K such that 

Kijkl= Khlj  hkl.  (2.38) 

From (2.28), (2.29), (2.37) and (2.38), 

K =  [det (fij)][det ( g i j ) ] - ' .  (2.39) 

The scalar K is the Gaussian curvature of S .  
If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY is a tangent vector field on S,  from (2.35) and (2.38) 

(DiDj-DjDi)v ,=Khi jh:v , .  (2.40) 

E. Spheres 

In three-dimensional Euclidean space let 0 be the fixed origin with reference to 
which position vectors are defined. Let S, be the surface of the sphere of radius r 
whose centre is 0. On S,, r(xl, xZ)=rA(xl, x 2 )  in any co-ordinate system xl, x2. 
Hence air=raiA and, from (2.10) and (2.14), gi j (V,x j )=  - r j i j ( V s x j ) .  It follows 
that on S, 

f i j =  - r - l g .  Ij 

and, from (2.39), K=r- ' .  In particular, on S1, 

f i j =  -gi j  (2.41) 

and K = 1 .  If Y is a tangent vector field on Sl, then (2.40) implies that: 

(Di Dj - Dj D i )  v k  = hij h i  U1. (2.42) 

Equations (2.41) and (2.42) are largely responsible for the simplicity of spherical 
co-ordinates. 

Let VSr be abbreviated as V,:  

v, = vs,, (2.43) 
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If it is the outward unit normal on S,, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq, v and T are a scalar field, a tangent vector 
field, and a second-order tangent tensor field on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS,. equation (2.41) reduces equations 
(2.19). (2.20), (2.21), (2.23), (2.24) and (2.25) to the following: 

V,(qfi) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (Diq)(Vsxi) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+q1,, (2.44) 

V,[qAA) = ( Di q)(V, xi) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf l  A + qgij  [ (Vs xi) f i  (V, x') + (V, x')(V, x') A], (2.45) 

V ~ V =  - v A +  (D,v~)(V~X')(V,X'), (2.46) 

VJAV) = - ~ A f i  + ( D i  U ~ ) ( V , X ~ ) ~ ~ ( V ~ X ~ )  + I,v, (2.47) 

V,(~it)= -vAA+(D~u~)(V,.X')(V,X~)R +g,,(V,xi)v(VSxk), (2.48) 

Vs T = - 7].k (V, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.Y ') A (Vs X k, - T, i (V, Xi) (V, S') A + ( D  j q k )  (V, X i )  (Vs X')(V, X k). (2 .49) 

3. Generalized spherical coordinates 

A. Definition 

As in Section 2.  E, choose a fixed origin 0 with reference to which position vectors 
will be defined. Let S, be the surface of the sphere of radius r with centre at 0. Take 
the positive unit normal A on S, to be P ,  the unit vector pointing away from 0. Let 
xl, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx' be any right-handed, nonsingular system of curvilinear co-ordinates on S , .  
Then x1 and x' serve, via radial projection, as right-handed curvilinear co-ordinates 
on S,. Any point in Euclidean three-space lies on exactly one S,  and is uniquely 
determined by its three co-ordinates r ,  XI, x'. A co-ordinate system in three-space 
will be called a system of generalized spherical co-ordinates if one of the three co- 
ordinates is r ,  the distance from 0, and the other two are obtained by radial projection 
from a system of curvilinear co-ordinates xl,  xz on S,. 

Any scalar, vector, or tensor field on S,  can be projected radially, without change 
of magnitudes or directions, so as to be a field on S, ,  and vice versa. The scalar 
q(x',  x'), the vector u(xl, x') or the tensor T(x', x2) which is attached to the point 
( r ,  XI, xz) on S,  is simply thought of as attached to the point (1, xl, x2) on S,. 

The position vector on S ,  is the unit vector P(x', x') and the position vector on S,  
is r(xl, xz) = rP(x', x'). Hence 

a i r  =rai P. (3.1) 

V, = r-' V,  . (3.2) 

If V, denotes the surface gradient on S,, then 

The sense of this equation is that to obtain the surface gradient of a field on S,, we 
can project that field radially onto S , ,  take its surface gradient on S,, divide by r, 
and project the result radially back onto S,. 

If g i j (x1 ,  x2), gij(xl, x2), g?(x1, x') and g;.(xl, x') are the covariant, contravariant 
and mixed components of the two-dimensional metric tensor on S ,  with respect to 
the co-ordinates x', x2, then the covariant, contravariant and mixed components of 
the three-dimensional metric tensor in the generalized spherical co-ordinate system 
(r,  xl, x') are as follows: 

2 -  
g r r = 1 ,  g r i = O ,  Sij=r g i j ;  

g r r = l ,  g r i = ~ ,  g u = r - Z g U ;  .. 

g,'= 1, g,i=o, +gi'; 

g',=l, g r i = o ,  g '-g '. i - - i  
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Converting tensor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand vector equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA81 

B. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASpherical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAresolution of three-dimensional Jields zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
can write 

If u(r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx', x2) is a three-dimensional vector field in Euclidean three-space, we 

u(r, xi, x2)=Pzr,(r, xi, x2)+usr(r,  xl, x'), 

where, for each fixed r ,  us, is a tangent vector field on S,.  For each r, by radial projec- 
tion us, may be thought of as a tangent vector field on S , ;  as such it will be denoted 
simply by us(r, xl,  x2). Thus 

u(r, xi, x2) =Pu,(r, xi, x2) + us(r, xl, x2>. 

The function u, and the field us are completely determined by u. Under a change of 
generalized spherical co-ordinates 11, does not change, so we call it the 'scalar' part 
of u;  the field us is the 'tangent vector' part of u. For any fixed I', zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA17, and tii will denote 
the covatiant and contravariant components of u, regarded as a tangent vector field 
on S , ,  not S,.  Then 

u=Pu,+(v,x')u"i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
=Pu,+ (aiP)ti'. 

] (3 .3)  

In the generalized spherical co-ordinate system (r,  xl, x2) the ordinary covariant 
components of u are, from (3.2), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu,, ru", and rC2, while the ordinary contravariant 
components are, from (3. I), zt,, r - l  ti1 and r-' G2. 

If T ( r ,  xl,  x2) is a second-order, three-dimensional tensor field in Euclidean three- 
space? then at any point (r,  x', .?) the tensor T is a linear combination of the nine 
linearly independent dyads PP, P(V, xi), (V, xi)P and (V, xi)(V1 xj). Therefore for 
each r we can write 

T = P P  T,, + PT,, + Ts, P + T,-js 

where, for any fixed r ,  T,, is a scalar field on S,, Trs and T,, are tangent vector fields 
on S,, and T,, is a tangent tensor field on S,. These four fields are uniquely determined 
by T. When, for some fixed r ,  T,, is regarded as a tangent vector field on S , ,  its co- 
variant and contravariant components will be written pri and Ti. Similarly, r, 
and Ti, will denote the covariant and contravariant components of Ts,, regarded for 
each fixed r as a tangent vector field on S ,  . Finally, pij, pij, pj and p i j  will denote 
the covariant, contravariant and mixed components of T,,, regarded for each fixed 
r as a tangent tensor field on S , .  Then 

T = PP;T;., + P(ai P) Ti+ ( ai P )  PTir + (a i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP)( ajP) Ti j  ] (3.4) 
=PPT,,+P(V,x') ~i+(vlxi)PTi,+(vlx~)(vlxj) Tij. 

In the three-dimensional generalized spherical co-ordinate system (r, xl, x2) the 
contravariant components of T are, from (3. l), and (3.4), T,,, r - ' (  pri), r-'(  pir),  
r-'( pij ) ,  and the covariant components are T,,, r T i ,  rT.,. r2 Tij. The mixed compo- 
nents are T,,, r - '  Tri, rTir,  T: and T,,, rTri, r-' Tirr T i j .  The field T,, is the scalar 
part of T, T,, and T,, are the tangent vector parts of T, and T,, is the tangent tensor 
part of T. Formula (3 .4)  gives the 'spherical resolution' of T into its scalar, tangent 
vector and tangent tensor parts, just as formula (3.3) gives the spherical resolution 
of the vector field u into its scalar and tangent vector parts. 

C .  Sphericul resolution of algebraic operations 

If u and Y are three-dimensional vector fields with spherical resolutions (3.3) then 

u . v = u, 0, + g"'ji7. 1 1  ii. (3.5) 
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82 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGeorge E. Backus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
and 

u zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx v zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= ( A " E i  G j )  P + P ( u r  C i  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC i  or)( a, P), (3.6) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG i j  are the covariant components of the metric tensor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI,, on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS ,  and L ' j  are the 
contravariant components of the surface rotator on S,, - I,, x P. 

If T is a three-dimensional tensor field with spherical resolution (3.4), then 

T . u = P [T,, u, + g j k  Trj 6 k ]  f ( v  1 xi) [ T;, u, + g j k  T i j  6 k ] ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
u . T = P [u, T,, + g " 6 i  ?.,.I + (v, X k )  [!I,  r k  + G i k  6i c k ] ,  

(3.7) 

(3.8) 

T x u = W [ P k  Trj ik] + P(V1 x j )  [ J j k (  Trk U ,  - T, ,6k ) ]  

+(v1 X i ) P [ h j k T i j 6 k ] + ( V 1  Xi)(vl X j ) [ i i i k ( ~ ; . k U r - - q c , r 6 k ) ] ,  (3.9) 

U X T = P t  [hi' ii q,] + P(vl Xj) [ J i k  ci Tk j ]  + (v Xi) P [hi k(6k T,, - U ,  %,)I 
f ( V ,  Xi)(vl . ~ ' ) [ h i k ( U " k q C r j - U r T k j ) ] .  (3. 10) 

If R is also a three-dimensional tensor field with spherical resolution (3.4), and 

(3.11) 

if RT means the transpose of R, then 

RT = PPR,, + PR,, + R,, P + R&. 

Moreover, 

RT. T = PKR,, T,, + Rs, . Tsr) + P(R,, T,, + Rsr . T,,) 

+ (Rr, T,, + RL.  T.7,) P + ( R r s  Trs + R,T,. T.w), 

so 

RT. T=Pi?(R,,T,, + G j k  R j r  T k r )  +P(V, X 1 ) ( R r r T . f  a j r y k f , , )  

+(TI X i ) P ( ' r i ~ r + B j k ' j i - k r ) + ( V l  Xi)(V, x f ) ( R r i T l + g j k  R j i T k f ) .  (3. 12) 

Therefore 

tr (RT.T)=tr (R.TT)=R,,T,r+Rs,.Ts,+R,s.T,s+tr(R,T.T,s), 

and 

tr ( RT . T) = R,, Trr +g ' j ( 1  i r  Tr  + Rri  Trj) + Lj i k  $'(R i j  yk(kl). (3.13) 

D. Spherical resolution of differential operations 

In the present subsection we seek the spherical resolutions of the fields obtained 
by operating with V on a scalar field q, and on vector and tensor fields u and T whose 
spherical resolutions are given. In particular, we seek the spherical resolutions of 
Vq, Vu, V . u, V x u, V T ,  and V. T. In everything that follows, bi will denote covariant 
differentiation on S,. 

Equations (2.1) and (3.2) provide an expression for the three-dimensional gradient 
in terms of the surface gradient and the radial derivative: 

V =Pa, + r - V, . (3.14) 

Then the spherical resolution of Vq is simply 

vq=Pa,g+r-l v,q. (3.15) 
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Converting tensor and vector equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA83 

For the vector field u of (3.3), 

Vu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Pa, + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr V,)(Pu, + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAus). 

We can carry out the differentiations by recalling that V, P =  I,, and that (2.46) gives 
Vlu,. Then 

v u  = PP(  a,. u,) + P(V, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.d)( a, ") + (V, xi) Pr - 1 (b, U ,  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGi) 

+(V,xi)(V,xj)r-'(b)it7j+urgjj). (3.16) 

Equation (3.16) is the spherical resolution of Vu. By definition, V.u= t r (Vu ) ,  so 

(3.17) v . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu =  (a, + 2r-1) I! ,  + r-1 g i j  b.  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI J  l? .. 

Further, from (3.16) 

V x u = P x P( a, u,) + P x (V, x')( a, iij) + (V, xi) x P F  ' (bi U ,  - i i i )  

+(V, xi) x (V, xj)r-l(biCji-urgij). 

Since V, xi x V, xj=6'jP and P x V 1  xi=hijajr, therefore 

v x u = Pr - ' hij(b E ~ )  + (V , xi) r - hij [bj 21, - a,(riij)l. (3.18) 

For the tensor field T of (3.4), 

V T  = (Pa, + r -  Vl)(PPT,, +PT,,% + T,, P + Tss). 

Then from (2.45), (2.47), (2.48) and (2.49), 

V T  = PPP [ a, T,,] + PP(V, xk) [ 8, TL] + P(V, x') P [ a, q,] 
+ (v, xi) PP [r - (b, T,, - Tr , - Ti,)] + P(V, x j ) ( V ,  x k )  [ a, Tij] 

+(v, xi)P(v,  x k ) [ r - l ( D j i T r k -  F k +  T r g i k ) ]  

+(~,x ' ) (V,x j )P[r- ' (b~~.,-  Ti+ T,,J~,)] 

+ (v 1 xi) (v 1 x j )  (v 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx k, [r - (b i s( jk + g i j  .f: k + y" ik T r ) ]  * (3.19) 

Then V .  T is obtained from (3.19) by contracting the first two members of each triad. 
Thus 

V . T =P{r-' [(ra, + 2) T,, + g i j  bi $, -J i jT i j ] }  

+ (v, xk) {r  [ ( r a r  + 2) q r  + Tk + g" bi s ( j k ] } *  (3 ~ 20) 

In evaluating the right-hand sides of (3.16), (3.17), (3.18), (3.19) and (3.20) it 
must be remembered that u, and T,, are scalar fields on S , ,  so Diur=aiu ,  and 
biTrr=aiT,r; and that T,, and T,, are tangent vector fields on S , ,  so that DiTj and 
b,T., are given by (2.22) ; and that T,, is a tangent tensor field on S , ,  so that 
is given by (2.26). 

that T,, is symmetric. Then (3.20) is slightly simplified: 

V . T = P{r - [(ra, + 2) T,, +ij ii bi Trj - 8 i j  Ti j ] }  

In case T is symmetric, comparison of (3.4) and (3.11) shows that Trs=Ts, and 

+ (v, xk){r -  [(ra, + 3) qirk + g ' j  b, q k ] } .  (3 .21) 
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84 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGeorge E. Eackus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe vector and tensor representation theorems 

A.  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAStatetilent of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsirrface theorems 

The spherical resolution of a vector field u resolves that field into a scalar part zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
u, and a tangent vector part zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAus. The spherical resolution of a second-order tensor 
field T resolves that field into a scalar part zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT,,, two tangent vector parts T,, and TS,, 
and a tangent tensor part Tss. The fields u and T could be expressed entirely in terms 
of scalar fields if any tangent vector or second-order tangent tensor field could be so 
expressed. That such expressions exist is the content of the Tangent Vector and 
Tangent Tensor Representation Theorems (see Backus 1966). 

As a preliminary to stating these theorems, considei the expansion of any scalar 
field q on S ,  in surface spherical harmonics: 

m n  

n = O  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn : = - n  
q(x', x2)= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx qn"Y,,'"(d, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2). 

Here Y/  is a normalized complex suiface spherical harmonic of total order n and 
with q5 (azimuth) dependence eimb; and q: is a complex constant. Let Yn denote the 
linear operator on scalar fields defined by the equation 

I f  

Ynq= x q1:x:. (4.1) 
m =  - n  

Then (W,J2==VlI and Y,Ynt=O if n f n ' .  Furthermoie, since V12Y,,"'= -n(n+ l)Y,,'", 

V l z  Yn = - n(n + 1) "J,. 

2, = 9 - Vnr 

(4.2) 

(4.3) 

Let 9,, be defined as 

where 9 is the identity operator. Thus 2,,q=q-Ynq. Then (A?n)2=A?n and if n f n '  
then 4,: A?nt = 4 -??I,: - Yn,. Thus, applying 2, to q simply removes from q the terms 
of order n in q's expansion in surface spherical harmonics. 

The Tangent Vector Representation Theorem asserts that if us is any tangent 
vector field on S,, there exist unique scalar fields Vand Won S, such that 

go V=Yo w=o, (4.4) 

(4.5) 

and 
u s = v ,  v-3 x v, w. 

f 

I n  curvilinear co-ordinates xl, x2 on S , ,  the covariant components of (4.5) arc 

i i i= b i  v 4 :  bj w, (4.6) 

where, V and W being scalars, bi=ai. Note that in general if V,V-P x V, W=O 
we cannot assert that V = W = 0 but only that Yo V = Yo W = 0. That is, V and W may 
be non-zero constants. Similarly, if V, V-P x V, W=V,  V ' - P x  V1 W', we have 
only go V = Yo V', go W = Yo W';  it may be that V - V' and W - W' are non-zero 
constants. 

The Tangent Tensor Representation Theorem asserts that if T,, is any second-order 
tangent tensor field on S ,  there exist unique scalar fields H, L, M ,  and N such that 

Yo M =Yo N = 'Yl A4 = ?P1 N = 0, (4.7) 

and 

Ts,= -Hist x ?+ (L -  V12 M )  I,, + 9 { 2 V ,  V, M - [V,(F x V,) + (I' x V,)V,]N). (4 * 8 )  
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Converting tensor and vector equations 85 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In equation (4.8), V12  means tr (V, V,) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABT means the purely tangential part of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T, the last term on the right in equations (3.4). In curvilineai co-ordinates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXI, x2 
on S,, the covariant components of (4.8) are 

Tij zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=Hhi j  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ ( L  - V12 M ) J i j  + 2 8 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD j  M + ( K i k  sj + hjk 8,) Dk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN (4.91 

where 
v 1 2 ~ = ~ i j ~ ,  D , M = ~  a i a j M -  (4.10) [ (Is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, a 4  * 

I n  general, if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATi,, and T’ij are both represented as in  (4.9) and Tij= T’i j ,  we can con- 
clude that H = H’ and L =  L!, but only that 2, 2 ,  M =so 2 ,  M’ and 9,2, N = S o  9l N’. 
If we know beforehand that M ,  N ,  M‘ and N’ satisfy equations (4.7) then Tj j=  TIij 
implies that M = M‘ and N=N’. 

B. Scalar representation of vector and tensor fields 

I f  u is any three-dimensional vector field defined inside a spherical shell centred 
on the origin, and u is spherically resolved as in equation (3.3), the Tangent Vector 
Representation Theorem asserts the existence of unique scalar fields V(r ,  xl, x2) and 
W ( r ,  xl,  x2) such that for each fixed r equations (4.4) and (4.6) hold. Then 

u=PU+(V,  X ’ > [ b i V + K i j  D j W ] ,  (4.11) 

where U = u , .  
If T is any second-order, three-dimensional tensor field defined inside a spherical 

shell centred on the origin, and T is spherically resolved as in equation (3.4), theTangent 
Tensor Representation Theorem asserts the existence of unique scalar fieldsH(r, XI, x2), 
L(r, X I ,  x2), M(r ,  x’, x2), and N ( r ,  X I ,  x2) such that for each fixed r equations (4.7) 
and (4.9) hold. The Tangent Vector Representation Theorem asserts the existence 
of unique scalars Qrs(r ,  xl, x2), R,,(r, XI, x2), QSr(r, XI, x2), and Rs,(r, xl, x2) satisfy- 
ing (4.4) for each fixed r and such that 

Equation (4.11) will be called the scalar representation of u. 

Tri = D i  Q , ~ - L ?  Dj R,,, 

Ti, = B i  Qsr + Li j  Dj  Rsr. 
) (4.12) 

Then, setting T,,=P, we can write 

T =P3P+P(Vl x ’ ) [ D i  Qrs +h? D j  R,,] + (V, xi)P[b, Qsr ffi,’ D j  K s r ]  

+ (V, x’)(V, x j ) [ H h i j +  (L-V12 M)gj j+2Di D j M +  (L,’ 8,+fi,’ 8,) D k N ] .  (4.13) 

Equation (4.13) will be called the scalar representation of T. If T is symmetric, 
Qrs = Qsr = Q,  R,, = R,, = R ,  and H = 0. Conversely, if these scalar relations hold, 
T is symmetric. 

C .  Scalar rcpresentation of algebraic operations 

If u and u’ are three-dimensional vector fields and T and T’ are three-dimensional 
second-order tensor fields defined inside a spherical shell centred on the origin, then 
the nine equations (3.5) through (3.13) can be expressed in terms of the scalars in 
the representations (4.11) and (4.13). All that is involved is simple substitution and 
some applications of (2.32). Of the nine scalar expressions, here I quote only the 
three which appear to be most useful in continuum mechanics: 

u . u’ = UU’ + 8’” ( b  V )  ( D j  V‘) + (8, W ) (  bj W’) ]  

+Lij[(bi V)(Dj  W ’ ) + ( b i  V ’ ) ( b j  W ) ] ;  (4.14) 
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86 George E. Backus 

u zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= f.{g”’j [ (b, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV’) ( bj W )  - ( b, V)(  bj W’)] + h’j [( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb i  V )  (bj V’) + ( bi W)( bj,w’)]} 

+ (V, ~ ‘ ) ( [ U ( b , W ’ ) - U ’ ( b i W > ] + h , j [ U ’ ( b j V ) - U ( b j V ’ ) ] } ;  (4.15) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t r  (Tr. T’) = PP’+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8” [ (b ,  QrS)(bj Q’J + (b,  Rrs) (b jR’rs )  

+ ( f i i  Q S r ) ( B j  Q’sr)  + ( f i i  Rsr)(bj  R ’ ~ r ) l  +h’ j [ (b i  Qrd(bjR’rs1 

+ (bi Q ‘ r , > ( b j  Rrs) + (bi Qsr)(bjJ.R’sr) + (bi Q ’ ~ r > ( b j R ~ r ) l  

+ 2HH’ + 2LL’ + 2 (V zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 2 M )  (V ,2 M’)  + 2 (V 12 N )  (V 1 N’)  

-4j;’jj;kf[(ZjibkM)(Bjb’1M’)+(Bibr,N)(bj61N’)] 

+41;”y”k“(bi bkM)(bj b~N’)+(bib~M’)(b jb~N)] .  (4.16) 

For most spherically symmetrical problems, expressions (4.14) and (4.16) can 
be greatly simplified. In most such problems, u.u‘ or tr(TT.T‘) will occur as the 
kernel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf in a volume integral of the form 

wherc V is the spherical shell in which the vector or tensor fields are defined and $ 
is a weighting function which depends only on r. To evaluate such integrals it is 
sufficient to know the surface integral off  on each S,  in V. Therefore, when 

J - ( f r f z ) d A = O  
S, 

for each S ,  in V, we will say thatf, andf2 are spherically equivalent functions, and 
we will write 

fl = f 2 -  

For each fixed r ,  fl(r, xl, x’) and fz(r, xi, x’) can be regarded as scalar fields on S1. 
Then the condition that they be spherically equivalent is that for each fixed r in V 

1 [fi(r, x1, x2)-f2(r, x1, ~ Z ) ] ~ A = O .  
SI 

Gauss’s theorem for converting surface to line integrals is the source of the simpler 
expressions spherically equivalent to (4.14) and (4.16). Since S ,  has’no boundary, 
if us is any continuously differentiable tangent vector field on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS1 Gauss’s theorem 
asserts that 

J- (b, G j )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg ‘ j  d A  = 0, 
SI 

or  ~ ‘ j b i G j , ~ O .  
Similarly g’-’(biV)(bjV’)= - V’(V,’ V). 
identities (2.31), (2.32), and (2,33), leads to the following conclusions: 

Therefore 8 ’ j b i [ V D j V ’ ] = 0 ,  so gij(bi V)(BjV’)= - V(V,’ V’). 
This type of argument, together with the 

u.u‘=UU‘- V’(V12 V ) -  W’(V12W);  (4.17) 

3tr (TT . T’) E 3 PP’ - 3Q’rs(v 1 ’ Q r d  -4R’rs (V i Rr.4 -4Q’sr (V i ’ Qsr)  

--$R’S,(V 1’ RSr) + H H ‘  + LZ! + [VlZ M ’ ]  [(Vl’ + 2) M ]  

+ [VlZN’1[(V1’+2)N]. (4.18) 
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Converting tensor and vector equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA87 

Since u. u‘ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= u‘ . u and tr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(TT . T’) = tr (T’=. T), the primed and unprimed scalars in 
(4.17) and (4.18) can be interchanged. If T and T’ are symmetric, then QrS=QSr= Q, 
Rrs= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARs,=R, and H=O, and similarly for T’. Then equation (4.18) becomes 

t t r  (TT.T’)- iPP‘- Q’(VI2 Q)- R’(V12 R)+LL‘ 

+ [V1’ M’I [(V,’ + 2) MI + [V1’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN ’ ]  [(V,’ + 2) N ] .  (4.19) 

Another algebraic operation of some interest in continuum mechanics is the 
calculation of the trace tr T and deviator 9 T  of a second-order tensor T. From (4.13), 

tr T = P + 2 L  (4.20) 

while by its definition 

BT=T-&I (trT). 

Since I =PP+Jij(V, .xi)(V, xj ) ,  equation (4.13) implies that 9 T  has the same scalars 
as T, except that 

PQT = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw- L), 

LBT = & ( L  - P)  . 
Therefore P9T+2Lli)T=0, as expected from the fact that t r 9 T = 0 .  

For any second-order tensors T and T’, 

tr (TT. T’) = $(tr T)(tr T’) + tr [(9T)T. 9T’ I .  

From (4.20), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f (tr T)(tr T’) = 4 ( P  + 2L) (P’ + 2L‘). 

From (4.21) and (4.19), if T and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT’ are symmetric 

(4.21) 1 
(4.22) 

(4.23) 

i t r  [(.9T)T .9T’ ]  = Q ( P - L ) ( P ’  -L’) - Q’(V,’ Q )  

- R ’ (V 1 ’ R) + [V 1 ’ M’ ] [ (V 1 + 2) MI + [V 1 ’ N’ ] [ (V 1 ’ + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2) N ]  . (4 .24) 

Therefore the energy densities of compression (4.23) and shear (4.24) are easy to 
separate in terms of the scalar representation of the stress tensor. 

D. Scalar representation of differential operations 

If u is a three-dimensional vector field and T a three-dimensional second-order 
tensor field inside a spherical shell centred on the origin, with the help of (4.11) and 
(4.13) we can express Vu, V . u, V x u, and V . T in terms of scalars. 

From equations (3.16) and (4.11) we can obtain a scalar expression for Vu, but 
this expression is not quite in the form (4.13) for the scalar representation of a second- 
order tensor field. To put it in that form we note from (2.33) that 

Therefore 

vu = P3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[a, U]  + P(V1 xi) [ b i( a,v> + h”; Bj( a, W ) ]  

+ (V, xi) P[Di(r-’ u -r-’ Y )  +h{ Bj( - r -  w)] 

+(V, x’)(V, ~ j ) ( 2 r ) - ~ { - C ~ ~ ( ~ ~ ’  w)+ [ ( ~ u + V , ’  V ) - V , ’ V ] ~ , ~  

+2Di DjV+ ( L i k  Bj+hj  B,) B,W}. (4.25) 
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88 George E. Backus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
If we contract Vu in (4.25) we obtain tr(Vu), or V.u: 

V .u=r- ’  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[@a,+ 2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU + V l Z  v], (4.26) 

in agreement with (3.17) and (4.6). From either (4.25) or (3.18) and (4.6), 

V zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx u zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= - P [ r -  V , W] + (V xi) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr -  { bi [ a,(r W)] +hi’ D j [  U -a,(rV)]}. (4.27) 

From (3.20) and (4.13), 

V . T =Pr- [(d, + 2) P + V ,’ Qsr - 2L] + (V, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxi) r -  ’ { zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb, [ ( ra ,  + 2) Qrs + Qsr] 

+h! bj[(ra,+2) R, .s+Rs , ]+gjkDjTki} .  

T o  put this equation in thc form of the scalar representation (4.9) for the vector field 
V . T we must evaluate g j k  D j  Tki, zi  being given by (4.9). Several applications of 
(2.31), (2.32) and (2.33) lead to the result 

p D j T k i =  b i [ L +  (V12+2)M]+hij Dj[ -w + (V12+2)N]. (4.28) 

Therefore the scalar representation for the vector field V.T is 

V .  T=r^.r- [ ( ra,  +2) P+ V12 Qsr- 2L] 

+ (V, xi) r -  { bi [(r a, + 2) Qrs + Qsr + L + (V12 + 2) MI 

+ h! Dj[(ra , .  + 2) R,, + Rsr-H + (V, + 2) N]}. (4.29) 

In case T is symmetric, Q s r = Q r s = Q ,  Rsr= R r s = R ,  and H=O, so 

V . T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= P F  [(I’ a, + 2) P + V l Z  Q - 2L] + (V, x’) r -  { bi [ ( I ’  a, + 3) Q + L + (V 1 + 2) M ]  

+ 6; Bj [(r a, + 3) R + (V,’ + 2) N]}. (4.30) 

In  using expressions (4.25), (4.26), (4.27), (4.29) and (4.30) it is important to remem- 
ber that any function of r alone commutes with bi. 

5. Geophysical applications 

A. Equilibrium configurations in a nearly spherical, nearly hydrostatic Earth 

In this subsection we propose to catalogue all possible stress fields in the Earth’s 
mantle which permit the Earth to be in static equilibrium. No hypothesis is made 
about the physical origin of the stress, so the catalogue is large. To restrict it, we 
note that any rotating equilibrium Earth model with small ellipticity can be obtained 
in a well-known way (Jeffreys 1959) by adding a small hydrostatic pressure field to 
some non-rotating equilibrium Earth model. Therefore we consider only non-rotating 
Earth models. 

Of course the Earth’s density structure has an important influence on its internal 
stress distribution, so we must admit the possibility of asphericity in the density, and 
in the upper and lower boundaries of the mantle. In order to keep the problem linear, 
and to imitate reality as far as it is known, we will assume that all such asphericities 
are small, and will neglect their products. No other approximations will be made. 

Consider, then, a stationary (non-rotating) nearly spherical body. Choose an 
origin of co-ordinates near but not necessarily at its centre of mass. Let ( r ,  xl, x2) 
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Converting tensor and vector equations 89 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
be generalized spherical co-ordinates centred on the chosen origin. Suppose the 
body to be fluid in a ‘core’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO < r < a [ l + a ( x ’ , x ’ ) ] ,  and solid in a ‘mantle’ 
a[l+cx(x’, x 2 ) ] < r < b [ l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+/?(x’, x’)];  here zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAla l&l  and 1/?161. A suitable choice of 
a and b permits us to assume without loss of generality that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

goa=gY,p=o.  (5 .1)  

Suppose that in the core the density of the body is 

p = p o C ( r ) + p l c ( r ,  xl ,  x’), 

and in the mantle the density is 

p=poM(r)+p1YI’, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxl, x2), 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIp lc I<pOc and I p l M [ < p O M .  Define po(r )  as poC(r)  and p l ( r )  as p l c ( r )  
when 0 9 r 9 a ;  define po(r) as poM(r) and p , ( r )  as p l M ( r )  when a<r<  6 ;  define po(r) 
and p1 ( r )  as 0 when b < r  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAco. It will be necessary to continue smoothly poc, poM,  p I c  
and p l M  for short distances out of their domains of definition to obtain po and p l .  
A suitable choice of poc and p o M  permits us to assume without loss of generality that 
for each fixed r 

cvopl=o. ( 5 . 2 )  

Now we define $,,(r) as the gravitational potential of the spherically symmetric 
mass distribution po, and we define g o ( r ) = ~ , ~ o ( r ) .  Then the gravitational field of 
this spherical mass is -go(r)P, and Poisson’s equation for it is, for all r in O<r< 03, 

(a, + 2r- ‘ ) g o @ )  =4nGp0(r). (5.3) 

Here G is Newton’s universal constant of gravitation. Both cjo and go are continuous 
for all r and vanish at r = 00, while go also vanishes at r =O. 

In the slightly aspherical body which actually confronts us, the gravitational 
potential is 40(r)+q5,(r, xl ,  x’) where 

v2cjl =4xG(p-p0)  

and 4, and V4,  are continuous everywhere and vanish at infinity. Correct to the first 
order in the small asphericities cx, p, p l / p o  we can obtain 4 ,  by solving the equation 

v24, = 4 z G p ,  ( 5 . 4 )  

for all r in O < r <  00, subject to the boundary conditions that 41 and 
r = 00 and be continuous everywhere, except that at r =a 

vanish at 

[a ,c j l+4nCpoaa]+ =o, (5.51 

while at r = b  

[a,4, +47cGp0b/?]? =O. 

In the last two equations [ f (a) ]?  means lim [ f ( a + ~ ) - f ( a - ~ ) ] .  The first order 
approximation 41 satisfies & - + O +  

g o 4 1  =o (5 * 7) 
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90 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGeorge zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE. Backus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
for each fixed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr,  because of (5 .1)  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5.2). Inside the body, which is where we really 
want it, we can find 41 by solving (5 .4)  subject to the boundary condition (5 .5)  at  
r=a, and to the condition that at r=b for n=O, 1, 2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA..., we have 

(5 .81 (rar+IZ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf 1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqn$ 1 +47CCbZ Po(h -) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg,, B=o. 

Still another formulation of the equations for (PI is obtained by defining 

P' 1 =P 1 - a2 [Po(a>l: - a> - hB [PO(b)l: 6(r - b), ( 5 . 9 )  

where 6 is the Dirac delta function. Then equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5.4), (5 .5 )  and (5.6) are 
equivalent to the single equation 

v24, =47rcp;, (5.10) 

If the spherical body whose gravitational potential is 4o were a fluid in hydrostatic 
valid in O<r<co. 

equilibrium, the hydrostatic pressure po(r) would be determined by the equation 

arPo+PogO=O 

and the boundary condition 

Po (6) = 0. 

In the aspherical body which actually confronts us we definep,(r) by these equations, 
and write the stress tensor as -po(r) I +T(r, xl, x2). We take p o  and T to be 0 in 
b<r<co. We make no assumption that T/po is small, but we will show this to be 
so in the core. In the real Earth's mantle, the magnitude of the deviator of T is limited 
by the shear strength of the material, but this limitation does not enter the present 
discussion. The present theory imposes no a priori limits on T in the mantle. 

Ifwe neglect terms of second order in the asphericity, such as P , V + ~ ,  the equilibrium 
conditions in the body are 

V.T=PoV41 +P1 W O  

while the boundary conditions are 

[P.T+Ppogoacc]? = O  

at r=a and 

[P.T+Ppog0 bp]? +F=O 

at r = b. Here F is the external stress, if any, applied to the outer surface of the body. 
The integrals of F and r x F over the surface r = b must vanish, because we cannot expect 
static equilibrium if there is a net external force or torque on the body. The equilibrium 
equation and boundary conditions are all included in the single equation 

(5.11) V . T + F6 ( r  - b) = P O  V 4  1 + P \ V40, 

valid for 0 < r < co if p r l  is defined by (5.9). 
We can always write F in the form 

F=PP'+Vl x i  [ b i Q ' + f i b j R ' ] ,  (5.12) 

where Yo Q'=Yo R'=O. The conditions that F produce no net torque or net force 
on the body are, respectively, 

gl R'=O, g1(P'+2Q')=0, (5.13) 
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Coiivcrting tensor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand vector equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA91 

equations which the reader can easily verify. We can always find unique scalars zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P ,  Q ,  R,  L, M ,  N such that for every fixed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr 

(5.14) Yo Q =Yo R =Yo M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Yo N = Yl M =Yl  N =O, 

while 

T = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPPP + [P(V, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx') + (V I xi) ?] [ Q + 6; D j  R ]  

+ (V, xi)(Vl xj)[(L-VlZ M)g" i j +2b i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD j M +  ( f i i k  D j + f i j k  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB,) D,N]. (5 .15)  

Then cquation (5.11) has the scalar form 

(5.16) i ( ra r+2 )  P+V,' ~ - 2 ~ + b ~ ' 6 ( r - b ) = r [ p , a , $ ,  +p',a,$,], 

( rar+3)  Q + (V12 + 2 )  M +2!o L+bQ'G(r-b)=p,+,, 

( ra ,  + 3) R + (V12 + 2)  N + bR'S(r - b) = 0. 

Outside the body, L, M ,  N ,  P ,  Q ,  R all vanish identically, while in the fluid core 
T = -pl I for some perturbation pressure p l ,  so L = P = -pl and Q = R = M = N = 0. 

The foregoing equations constitute the static equilibrium conditions for any body 
whose density distribution is nearly spherical, and which has a fluid core and a solid 
mantle. Now we propose to exhibit explicitly all solutions of these equations, that is, 
all possible equilibrium Earth models. 

First, we can choose a, 6, and p o ( r )  arbitrarily. Then 90(r) ,  g O ( r )  and po(r) are 
completely determined and describe a spherically symmetrical mass of fluid in hydro- 
static equilibrium. Such an object we will call a 'spherical hydrostatic Earth model'. 

Next we can arbitrarily choose a(x',  x2), ,O(xl, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxz) and p l ( r ,  xl, xz) in the mantle 
(but not the core), subject to (5 .1 )  and (5 .2 ) .  

In addition we can choose arbitrarily the value of the pressure perturbation pi 
at r=O. We will now show that these choices serve to determinep, andp, throughout 
the core, and 9 ,  everywhere. Since T= -pl I in the core, T will be determined in 
the core. The resulting configuration, withpo, c j 0 ,  p l ,  $,, CI and ,O specified everywhere 
and T = - p l  I specified in the core will be called a ' core-hydrostatic aspherical Earth 
density model '. 

The reason that we are not free to choose p1 arbitrarily in the core is that hydro- 
static equilibrium there is a severe constraint. In the core, since L= P and Q ,  R, M 
and N vanish, we can write (5 .16)  as 

(5.17) i 
The second of thcsc equations asserts that thew exists a function q(r)  of r alone such 
that 

p =Po $1 +W). 

Then 

Comparing this with the first of equations (5.17) we find 

a r q  = P I  a r $ o  -91 arpo. 

From (5 .2 )  and (5 .7 )  it is clear that CYoarq=O. But Yoarq=a ,q ,  so q is in fact a 
constant, independent of r, and plarc$,=9,arp0. Therefore we can conclude that 

(5.18) 

7 
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92 George zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE. Backus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP(0) is the value of P at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr=O [since 6,1 vanishes at r = O  on account of (5.7)] .  
Given (5.2) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5.7), equations (5.17) and (5.18) are equivalent. But from (5.4) 
and the first member of (5.18) it follows that in O<r<u 

V Z 4 l  =471Gg0-l ( a r p 0 ) b l .  (5.19) 

Equation (5.4) in a<r<oo (where p1 is given) and (5.19) in O<r<a (where p1 is 
not given), together with boundary conditions ( 5 . 5 )  and (5.6) determine 6,1 every- 
where. Then (5.18) determines p1 and P in the core, and since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT = PI in the core, 
T is also determined there. Thus, starting with a particular spherical hydrostatic 
Earth model we can choose zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp, the mantle p l ,  and P(0) arbitrarily, subject to condi- 
tions ( 5 .  l), (5.2), 1 uI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 1, I j l <  1, and Ipl I G p o .  These choices determine a unique 
core-hydrostatic aspherical Earth density model, in which p1 and 6,1 are known 
everywhere and T is known in the core (and, of course, for r > b, where T = 0). 

Finally, given a core-hydrostatic aspherical Earth density model, we seek all mantle 
stress fields T which satisfy the equations and boundary conditions of mechanical 
equilibrium. In the mantle, equations (5.16) can be written 

(5.20) 

(5.21) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 2L= ( r a r  + 2) P + V12 Q  PO a r 6 , 1  + P I  ar6,0), 

(V + 2) M =po 6, - ( r  a, + 3) Q - 2?o L, 

(V12+2)N= -(/*ar+3)R, 

while the boundary conditions are 

[ P + ~ ~ i g ~ p o ( a ) ] ?  =0, Q=R=O 

at r = a ,  and 

P+bpgopo(b-)= P’, Q=Q’, R=R’  
1 

(5.22 

at r = b. To solve these equations we choose P ,  Q, R in u< r < b arbitrarily, subject to 
YoQ=goR=O for each r and to the boundary conditions (5.21), (5.22). Then 
L, M and N are completely determined as the solutions of (5.20) and the auxiliary 
conditions YoM=YoN=CYl M=Yl  N=O. That such solutions L, M ,  N exist 
imposes four more restrictions on the arbitrariness of P ,  Q and R ,  namely that go 
and Y must give zero when applied to the right-hand sides of the second and third of 
cquations (5.20). That Yo gives zero is not a new restriction, but follows from 
CYo &, = 0 and the restrictions Yo Q = Yo R =0, which have already been imposed. 
That Y1 gives zero is a new restriction, implying that P ,  Q and R must be so chosen 
that for each r in u< r <  b we have 

Y1 [ ( r  a r  + 2) ( P  + 2Q) - rg  o P 1 -PO (rar + 2) 6, I 1 = 0, 

CYl [ ( ra ,  + 3) R] =O. 

The first of these Yl restrictions is obtained by applying Y, to the first two of 
equations (5.20), and eliminating L. The second restriction is obtained by applying 
Wl to the third of equations (5.20). The first restriction can be simplified by an 
appeal to  (5 .3) ,  (5.4) and the identity 

v2 gl 6,1 = ( ar2 + 2r-1  a, - 2r- 2, wl 6,1. 

The second restriction can be simplified in an obvious way, so that the two restric- 
tions are 

a,Yl [4nGrZ(P+ 2Q) -g0al (r2  6,1)] = O  

a , c i ~ ~ [ r ~ ~ ] = o .  
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Convcrting tensor and vector equations 93 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Thus there cxist constants zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK ,  and KR such that if a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< b, 

Yl [ 4 n G r 2 ( P +  2Q) -g0&( r2  451)] = K,, 

@Yl [r3 R ]  = K , .  
(5.23) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

From (5.21) it is clear immediately that K R = O .  In fact K ,  also vanishes. To see 
this we note that from (5. lo), (5.16) and ?Yl M = O  wc can infer the validity of the first 
of equations (5.23) for O <  r <  0. Thus we can evaluate K ,  at r=O, where obviously 
it vanishes. We finally conclude that the conditions on P, Q, R which permit (5.20) 
to be solved for an L, M ,  N satisfying Yo M = go N = gl M = gl N are, in a 6 r < b, 

go Q = %Yo R = ql R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=0, 

g l  [427Gr2( P+ 2Q)-go~r(rz#l)] = 0. 
(5.24) I 

We assert that these conditions and the boundary conditions (5.21) and (5.22) 
can be satisfied if and only if the external stress F satisfies (5.13), that is, F exerts no 
net force or torque. The torque question is trivial. If we want ql R=O in a< r <  b 
and R=R' at r=b, clearly we must have VIR'=O. That is, F must exert no net 
torque. The force question we settle by appealing to (5.8) with n= 1 and to (5.22). 
These equations reduce the second of equations (5.24) at r = b  to the equation 
Yl(P'+2Q')=0, that is to the condition that F exert no net force. 

In summary, we have a catalogue of equilibrium Earth models. To obtain a 
mcmber of this catalogue, we make a number of arbitrary choices. We choose a, b 
and p o ,  to construct a spherical hydrostatic Earth model in which 4o and go are 
everywhere determined. Then we choose zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, p, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp1 in the mantle, and P at r = 0, subject 
only to (5. I ) ,  (5.2), I C I ~  < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 ,  I j j  < 1, and I p1 I < p o ;  and we construct a core-hydrostatic, 
aspherical Earth density model in which p1 and $1 are determined everywhere and 
T is determined in the core, 06  r 6 a. Finally we choose P,  Q and R in a< r < b arbi- 
trarily, subject to the conditions (5.24) for each such r ,  and to the boundary conditions 
(5.21) and (5.22). These choices determine L, M and N and hence T uniquely 
throughout the mantle. From the method of construction it is cIear that our catalogue 
coiitains every self-gravitating body which satisfics the following conditions: 

(i) the body's density distribution is nearly spherically symmetric; 

(ii) the body has a fluid core and a solid mantle; 

(iii) the body is in static mechanical equilibrium under an external stress which 

If a= p= 0 and p1 = O  for all r, the discussion is exact, so the catalogue contains the 
exact descriptions of all possible equilibrium stress fields in any spherical shell in a 
spherically symmetric gravity field. If a, p and pI /po  are small but not zero, the 
corresponding members of the catalogue are accurate only to the first order in these 
small quantities. 

exerts no net force or torque. 

B. Transversely isotropic elastic stress-strain relations 

The most general spherically symmetrical elastic model for the Earth's mantle 
is one in which the density and elastic constants depend only on r,  and the stress-strain 
relation at any point p is invariant under all rotations about the radius through p .  
Such a stress-strain relation is not isotropic, but only transversely isotropic with a 
radial axis. It is the purpose of the present subsection to express such transversely 
isotropic stress-strain relations in spherical shells as relations between the six scalars 
P, Q, R ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL, Rf, N of the symmetrical stress tensor T and the three scalars U ,  V, W 
of the displacement field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu. 
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94 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGeorge E. Backus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL are Cartesian co-ordinates in a transversely isotropic medium whose axis 

of symmetry is the z axis, the relation between the strain tensor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE and the stress tensor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T is (Stoneley 1949) 

T 3 3 = f i E 3 3 + A E k k r  

Ti3=  T3i=2p&i3=2pE3i, 

Tij = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(A' &kf + is3 3 )  6 i j  + 2p' & i j ,  

where subscripts 1 ,  2 and 3 refer respectively to the x, y, and z axes and &kk = E ,  + cZ2. 
The five elastic constants of the material, A, A', zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp, p', and B, are independent. In an 
isotropic material, A and p are the Lam6 parameters and A' = A ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp' = p,  p= A + 2p .  

Now suppose we have a spherically symmetric elastic shell centred on the origin, 
0. Then the material must be transversely isotropic with axis of symmetry everywhere 
radial. The spherical resolution of the stress-strain relations leads to the following 
equations: 

(5 .25 )  I T , r  = Per,  + A tr ESSI 

Trs=Tsr=21*ers=2pesr, 

T,, = (A' tr E,, + A&,,) I,, + 2p' cSS. 

The elastic constants must be functions of r alone. 

T means transpose. 
If u is the displacement field in the spherical shell, 2 ~ =  Vu+ (Vu)*. Here superscript 

From equation (3.16) 

E =f+(a, u,) + [E.(v, xi) + (V, x ' ) ~ ] ( 2 r ) -  [ ( I .  a, - I )  c i  + Di u,] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
+(V, xi)(V, xj)(2r)-' [BiGj+ DjGi+2urgi j ] ,  (5 .26)  

P = gar u + I r  - (V, 2 V + 2U) ,  

Di Q+hj Dj  R = D i { p - '  [ ( ~ a , -  1 )  I/ + U ] >  + h j  D j [ p ( a r - r - ' )  W ] ,  

(L - v, M )  gij + 2 b i  Dj M + (hik bj Bi)bk N 

= [ha, u +2(1' + p')r- '  u +A'I*-  1 v,2 V] g i j  

+ M i  Dj(p f  r- '  v)+ (h: D j + L j k  b,) bk(pLrr - '  w). 

(5 .27 )  

(5 .29 )  
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Converting tensor and vector equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA95 

From the discussion at the end of Section 4A it is clear how to obtain from (5.29) 
the relations between the scalars of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT and those of u. Those relations are as follows: 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp( a, U )  +,I~ - 1 (2u + v,2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Q = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ I ' - I  [@a,- 1) v +90 u], 

M =  p ' r -  2 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv, 

N=l l ' r - l$ lW.  

In deriving (5.30) from (5.29) we have assumed that V, W, Q, R ,  M ,  and N are 
the unique scalars in (4.11) and (5.15) satisfying, for every r ,  

YoV = go W =Yo Q = Yo R =Yo M =go N = Q1 M = Yl N =O. 

C. Elastic equations of motion 

Suppose an elastic, self-gravitating, spherically symmetrical body of radius b is 
in static equilibrium and has an isotropic (but not homogeneous) stress tensor 
-po(r) I, a density po(r), and a gravitational potential # I ~ ( I ' ) .  If the body is slightly 
disturbed, a time-dependent displacement field will be set up which will produce 
perturbations p ,  in the density, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 1  in the gravitational potential, and T, in the stress 
tensor at a fixed location in space. The exact equations of motion about equilibrium 
are 

where DID? is the substantial or moving derivative. Neglecting terms of second order 
in u arid subtracting (5.4) we obtain 

Po 3' u = v . TE - P O W  I - P1 W O .  

Boundary conditions on the outer and inner surfaces of the spherical shell and 
at interior spherical surfaces of discontinuity are boundary conditions on u and P .  T, 
and therefore on the scalars U ,  V, W, P ,  Q, R. Hence it is convenient to use the stress- 
strain relations (5.30) in a form in which U ,  V, W, €', Q, and R are regarded as given, 
and L ,  M ,  N ,  a, U ,  a, V and a, W are expressed in terms of them. That is, we want to 
solve (5.30) for L, M ,  N ,  a, U ,  a, V ,  and 3, W. The result is the following: 

arU=p-l P - A ( r p ) - '  ( 2 u + v I 2  v), 

8, V = p - Q + I' - (V - do U ) ,  

a,.w=p-l R + r - '  w, 
L=I,K'  P +  (A'+ 11' - A 2  /I-') r - ' ( 2 ~  + V , *  V ) ,  

M = p r r - ' 2 ,  V, 

N=p' r - '19,  W. 

In the same approximation the continuity equation is 

p,+V.(p,u)=O. 

* (5.31) 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
3
/1

-3
/7

1
/9

2
0
9
4
9
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



The stress tensor at a fixed location in space is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-po zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ T,. To first order in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu, the 
stress tensor at a fixed material particle is -po I + T = (1 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu . V)( -po i + TJ; there- 
fore, neglecting the second order term u.VT,, 

T=T,- (u.V~O) 1. 

It is T, not T,, which is related to the strain by the elastic parameters. Therefore we 
rewrite the linearized equations of motion in the form 

The boundary conditions for free oscillation are that U ,  V, W, P, Q, R,  and g1 
must be continuous everywhere; at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr = b  the boundary conditions are that P, Q, R 
and V4/ , [ rg ,  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( t i  + 1) 

The equations for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, 4 and a, g in terms of 41, g U ,  V, W, P, Q and R are equations 
(5.35) and (5.36). The equations for a,U, a,V, a,W, a, P,  a,Q, m d  a,R can be 
obtained directly from (5.31), (5.34) and the abbreviation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA' + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp' t ,I2 p- '. They 
are these: 

should vanish for n=O, 1 ,  2, . . . . 

In deducing (5.34) from (5.32), we have used (5.4) and (5.33). Therefore when we 
set U =  V -  W = O ,  then p I ,  41 and g1  are forced to vanish, and equations (5.34) do 
not reduce to the general equilibrium equations (5.16) but only to the special case 
with pr =C$~=O.  

By using (5.33) and (5.35) we can write Poisson’s equation for 4 ,  in the following 
form: 
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Converting tensor and vector equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA97 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The system (5.35), (5.36), (5.37) separates into a pair of equations for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR and W 

and six equations for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq5,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgl, U ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV, P and Q. Solutions of the second-order system, 
with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAct) chosen to make possible the fulfilment of the boundary conditions, are the 
toroidal normal modes. Solutions of the sixth-order system, with w chosen to make 
possible the fulfilment of the boundary conditions, are the spheroidal normal modes. 
When the mantle is isotropic, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA'=,?, p ' = p ,  P ' = I + 2 p ,  and equations (5.37) become 
the equations used by Alterman, Jarosch and Pekeris (1959) in their discussion of 
the elastic-gravitational normal modes of the Earth. Even the toroidal equations in 
a transversely isotropic Earth are different from the toroidal equations in an isotropic 
Earth, but at present the evidence from teleseismic travel times is consistent with an 
isotropic mantle, or at any rate a mantle whose anisotropy is small enough to be treated 
by first-order perturbation theory rather than the general theory presented here. 
Therefore the general form of equations (5.37) seems at present to be of limited 
physical interest. 

The scalar fields U ,  V, W, L, M ,  N ,  P, Q, R,  q5,, g 1  can be expanded in series of 
surface spherical harmonics Ynm, the expansion coefficients being functions of r.  
For any particular Y," the coefficients of the scalars U ,  V, W, P,  Q, R,  g,, 4,  separately 
satisfy (5.35), (5.36) and (5.37) with V,' replaced by -n(n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 1). This remark proves 
that every elastic-gravitational normal mode of the system is a linear combination of 
normal modes obtained from surface spherical harmonics. That is, the solutions of 
(5.39, (5.36), (5.37) in the form 

U = U n m ( r ) Y / ( x l ,  x'), ..., R=R,"(r)Y,"(x', zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx2) 

which satisfy the boundary conditions form a complete set of normal modes of elastic- 
gravitational oscillations of the Earth. As far as I know, in the geophysical literature 
to date it has only been shown that all such spherical harmonic solutions are normal 
modes, not that there are no other normal modes. 

It should be noted that the foregoing proof of the completeness of the spherical 
harmonic normal modes depends only on the Scalar Representation Theorem for 
tangent vector fields on S , ,  and not on the Representation Theorem for second-order 
tangent tensor fields. The latter only lightens the algebraic burden of deriving the 
scalar equations of motion (5.37). 

An independent proof of the completeness of the normal modes can be obtained 
from the completeness of the vector spherical harmonics (see BIatt & Weisskopf 1952). 

The normal modes with n = 0 constitute a special case. Since go V = go Q = 0, 
the equations for ar4,,  a, g ,, a, U and a, P involve only 4 1, g U and P when n = 0, 
and moreover g1 =O. Therefore the spheroidal system is a second-order system for 
U and P,  together with a quadrature for q51. 

The normal modes with n = 1 lead to a sixth-order spheroidal and a second-order 
toroidal problem, and yet constitute a slightly special case, since qYl N = g ,  N =O. 
That is, when n = 1 the tangential part of the stress tensor is transversely isotropic. 

For any n, the degeneracy of any normal frequency w is 2n + 1, whether the mantle 
is isotropic or only transversely isotropic. This result is to be expected from the 
spherical symmetry of the problem and the structure of the irreducible, single-vaiued 
representations of the rotation group. 

Equations (5.37) refer only to the mantle. In the fluid core p' = p = 0 and A' = P = L, 
L being the bulk modulus of the fluid. Therefore the stress-strain relations (5.30) 
become 

P = I r -  [ ( ra ,  + 2 )  U +Vl'  V ] ,  

Q=R=O,  

L= P ,  

M = N = O ,  

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
3
/1

-3
/7

1
/9

2
0
9
4
9
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



98 George E. Backw zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
and the equations of motion (5.34) become 

ra, P+po(ro2 +4q0) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+po go V12 V-p0 rg zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Po zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw2 rV  =%APo 90 u- p + P O  4 I )  

w=o. 
Then in the fluid core equations (5.37) must be replaced by the following: 

a,U= - r - ' ( 2 ~ + V , ~  v)+A- '  P,  

Po w2 r v  '.%(Po 90 u - p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ P O  ( P l L  

w=o, 
a, P =  - (po zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo2 +4r-'  pogo)  U - " - ' r o o  go V ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI/ +po  9 ,, 

Q = O ,  

R=O. 

' (5.38) 

, 

I 

In the core the toroidal oscillations vanish and the spheroidal oscillations are described 
by a fourth-order rather than a sixth-order system. 

D. A spherically symmetrical viscous j u i d  mantle 

In discussions of continental drift and mantle convection the mantle is often 
treated as a viscous fluid. This simplification has long been suspect among geo- 
physicists, but has recently received some support (Gordon 1965) from the observation 
that at the typical high temperatures of at least the lower mantle the diffusion of 
vacancies through crystals or along their boundaries is the principal physical mechanism 
leading to shear of the mantle under arbitrarily small stresses. Such a deformation 
mechanism produces a linear relation between stress and strain-rate, but it is not clear 
at the time of writing whether the relation can be assumed to be isotropic or independent 
of the past history of the material. If the viscosity tensor should be transversely 
isotropic with respect to the local vertical (isotropy is a special case) and should depend 
only on depth, not on angular position, then the physical problem is invariant under 
all rigid rotations of the mantle about its centre and there will be convective flows 
of infinitesimal amplitude with the angular symmetry of the surface spherical harmonics. 
The techniques of the present paper provide a simple way of constructing these flows 
and showing that their superpositions include all physically possible infinitesimal flows. 

In convection problems, heat transfer must be treated in some detafl. Let H be the 
enthalpy per gram of mantle material, 6' the local temperature, p the local density and 
p the local thermodynamic pressure (that obtained from p and 8 via the equation of 
state for thermodynamic equilibrium). Then the internal energy equation can be 
written 

DH Dp 
Dt Dt 

p- - - +V.H=tr(T.Vu)+q, 

where DIDt  is & + u .  V, the substantial derivative, H is the conductive heat flow vector, 
q is the radioactive or chemical heat production rate per unit volume, T is the viscous 
stress tensor, representable as in (5. I 5), and uis now the fluid velocity, not displacement, 
but still representable as in (4.11). 

The thermodynamic equation connecting H with p and 0 can be written 

DH DO DP 
- =cp-  +(l-ccO)r--, nt Dr nt 
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Converting tensor and vector equations 99 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz=p- ' ,  c,, is the specific heat per gram at constant pressure, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACI is the coeffi- 
cient of thermal expansion at constant pressure. Therefore the energy equation is 

DO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD p  

' D t  Dt 
pc - -aO- +V.H= t r (T .Vu)+q .  

The equation of state can be written 

Dz DO Dp 

D t  D t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'Dt  7 - 1 -  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa- - k  

where ke is the isothermal compressibility. The continuity equation is 

D7 

Dt 
7 - 1 -  = v . u ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

SO 
DO Dp 

D t  Dt 
a- -ke- = V . U .  

(5.39) 

(5.40) 

Equations (5.39) and (5.40) can be solved for DO/Dt and Dp!Dt, with the following 
results: 

DO 
pc,, k, = - d ( V .  u) + k,[ tr  (T . Vu) - V zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.M + q ] ,  

DP pc,k,-  = -pcp(V.u)+x[tr(T.Vu)-V.FISq], 
Dt 

(5.41) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 
where k, is the adiabatic compressibility: 

X - , = k , - a 2 0 ( p ~ , ) - ' .  ( 5  .42) 

If we assume that 

p = p o ( r ) + p l ( r ,  XI,  x2) ,  p = p o ( r ) + p l ( r ,  X I ,  x'), O=Oo(r)+Ol(r, sl, s2), 

where po, po,  and Oo represent a stationary equilibrium solution with a time-independent 
heat production rate 9, while p l ,  p 1  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO 1  are proportional to u, and if we neglect 
products of quantities of first order in u, then equations (5.41) become zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(S  43) 
po cP k,(a,Ol + U areo) = -ctO, V . U-k, V . H I ,  

cP k ,  ( 8 , ~  1 + U a,. PO) = - P O  c,, V . u - ZV . HI 

(5 .44) 

In equations (5.43) and (5.44), cp, k,, ke, a and the thermal conductivity K o ( r )  are 
functions of r alone, to be evaluated in the equilibrium state described by po(r), p o ( r )  
and O&), while K1(r, xl, x2, t )  is the change in thermal conductivity produced by 
the local changes p 1  and 8 ,  in pressure and temperature. 

Another form for the first-order equation of state is 

P I  =Po(kePi -aOi) (5.45) 

and the first-order change c j l ( r ,  x', x') in the gravitational potential satisfies (5.101. 
The spherical resolutions and scalar representations of equations (5.43), (5.44), 
(5.45) and (5.10) can be written down immediately from (4.26) and the fact that 

V2 = (a,+2r- ')a,+r-2 V,*. 
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100 George zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABackus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The scalar representation of the relation between the viscous stress T and the strain 

rate calculated from the velocity u is (5.30) or (5.31), where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ,  A', zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp, p', and j? are now 
viscosities. In an isotropic fluid, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA'=A, p ' = p ,  and fl=A+2c(. 

The linearized equation of motion is 

E. An incompressible viscous Earth 

case. The scalar representation of the constraint V . u = O  is 
In the discussion of Section 5D, the incompressible fluid constitutes a singular 

( r a , + 2 > ~ + ~ , '  v=O. (5.47) 

For any regular scalar field V there is a unique regular scalar field X which vanishes 
at r=O and satisfies the equation 

V =  - ( a , + r -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA) x. (5.48) 

If go I/ = 0 for each r, then go X = O  for each r.  If U and I/ satisfy (5.47), then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a, [r2 (V - r - V, X)] = 0, 

so U =r- '  V,' X +r- ' , f (x ' ,  x2). If U is regular at r =0, thenfniust vanish identically, 
so 

u=r- 'v , '  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx. (5.49) 

Therefore the solenoidal velocity field u is described by the two scalars X and W .  In 
fact 

u=Vx(rxVX)-(rxV)W, 

a representation of solenoidal vector fields in spheres which has alreaay been proved 
(Backus 1958) in another connection. 

University of California, San Diego, 
California, 

U.S.A. 

References 

Ahlfors, L. & Sario, L., 1960. Riemann Surfaces, Chapter 5 ,  p. 283. Princeton 

Alterman, Z . ,  Jarosch, H. and Pekeris, C., 1959. Oscillations of the earth, Proc. 

Backus, G., 1958. A class of self-sustaining dissipative spherical dynamos, Ann. 

University Press. 

R. SOC., A, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA252,80-95. 

Phys., 4, 381-384. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
3
/1

-3
/7

1
/9

2
0
9
4
9
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



Converting tensor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand vector equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA101 

Backus, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG., 1966. Potentials for tangent tensor fields on spheroids, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAArchs ration. 

Bergmann, P., 1947. Introduction to the Theory of Relativity, Chapter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 ,  pp. 50-51. 

Blatt, J. and Weisskopf, V., 1952. Theoretical Niiclear Physics, pp. 796-799. 

Gibbs, W. and Wilson, E., 1925. 
Gordon, R., 1965. Diffiision creep in the earth's mantle, J .  geophys. Res., 70, 

241 3-241 8. 
Jeffreys, H., 1959. Cambridge University 

Press. 
Stoneley, R., 1949. The seismological implications of aeolotropy in continental 

structure, Mon. Not. R.  astr. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASor. geophys. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASuppi., 5, 222-232. 
Willmore, T., 1959. Oxford 

University Press. 

Mech. Analysis, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA22, 210-252. 

Prentice Hall, New York. 

Wiley, New York. 
Vector Analysis. Yale University Press. 

The E'nrtl? (4th edn.), Chapter 4, p. 147. 

An Introduction to Diferential Geometry, Chapter 3. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
3
/1

-3
/7

1
/9

2
0
9
4
9
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2


