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Convex 1-D Total Variation Denoising with
Non-convex Regularization

Ivan W. Selesnick, Ankit Parekh, and Ilker Bayram

Abstract—Total variation (TV) denoising is an effective noise
suppression method when the derivative of the underlying signal
is known to be sparse. TV denoising is defined in terms of a
convex optimization problem involving a quadratic data fidelity
term and a convex regularization term. A non-convex regularizer
can promote sparsity more strongly, but generally leads to a
non-convex optimization problem with non-optimal local min-
ima. This letter proposes the use of a non-convex regularizer
constrained so that the total objective function to be minimized
maintains its convexity. Conditions for a non-convex regularizer
are given that ensure the total TV denoising objective function is
convex. An efficient algorithm is given for the resulting problem.

I. INTRODUCTION

Total variation (TV) is a widely used regularizer in sparse
signal and image processing [6], [20]; especially when it is
known the signal to be recovered has a sparse derivative (or
sparse gradients), i.e., when the signal is piecewise constant
(PWC). One-dimensional signals of this form arise, for exam-
ple, in geoscience, astrophysics, and biophysics [11].

TV denoising is defined in terms of a convex optimization
problem involving a quadratic data fidelity term and a convex
regularization term. Interestingly, for 1-D TV denoising, the
exact solution can be obtained using very fast direct algorithms
that terminate in a finite number of steps [5], [7], [12].

In this letter, we consider a modification of the 1-D TV
denoising problem where the non-smooth convex regularizer is
replaced by a non-convex one. This modification is motivated
by the fact that non-convex regularizers can better recover
flat signal regions [4], [15]-[17]. The mathematical properties
of the solutions to non-convex regularized signal restoration
problems are discussed by Nikolova [15]-[17].

Generally, the use of a non-convex regularizer (as opposed
to a convex one) leads to the formulation of the signal recov-
ery problem as a non-convex optimization problem. In turn,
spurious (non-optimal) local minima exist in which iterative
optimization algorithms may become entrapped. In addition,
the solution to a non-convex problem can be highly sensitive to
small changes in the data: an infinitesimal change in the data
may lead to a large change in the output, as is the case with
the hard threshold function. This sensitivity also complicates
the selection of an appropriate value of the regularization
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parameter. Therefore, we consider the question of how to
maintain the convexity of the TV denoising objective function
when the regularizer is taken to be non-convex.

This letter provides a condition on a non-convex regularizer
for 1-D TV denoising that ensures the total objective function
(comprising data fidelity and regularization terms) is strictly
convex. A fast iterative algorithm is described to perform
convex TV denoising with a non-convex regularizer set ac-
cordingly. Results of the proposed algorithm are compared
with standard 1-D TV denoising on simulated data.

The idea of specifying non-convex penalties in the for-
mulation of convex optimization problems for linear inverse
problems was proposed by Blake and Zimmerman [2] and by
Nikolova [13], [14], [17]. This approach has recently been
considered in [22] where the convexity condition is cast as
a semidefinite program (SDP), in [1] which considers a non-
convex extension of fused-lasso, and in [3] which addresses
translation-invariant group-sparse denoising.

II. PROBLEM FORMULATION

Let y € RN be a piecewise constant signal observed in
additive noise. Consider the objective function F': RN 5 R,

Fa)=gly-al3+AY 6Dl

where A > 0 is a regularization parameter, ¢: R — R is
a sparsity promoting penalty function (regularizer), and D is
the (N — 1) x N matrix

-1 1
D= S : 2)
-1 1
The notation [Dx],, represents component n of vector Dzx.
One-dimensional total variation (TV) denoising is defined
as minimizing F' with respect to z € RY,
X .
" = arg min F(x 3
ngRN ( ) )
where ¢ is taken to be ¢(z) = |z|. In this case, F is strictly
convex on RY and hence its minimizer is unique. However, it
has been shown in the literature that non-convex penalties have
advantages in comparison with convex penalties, in terms of
more accurately recovering signals with flat regions [15]-[17].
Here, we consider how to set a non-convex penalty function

¢ to promote sparsity of Dx while keeping F' strictly convex.
Then, the minimizer will be unique, the denoising process
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will be continuous/stable (i.e., infinitesimal changes in y do
not produce large changes in z*), and convex optimization
techniques can be used to reliably obtain the minimizer.

A. Non-convex penalty functions

We assume ¢ is continuous, symmetric, twice differentiable
on R\ {0}, increasing on R, and concave on R . Examples
of such ¢ are the logarithmic penalty

1
¢(x;a) = o log(1+alx]), a>0 4)
and the arctangent penalty [22]
2 1 1—|—2a|x|) 7r)
r;a) = ——= | tan —— ) ==, a>0. (5
olaia) = 2= (1o () 2 ®
For later, we note for both penalties, that
ir;é% ¢ (z;a) = ¢"(07;a) = —a. (6)

III. CONVEXITY CONDITION

To find a condition on ¢ ensuring F' in (1) is strictly convex,
we write F' as

Flz) = Fo(z) + Fi(2) ™
where
Foe) = gly—al3+A Y oDal) @)
A = ly-al3+ A Y o(Dal). O
n odd

Note that if both Fj and Fj are strictly convex, then F' is
strictly convex. Hence, it suffices to find ¢ such that F, and
Fy are strictly convex. Due to the similarity of F} and Fp, it
suffices to find ¢ such that Fj is strictly convex.

We write Fy as

1 1
Z (E(yn - xn)Q + z(yn-‘rl - xn+1)2

n even

Fo(z) =
+ )\(b(anrl - iEn))

- ( Z 15”2 + Eﬁlﬂ +AP(Tpt1 — xn)) + L(z)

4" 4
n even

where L(z) is linear in x. We write

Fo(z) = (3 Blowwnsn)) + L) (10)
n even
where B: R? — R is defined as
1 1
B(ug,u1) = Zug + Zu% + Ao(ur — up). (11)

For the purpose of analyzing the convexity of Fjp, the linear
function L can be disregarded. Hence, if B is strictly convex
on R?, then Fp, being a sum of strictly convex functions, will
be strictly convex on RY.

To find a condition on ¢ so as to ensure B is strictly convex,
we define H: R? — R as

H(vg,v1) = B(

V1 — Vo ’Ul+’Uo> (12)

2 72

Then B is strictly convex if and only if H is strictly convex.
From (11), we write

_1 v — Vo \ 2 1 /vy +v9\2
H(Uo’vl)_i( 2 ) Z( 2 ) +Ag(vo) (13)
1 1
= g”g + gv%‘ + Ao (vg) + La(vo, v1) (14)

where Ly (vg, v1) is linear in (vg, v1). Since we are concerned
with the convexity of H, the linear function Ly can be
disregarded, as above.

The function H is strictly convex if and only if ¢: R — R,
defined as ¢(z) = x2/8 + A¢(x), is strictly convex. By
Theorem 6.4 of [10], % is strictly convex if it has a strictly
increasing right-derivative. By assumption, ¢ is twice differ-
entiable on R\{0}; hence, H is strictly convex if and only if

¢'(07) = ¢'(07) (15)

and

i +A¢"(x) >0,
In fact, from the assumptions on ¢ as stated in Sec. II-A,
condition (15) already follows. (If ¢ is increasing on R and
twice differentiable on R \ {0}, then ¢'(0") > 0. If also ¢ is
symmetric, then ¢'(07) = —¢/(07) < 0.)

Condition (16) is the positivity of the second derivative of
H (vg,v1) with respect to vg. We write the condition as

1
N

for all = # 0. (16)

inf ¢ (z) > —

inf a7

which constitutes a constraint on the non-convexity of ¢. For
various standard penalties, including (4) and (5), the second
derivative ¢”(z) is most negative at x = 0%. For such
penalties, condition (17) can be written

¢"(07) > L (18)

4N
For the logarithmic and arctangent penalties, (4) and (5),
parameterized by a, we use (6) to obtain the condition
1

a < —

o (19)

IV. OPTIMALITY CONDITION

If F is strictly convex, then z* € R¥ is its unique minimizer
if and only if 0 € OF(x*) where OF is the subgradient of F.
If ¢ is such that F' in (1) is convex, then OF is given by

OF (z) = {x —y +AD"u : u, € dy([Dx],),u € RN},

where dg is a set-valued function on R, defined as

o= {0

u#0
20
u=0. 0

Hence, the condition 0 € JF(z*) can be written as

%(y —z*) € {D"u: u, € dy([Dx*]n),u € RN} (21)



Let S be a matrix of size (N — 1) x N such that SDT = 1.
It can be taken to be the discrete anti-derivative (cumulative
summation operator), defined by

[Sz], = Z Tk (22)
k<n
Then it follows from (21) that
1
ISy — 2")ln € dg([Da"]n). (23)

A
Condition (23) can be used to validate the optimality of a
candidate x and to gauge the convergence of an algorithm
minimizing F'. The condition (23) implies that the points

zn = ([D2*]p, [S(y —2")]a/A) € R? 24

lie on the graph of dg, as illustrated in Fig. 2 below.

V. ALGORITHM

Following the procedure in [8], we use the majorization-
minimization (MM) approach to derive a fast-converging al-
gorithm. A majorizer of ¢ is given by g: R x R\ {0} — R,

2

o) = P (2 0) 4 o),

(See, for example, Fig. 11 in [21].) Hence, a majorizer of F'
in (1) is given by

(25)

1
G(w;v) = 5lly — i3 +A)_ g([Daln, [Dv]n) (26)
1 A
= 3lly = 2l3 + S2TDTW (Dv)]Dz + e(v)  @7)
where W is a diagonal matrix,
¢'([Dvln)
W(Dv)|pn = —7=—7 28
WD = S5 ©8)
and c(v) does not depend on z.
Using (27) in the MM update iteration,
2D = arg min G (x; ), (29)
leads to the iteration
25D — (1 + ADTW(D2®))D) . (30)

As noted in [8], as the algorithm converges to a solution for
which Dz is sparse, elements of W go to infinity. To avoid
the numerical problems related to this, as in [8], we use the
matrix inverse lemma to write

1

(I+ADTWD)~ :I—DT(§W_1+DDT)71D. 31)

The iteration (30) can then be written as
1 -1
2D = g DT(X[VV(DWC))]*1 + DDT) Dy. (32)

We initialize the iteration with z(°®) = y. Note that the
system matrix in (32) is tridiagonal; hence, the iteration can
be implemented with very high computational efficiency using
a fast solver [19, Sect 2.4]. Due to MM, each iteration
monotonically decreases the cost function value. We have
found that 20 iterations of (32) are usually sufficient.
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Fig. 1. Total variation denoising with convex and non-convex penalties.

Note that g(x;v) in (25) is undefined for v = 0. Hence if
[Dx™)],, = 0 for some iteration k and some index n, then the
majorizer is undefined. This manifests itself as a ‘division-
by-zero’ error in (28). Due to the use of the matrix inverse
lemma, this becomes a ‘multiplication-by-zero’ and causes no
numerical problem in the algorithm (32). However, it compli-
cates the proof of convergence of the algorithm. We do not
prove its convergence. We remark (i) in practice, convergence
is not adversely affected by this issue, (ii) optimality can be
verified using (23), and (iii) this issue has been discussed in
the literature [8], [9], [18] where it was found not to impede
the convergence of affected algorithms in practice.

VI. EXAMPLES
A. Example 1
Total variation denoising with convex and non-convex reg-
ularization is illustrated in Fig. 1. The noisy data is obtained
using additive white Gaussian noise (AWGN) (¢ = 0.5) on a
PWC signal, s € RY, of length N = 256 (‘blocks’ generated
by the Wavelab function, MakeSignal). For both convex and
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Fig. 3. Example 2. RMSE as a function of noise level for randomly generated
PWC signals of length 1000. Non-convex penalties yield a lower RMSE than
convex penalties.

non-convex cases, we set A — \/N o /4, consistent with the
range suggested in [7] for standard (convex) TV denoising.
We set the non-convexity parameter to its maximal value,
a = 1/(4)\). We use 20 iterations of (32).

The improvement of non-convex regularization is reflected
in the lower RMSE of 0.25 compared to 0.32. For further
comparison, Fig. 1 shows the error, 2* — s, for both convex
and non-convex regularized solutions. The convex solution
underestimates the true first-order difference signal more so
than the non-convex one.

The optimality of the non-convex solution acquired using
iteration (32) is validated using (23). The condition is graphi-
cally illustrated as a scatter plot in Fig. 2. The preponderance
of points on the vertical line, [Dzx],, = 0, reflects the sparsity
of Dz*.

B. Example 2

In this example, we consider the relative performance
of convex and non-convex regularized TV denoising as a
function of noise power. We generate random realizations
of PWC signals. Each realization is of length 1000 and has
15 step-edges. The step-edges are uniformly distributed over
the duration of the signal. The amplitudes of the steps are
uniformly distributed in [—5, 5]. We corrupt each realization
with AWGN, N (0, o?). TV denoising is applied to each noise-
corrupted realization using A = v/No /4 and a = 1/(4)) as

above. Figure 3 illustrates the RMSE as a function of o. It
can be seen that non-convex regularization offers the most
improvement at low noise levels.

VII. CONCLUSION

TV denoising is a basic method for the estimation of PWC
signals in noise. This letter gives a modification of the standard
TV denoising problem where the regularizer is non-convex
yet constrained so that the total objective function is convex.
The improvement is not as dramatic as that offered by non-
convex regularization without such a constraint — see [16]
for examples. However, due to the convexity, the solution is
reliably obtained via convex optimization, the solution depends
continuously on the data, and the regularization parameter can
be set as in the convex case (e.g., [7]).
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