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Introduction. We are going to discuss certain topological properties of
infinite-dimensional normed linear spaces, the results being most complete
for Hubert space §. Let us begin by describing some results and questions of
previous authors which are closely related to those of the present paper.

From A. Tychonoff's fixed-point theorem ([31], 1935)(2) it follows that
in the weak topology, the unit cell C= {x\ \\x\\ á 1} of § must have the fixed-
point property; that is, every weakly continuous map of C into itself admits
at least one fixed point. In the norm topology, on the other hand, S. Kakutani
([13], 1943) described a homeomorphism without fixed points of C onto
itself. He used this to show that the unit sphere S= {x\ \\x\\ =1} is con-
tractible and is a deformation retract of C. At the end of his paper, Kakutani
raised several questions. Are any two of ÍQ, C, and S homeomorphic? Does C
admit a periodic homeomorphism without fixed points? What is the situa-
tion in general Banach spaces? In partial answer to the last question, J.
Dugundji ([7], 1951) proved that the unit cell of a normed linear space has
the fixed point property only if the space is finite-dimensional. P. A. Smith
had proved ([26], 1941) that each prime-period homeomorphism of Euclidean
«-space En must have a fixed point and asked ([9, p. 259], 1949) whether £>
admits a period two homeomorphism without fixed points. O. H. Keller
([14], 1931) proved that the infinite-dimensional compact convex subsets of
§ are mutually homeomorphic and all homogeneous. W. A. Blankinship
([3], 1951) showed that if XC.& and Cl X is compact, then ÍQ^X is con-
tractible.

In the present paper we answer the questions of Kakutani and Smith,
strengthen the theorems of Keller and Blankinship, and establish some
further topological properties of convex bodies and periodic homeomorphisms
in £>. The principal tools employed are (a) Mazur's homeomorphism [22] of
the space (L1) onto the space (L2) ; (b) the existence in every nonreflexive
normed linear space of a decreasing sequence of bounded closed convex sets
with empty intersection; (c) the existence in (L1) of a one-parameter con-
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CONVEX BODIES 11

tinuously decreasing family of linear sets. (The author is indebted to Dr.
Olof Hanner for mentioning (c) in a conversation.)

Organization of the paper is such that designation of various results as
lemma, theorem, etc., did not seem appropriate. Thus a simple numbering
scheme is employed, with (13.2), for example, denoting the second result of
Chapter I, §3. Omission of the Roman numeral in a reference indicates that
the result referred to is in the same chapter as the reference.

The results of greatest intrinsic interest are probably those of §111 and
Chapter III. Suppose, for example, that E is either a nonreflexive normed
linear space or an infinite-dimensional /p-space. Then there is a homeo-
morphism of period two without fixed points of E onto itself which takes the
unit cell onto itself. Every hyperplane in E is homeomorphic with the unit
sphere. And if X is an arbitrary compact subset of E, then there is an isotopy
whose initial transformation is the identity map on E and terminal trans-
formation is a homeomorphism of E onto E~X.

For Hubert space £>, these results are considerably sharpened and ex-
tended. § is homeomorphic with both its unit cell and its unit sphere. If B
is a closed convex body in §, then B is homeomorphic with ¡Q and its bound-
ary is homeomorphic with either § or ¡QXSn for some «^ — 1. If X is an
arbitrary finite polytope in ¿p and wj^2, then § admits a homeomorphism of
period n with X as its set of fixed points. And for an arbitrary relatively open
subset F of A", § admits a homeomorphism of period n whose fixed-point set
is homeomorphic with Y. For each e>0, § admits a homeomorphism of period
n whose fixed-point set is {x\ \\x\\ s^e}. ÍQ admits a pointwise-periodic homeo-
morphism which is not periodic.

Notation. U and ~ will be used for set union and difference, + and
— being reserved for the vector operations. The empty set will be denoted
by A, and <j> will represent the neutral element of the linear space under con-
sideration. "If and only if" will be rendered by "iff." For distinct points x and
y of a linear space, [*, y] will denote the line-segment including its end points,
[x, y[=[x, yl^iy}, etc., and Ray [xy] will denote the ray {z|y£[x, z]}
Vj[x, y\. The boundary, interior, closure, «-neighborhood, and convex hull
of a set X will be indicated respectively by FX, Int X, Cl X, NtX, and
conv X. The unit cell and unit sphere of a normed linear space are respectively
{x]||x||^l} and {*| ||x|| =1}. A convex body is a convex set which has an
interior point.

We usually avoid the use of parentheses except when their omission
would cause confusion. Symbols written consecutively, whether they denote
functions or numerical multipliers, are associated to the right; e.g., fgx
■/[«(*)]■

We shall reduce somewhat the common notational crime of using the sub-
script n without individual explanations in three entirely different ways: (i)
to indicate a specific member of a sequence; (ii) to indicate the sequence it-
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12 V. L. KLEE January

self; (iii) to assert that for all integers n, a certain statement is true. We shall
use alpha in the second case, beta in the third. Thus xa means the sequence
(*i, X2, ■ ■ ■ ) and xa—->x means limn<M x„ = x. The equation Xß— Y^JZ means
that for each positive (or, occasionally, non-negative) integer n, Xn = YnKJZ.
Although this notation still abounds in ambiguities, it is more precise than
some and preserves the brevity frequently obtained by writing simply
"xn," "xn-^x," and "Xn= Yn\JZ" in the examples above.

Chapter I. The isotopy theorem
11. Statement of theorem. If W and Z are topological spaces, then a

homotopy of W into Z is a continuous function 77 on WX [0, 1 ] to Z. For such
a function r¡, -q* will denote the map of WX [O, l] into ZX [0, l] given by
i)*(w, t) = (t](w, t), t) and t]t the map of W into Z given by r¡tw = r](w, t) (for
¿£[0, l]). The homotopy -n is an isotopy (almost-isotopy) iff 17t is a homeo-
morphism for each /£ [O, l] (each /£]0, 1 [). The homotopy rj is an h-isotopy
(almost-h-isotopy) iff 77* is a homeomorphism on WX [0, l] (on IFX]0, 1 [).
The homotopy 77 is onto Z (almost-onto Z) iff r\tW=Z for each /£[0, l]
(each ¿E]0, /[). Two mappings/0 and/i of IF into Z are said to be homotopic
iff there is a homotopy 17 of W into Z such that 770 =/o and rji = fi. Such adjec-
tives as isotopic, h-isotopic, etc., are defined similarly.

The principal tool and theorem of this paper, in terms of which the other
results are not so surprising, is the Isotopy Theorem, stated below as

(1.1) Suppose Y is a weakly compact subset of the nonreflexive normed
linear space E, and B is a bounded convex body in E such that N¡YC.B for
some 5 > 0. Then there is an h-isotopy rj of E almost-onto E such that (i) if t = 1
or x£.E~Int B, r)tx = x; (ii) 770E = .E~F; (iii) limi<0 VoVr1 = rli and lim¿-.aVtVo1
= J7i| E~F, the convergence being uniform on every compact set.

The present chapter will be devoted to a proof of the Isotopy Theorem.
Notice that (1.1) implies the existence of a homeomorphism of E onto

E~ Y which is the identity on E~Int B. Such a homeomorphism is the only
tool needed in §111. To take advantage of this fact and make the results
of §111 more easily accessible, the homeomorphism is obtained in §14 as a
lemma in the proof of the Isotopy Theorem. Thus, before taking up §2, the
reader might wish to read the proof of (4.1) and then §111.

Before concluding this section we record a remark on isotopies which will
later be useful in conjunction with (1.1). Its proof is almost immediate and
is left to the reader.

(1.2) Suppose W is a metric space and rj is an h-isotopy of W almost-onto
W such that 77! is the identity map, lim(^.0 Voty1 = Vu and lim^o yflö1 =Vi\ VoW,
with convergence uniform on every compact set. Let tt — Vovr1 for ^>0 and
fo = »7i. Then f is an h-isotopy of Winto W, with ÇoW= Wand XtW=r\^Wfor
t>0.

12. Polar nets. In this section we introduce a sort of generalized polar
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1953] CONVEX BODIES 13

coordinate system which will be one of our principal tools. Let £ be a normed
linear space and 2 its unit sphere {<r| \\ff\\ =1}. A polar net is a system
{(Pt, pt)\t£;]0, l]} which satisfies the following conditions (for each r and
sin ]0, 1]):

(i) Pr is a bounded closed subset of E which is star-shaped from the point pr;
(ii) pr(E.lnt Pr and each ray emanating from pr intersects the boundary FPr

exactly once;
(iii) PrCInt Ps whenever r<s;
(iv)  \JtG]B,1]FPt=Pi~r\t&0,1]Pt;
(v) £/|/£]0, l] is continuous.

(These conditions are somewhat redundant, but this is not important.)
The role of alpha will be taken, relative to ]0, l], by tau. Thus (v), for

example, could be written "pr is continuous."
The set Ç\Pr is called the origin of the polar net. We can define a biunique

mapping T of PI~Ç)Pt onto ]0, 1 ] XS by
(1) Tx = (t, a) iff x^FPt and o- = \\x — pt\\~1(x — pt), or equivalently,
(2) Tx = (t, <r) iff x = pt-\- [nt(pt-\-o-)]~la, where /*< is the gauge function of

Pt relative to pt. (That is, fitx= [sup {m\pt+m(x-pt)<EPt} j-1.) It will be
proved in this section that T is a homeomorphism.

(2.1) If (i) is satisfied, then (ii) is equivalent to
(vi) the gauge function ¡ir is continuous ;
Also [(iii) and (iv)] is equivalent to
(vii) (]r>aPr=Ps  (whenever sE]0,  1 [)  and  Ur<,Pr = Int Ps (whenever

sE]0, 1])
and implies

(viii) FPr is a continuous set-valued function (i.e., if ta-+t, then lim FPta
= FPt).

Proof. If (ii), holds then FPr= {x\prx = l} and Int Pr= {x\firx<l}. But
then if 0<a<b,

{x | firx G ]a, b[} = pr + [b(Pr - pr) ~ b(FPr - pr) ~ a(Pr - pr)],

which is open. And

{x | Mr* G [0, b[] = pr + [b(Pr - pr) ~ b(FPr - pr)},

which is open. Hence ßr is continuous and (ii) implies (vi).
Suppose conversely that pr is continuous and let x(E.FPr. Then x is an

accumulation point of the set, E~Pr, on which Mr>l, and hence by con-
tinuity HrX^l. Also (since xC.Pr)¡irx^\, so jurx = l. But then pr-\-\(x— pr)
(£Pr when X>1, and from this fact (true for all x£.FPr) condition (ii) fol-
lows at once.

Now suppose [(iii) and (iv) ] holds and let the first and second statements
in (vii) be denoted by (vii') and (vii") respectively. From (iii) it follows at
once that Or^PrDPs and  \Jr<,Prdlnt Ps. We wish to show also that
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14 V. L. KLEE [January

fWs-PO-Ps and Int PsCUr<,JV. Suppose xÇiÇ\r>,Pr. By (iv) we have either
xElÇ\PtC.Ps or xÇiFPt for some /. But u>s implies (via (iii)) xGInt Pu,
so we have t^s and xÇ£Ps. Hence (vii') holds. And if y G Int Ps, then (by
(iv)) either yGD-P^ or yÇ.FPt for some /, and from (iii) it follows that t<s.
Hence (vii") holds and we have shown that [(iii) and (iv)] implies (vii).

Clearly (vii") implies (iii), and this in turn implies that \JFPtQPI
~Ç)Pt. (This is one of the redundancies in conditions (i)—(iv).) Now suppose
x(E.Pl~r\PT and let 5 = inf {r|xG-FV}. Since s>0, (vii') implies JtgPi.
And if xGInt Ps, (vii") implies x£P2 for some t<s, which contradicts the
definition of 5. Hence xQFPs and (iv) holds. We have shown that (vii)
implies [(iii) and (iv)], and hence that they are equivalent.

We show finally that (vii) implies (viii). Consider a sequence /„ of num-
bers in ]0, l] with /a-»/G]0, 1]. We wish to show that lim FPta = FPt. Let
xGlim sup FPta. Then there is a subsequence ra of t„ and a sequence of points
xa—»x with Xß(E.FPrß. Since x£P//2 we have x(£FPu for some mG]0, l],
and wish to show that u = t. If some infinite subsequence of ra is monotone
decreasing, it follows from (vii') that xQ.Pt. If some subsequence is monotone
increasing, the same conclusion follows from (vii"). Thus u^t. Now if u<t,
it follows from (vii") that x£Int Pv for some »£]«, t[, which is clearly im-
possible. Hence u=t and we have proved that lim sup FPtaC.FPt. Thus FPt
is upper semi-continuous.

Now suppose ta—H as above and xÇzFPt. We consider only the case t<i
since the other is similar. Let U be an arbitrary connected open set containing
x. It follows from (vii) that U contains points of FPr for some r<t and of
FPs for some s>/. But (iii) implies that if b^]a, c[C]0, l], then FPb sepa-
rates FPa from FPc in E. Thus since U is connected it must contain points
of FPu for each «G[r, s]. Hence there are points Xß(E.FPtß such that xa—»x.
We then have FPtCZlim inf FPta, so FPr is also lower semi-continuous and
the proof of (2.1) is complete.

Notice that condition (i) was employed only in proving the equivalence
of (ii) with (vi), that [(iii) and (iv)] is equivalent to (vii) in every topological
space, and implies (viii) in every locally connected metric space.

(2.2) Suppose (Pt, pr) is a polar net having origin Y, and the transforma-
tion T is defined by (1) above. Then T is a homeomorphism of P1~F onto
]0, 1]X2.

Proof. We show first that T is continuous. Suppose xa—>x0 with Txß
— (tß< ffß) and let /„„ be an arbitrary convergent subsequence of ta—say
¿no—>t. Note first that t^O. For suppose t = 0 and consider an arbitrary
rG]0, l]. Since /„a—>0 we have x„3GrUe]o,r]Ps for all sufficiently large j, and
hence XoGfUeio.riPs. But then xuÇlÇ\Pt, a contradiction since T is not de-
fined on Ç\Pt. Now since />0 and x„ßQFPt„ß, it follows from (viii) that
XoGFP/, whence /=/0>0. But then ta—H0 and from (v) it follows that pta
—>pt0. Now we have o-ß = \\xß — ptß\\-1(xB — ptß) and x0^pt0. Hence aa—xr0 and
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1953] CONVEX BODIES 15

thus T is continuous.
Now suppose on the other hand that ta—»¿o and aa—xr0 with Txß = (tß, o~ß).

Since Xß = ptß+o-ß\\xß — ptß\\ we have

Xß — pU        \xß — plß\  / ptß — pta \

11% —/><o||       ||%-^o||\ 11%-M>|| /
and the sequences \\xa — pt0\\ and ||x„ —£/a|| are bounded away from zero, so

lim ||xa — pt0\\~1(xa — pt0) = lim <ra = ct0 = ||*o — pto\\~1(x0 — ph).

Now (viii) implies that the limit of every convergent subsequence of xa
must be in FPt0. And since by (ii) the ray Ray [£¿o,*o[ intersects FPt0 only
once, we must have x„—>Xo and the proof is complete.

13. Admissible triples. To prove the Isotopy Theorem, we establish in §4
the existence of a one-parameter family tyr — (Prr, pr) of polar nets having
certain useful properties. In doing this, we first define the sets Prt for dis-
crete values of r and / and then fill in the gaps. In order to describe the
filling-in process employed, we introduce here the notion of an admissible
triple.

For a normed linear space E (which is arbitrary but will remain fixed
throughout this section), an admissible triple is an ordered triple (G, K, J)
where G is open and convex, G(ZK(ZJ(ZE, and both K and J are bounded,
closed, and star-shaped from G. Let X denote the class of all admissible triples
and consider an arbitrary triple (G, K, J) ££■ For each ray p emanating from
G, let p0 = pi^FK and p\=pi~\FJ. (Each of these is a single point.) For each
rG[0, 1] let

(G, K, J, r) =KKj{po+s(pi— po)| 0^s<r, p emanating from G\.

The closure of (G, K, J, r) will be denoted by [G, K, J, r].
(3.1) Suppose (G, K, J)E%. Then [G, K, J,0]=K and [G, K,J,l]=J.
(3.2) Suppose (G, K, J) G£ andrE [0, 1 ]. Then [G, K, J, r] is star-shaped

from G.
Proof. It suffices to prove that (G, K, J, r) is star-shaped from G. Suppose,

then, that gGG, p(£(G, K, J, r), and g£]g, p[. We wish to show that
çG(G, K, J, r). If q£:K this is obvious, so suppose q(£K. Then p(£K and
there is a ray p emanating from a point g' of G such that p=po+s(pi— p0)
for some s<r. Let g"£ [g, g']P\Ray [pi,q[, p' = Ray [g",q[, and x =pT\ [g,Po].
Since [g, po]CA", we have p¿ G [x, q]. Also, p{ =pi, so by a little vector alge-
bra it follows that

lk~ Po||           ||?- x ||        \\p- po||
- < - < - = J < f,
||pi   - Po'H        ||pi - Po'H        ||pi - Po||

Hence qÇ.(G, K, J, r) and (3.2) has been proved.
"WCCZ" will mean that AWCJZ for some 5>0.
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16 V. L. KLEE [January

(3.3) Suppose (G, K, J) and (Gr, K', J') are admissible triples, with
GCCG', KCCK', and JCJ'. Then for each rG[0, 1 [, [G, K, J, r]
CC[G',K',J',r].

Proof. By hypothesis there is an e>0 such that NtGCG' and NfKCK'.
We shall show that if D = max (e, diam. /) and 5=e2(l— r)/D, then
NS(G, K, J, r)C(G', K', J', r). Consider an arbitrary p £ (G, K, J, r). If pEK
then we have NspENtpEK'E(G', K', J', r). If pQK, then there is a num-
ber s<r and a ray p emanating from a point g of G such that p = po+s (pi—p0).
For the sake of notational simplicity we assume that po=<j>. Let pó =p
C\FK'. Then p0' +s(p1-p¿)=yEG'. But p¿ = W||pi|| with k^e, so we have
y=tpi with ¿=5+ [(1— s)fc/||pi||]- Now by (3.2) the star from y over G' is in
(G', K', J', r), and hence so is the star from y over N(g. This star contains
Nmtp, where OT = ||y-p||/||y-g||. But ||y-g|| <D and

||y - p\\ = \\Pl\\(t -s) = ||Pl|| (1„~|f* > (1 - r),IM
so m >e(l —r)/D and the proof is complete.

By the Hausdorff distance h(X, Y) between two subsets of E is meant
inf {e|X(ZNtY and Y(ZN,X}. As thus defined, h is a distance-function for
the class of all bounded closed subsets of E and also for the class of all
bounded open convex subsets of E (since a bounded open convex set is com-
pletely determined once its closure is given). Thus the class X of admissible
triples is metrized by the function m defined as follows:

m((G, K, J), (G', K', /')) = max (h(G, G'), h(K, K'), h(J, J')).

For each pair of positive numbers d and D such that d<D, let X(d, D)
be the class of all triples (G, K, /) G£ such that (NdG, K, J) G£ and diam. /
<D.

(3.4) The function [G, K, J,r]\ (G, K,J)G1(d,D),rE[0, l] is uniformly
continuous. That is, to each e>0 corresponds 5^0 such that if (G, K, J) and
(G', K', J') are in Z(d, D), r and r' are in [0, l], m[(G, K, J), (G', K', J')]
<ô, and \r-r'\ <8,thenh([G,K,J,r) [G', K', J',r'])<e.

Proof. The following statement is easy to verify:
(i) If (G, K, J)E.Z(d, D), then h([G, K, J, r], [G, K, J, r'])<\r-r'\D.

|  | We next prove
(ii) If (G, K, J)e.Z(d, D) and c<ed/D, then [G, Cl (NCK), Cl (NCJ), r]

CNt[G, K, J, r] (for each rE [0, l]).
Consider an arbitrary ray p emanating from a point g of G, and let

x=pf~y\F Cl (NCJ). For notational simplicity we assume g=<¡>. There is a
point y with ||y|| <ed/D such that x+yEJ. Since (G, K, J)ET(d, D), J is
star-shaped from — ¿y/|[y|| and hence JD [ — ¿y/||y||, x+y]. But this set in-
tersects [g, x]= [<f>, x] at the point x' = (¿/(d+||y||))x and we have ||x — x'||
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1953] CONVEX BODIES 17

= MIIHI/(á+IMI)<e- And pDFJC[x', x[, so the distance between p
C\F Cl (NCJ) and pC\FJ is less than e for each ray p emanating from G. By
the same argument, this is true of K also, and this yields the desired conclu-
sion.

(iii) If (G, K, J)GX, (NCG, K, J)EX(d, D), and c<ed min ((d+D))~\
d(d2+D)-i), then [NjG, K, J, r]CN.[G, K, J, r].

Consider an arbitrary ray p' emanating from a point g' of NCG. Let
gE.Ncg'f~}G and p = Ray [g,p{ [. To establish (iii) it will suffice to show that
||p0—po'H <e. For notational simplicity we assume that g'=<p. Now let
u= — dg/\\g\\ and v=g — u. Then u and v are both in NdNcG, so from one of
our hypotheses it follows that K is star-shaped from both u and v. Let
p = Ray [v,pó [Hp and q= Ray [u,p¿ [Hp. Since [v, p0' ]CK, p0E [p, pi ]. And
if K were to intersect ]q, pi ], then it would intersect \p¿, p{ [, which is im-
possible. Thus poŒ.[p, q], and proof of (iii) will be completed by showing
that ||po' -p\\ <e and ||p0' -q\\ <e.

For some t > 1, pi = tp¿. And by a little vector-algebra it can be verified
that q = (l-p)g+lxtp¿ and p = (1 -\)g+\tp¿ , where M = (|kll+¿)/(**+lkll)
andX = d/[tó+(/-l)||g||]. But then

1         i      ^    X        1   <r   C1 — pt =-< —
d    d       dt      d2

and

,    Xl      « - Dlkll    ^ « - Dlkll , c
td+(t-  l)\\g\\ id d

The inequality on c given in the hypothesis implies that c(l+D/d) <e and
c(i-\-D/d2) <e, which gives the desired conclusion since ||po'|| <D.

From (i)-(iii) above it can be verified that for 5 sufficiently small we have
(with m((G, K, J), (G', K', J')) <o and |r-r'| <ô)

[G', K', J', r'] C [NSG, Cl (N}K), Cl (NSJ), r'] C Nt[NsG, K, J, r']
C N2t[G, K, J,r']C N3e[G, K, J, r],

and similarly [G, K, J, r]C.N3e[G', K', J', r']. This completes the proof of
(3.4).

It can be verified that if X is bounded, Fis star-shaped, and FX(ZNtFY,
then ATCA^F. Thus if X and F are both bounded and star-shaped, h(X, Y)
^h(FX, FY).

(3.5) Suppose X and Y are both star-shaped from Nc<p, both of diameter <D,
andh(X, Y)<c/2. Then h(FX, FY)<2D<r1h(X, Y).

Proof. We assume without loss of generality that X and F are both closed
and hence both star-shaped from Cl (N„<p). Let e be an arbitrary number
such that h(X, Y)<e<c. We shall show that FXCN2do-uFY. Since X and
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F enter symmetrically in the hypotheses of (3.5), this yields the desired
conclusion.

Consider an arbitrary point x£FA and let K be the set of all points u
such that x£]z>, u[ for some v(E.N¿cp. If such a point u were in X, then from
the fact that X is star-shaped from Ne<f> it would follow that xGInt x,
which contradicts the fact that x(£FX. Thus KC\X = A. Now by hypothesis
there is a point /£F such that \\y' — x\\ <e. But F is star-shaped from <j>,
so [(/>, y']CF, and since \\x'— <p\\ ̂c>e, there is a point yGF such that
\\y — x\\ =e. Letz = «_1(y —x).Then Ray [z,y[ intersects Ray [<p,x[ at the point
p = x(l+e(c-e)-1\\x\\). And p&Y, for we have N„<—.>*pC.K, KC\X=A, and
h(X, Y)<e<ce(c-e)-1. But [z, y]CF so FY must intersect [y, p]. Now
\\y-x\\=e<Dc-1eand\\p-x\\=\\x\\e(c-e)-l<2Dc-1e, so xEN2Dc-uFY. Hence
(since x was an arbitrary point of FX)FX<ZN2Dc~1tFY and the proof is com-
plete.

For each triple (c, d, D) of positive numbers such that c+d<D, let
%(c, d, D) be the class of all triples (G, K, J)EZ(d, D) such that NcpCG for
some p. Then from (3.4) and (3.5) we have

(3.6) The function F[G, K, J, r]\(G, K, J)EZ(c, d, D), rG[0, l] is
uniformly continuous.

14. Proof of the theorem. We first establish a relatively easy result
(promised in §11) from which the results of §111 can be derived. ("WCZdZ"
will mean that N¡WQ.Z for some 5>0.)

(4.1) Suppose Y is a weakly compact subset of the nonreflexive normed linear
space E and B is a bounded closed convex body in E such that FC C.B. Then
there is a homeomorphism of B onto B~Y which is the identity on FB.

Proof. According to a result of Eberlein [8], E is reflexive iff its unit cell
is sequentially compact in the weak topology, and by a theorem of Smulian
[28] (a proof contained also in [16]) this in turn is equivalent to the non-
existence of a decreasing sequence of bounded closed convex sets with empty
intersection. Thus, since in the present case E is nonreflexive, there are a
sequence GO CO • • -of closed convex sets and an €>0 such that A^F
CB,N2iC0CB, and nC«=A. For 0 = 1, 2, • • • , let Gß = N2jiCß, Hß = N^,Y,
and let Vß be the union of all segments [x, y] for which xGGp-i and yGHß,
replacing Go by NCC<> in the case of Vi. Let Go= Vq = B. It is easily verified
that Vß+i(ZC.Vß, Gß+iCCGßf^Vß, and both Gß and Vß are star-shaped
from Gß.

We show now that Ç\Va=Y. Since clearly C\Va"DY, we must establish the
reverse inclusion. Suppose gGf|^«- Then there are points x^GG^-i, yßCzHß,
and numbers /^G[0, l] such that q = (l—tß)xß+tßyß. Since [0, l] is compact
and F is weakly compact we can in fact find such sequences for which ta
converges (say to /G [0, l]) and Ya converges weakly (say to y G F). Now if
t¿¿l this implies that xa converges weakly to x = (1 — t)-1(q — ty). But each C,-,
being closed and convex, is weakly closed, so we have xÇE.C[Ca, which is im-
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possible. Hence i = l and q =yEY. Thus Y=f]Ca.
We now proceed to define the desired homeomorphism T. First pick

points WßEGß+i. Then for each vEFVß(uEFGß) there is a unique point
v'(u') such that Ray [wß,v[C\(Cl \ Vß\ ~Int Vß+1) = [»', o](Ray [«fe,«]
r\(Cl C7/j~Int Gi+i) = \u', «]>. Now let T be the identity map on FB. And
having defined J1 mapping FGß topologically onto FVß, define T on CI Gß
~Int Gß+i and onto Cl F/j~Int F^+i as follows: for each uEFGß, let 71
map [u', u] linearly onto [v', v]. Then at the /3th stage, T is a homeomorphism
of Cl G0_i~lnt Gß onto Cl F3_i~Int Vß. Since 0^0= A and (]Va=Y,
it is clear that T (when defined at all stages) is the desired homeomorphism.

Notice that if F is a single point, we can simply take Vß = N^-ßt Y and
(with a slight modification in the third paragraph) the second paragraph of
the proof of (4.1) becomes unnecessary. This case (Fa single point) is
actually all that is needed in §111.

Some of our principal results could be deduced from (4.2) (a) below. Hence
it is of interest to note that it too is equivalent to nonreflexivity.

(4.2) For a normed linear space E, the following three statements are
equivalent : (a) in E there is a decreasing sequence of bounded closed star-shaped
sets whose intersection is empty; (b) in E there is a decreasing sequence of
bounded closed convex sets whose intersection is empty; (c) E is nonreflexive.

Proof. Equivalence of (b) and (c) was discussed above, and clearly (b)
implies (a). Now suppose (a) holds and let Sa be the sequence of star-shaped
sets in question. Let Cß be the set of all points of Sß from which Sß is star-
shaped and .rv0 = Cl conv U"=/3 C„. To show that (a) implies (b) it will suffice
to show that KßESß, for then Ç]Ka=A and the other requirements are ob-
viously satisfied. To show that KßESß it suffices to show that for each k and
each set of k integers, wlgw2i£ • • • ^nk, and points XíEC„í, we have
conv {Xi, x2, • • • , Xk] ES»i. For k = l, this is obvious. Suppose it has been
proved for k = m — 1 and consider the case k = m. By the inductive hypothesis,
conv {x2, • • • , xm\ ESniESni. But XiGCni, so Sni is star-shaped from Xi.
Thus S„i contains the star from Xi over conv {x2, • • • , xm}, and since this
star is precisely conv {xi, x2, • • • , xm\, the proof is complete.

In order to prove the Isotopy Theorem we establish
(4.3) With Y, B, and E as in (4.1), there is in E a system of sets {Pr/|r

£[0, 1],/G]0, 1]} andof points {pt\tE]0, l]} suchthat
(a) for each r, Pr\ =B;
(ß) for each r, (Prr, pr) is a polar net tyr;
(y) the origin of ty° is Y, and for r>0 the origin of $r is A;
(ô) FPrt\ (r, t) E [O, 1 ] X ]0, 1 ] is continuous in the Hausdorff metric;
(e) if //, is the gauge-function of PTt relative to pt, then \pJ,(pt+<r)~l

—i¿i(pt-\-a')~1\ <ô whenever r<ô diam. B, iG]0, l], and ¡rE^ (the unit sphere
ofE).

Proof. It suffices to consider only the case in which F is nonempty. Let
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Cß, Gß, Hß, and Vß be as in the proof of (4.1). Let PH=Pli=B and, for
¿Ssl, P12~i = Cl G i and P^"* = Cl F¿. Then from the proof of (4.1) we see

(a) P°2-^ and Px2~» are both star-shaped from Gß and P^CCP^-";
(b) P°2-<*+1>CCInt F>2-»= Vß and P^-«^» C C Int Pl2-e = Gß.
(c) flP12-a=A and nP°2-a = F.
Having defined the sets Prt for certain values of r and t, we now proceed

to fill in the gaps. And as a start in defining pr, we first pick p2~ß
Eint Pn-<-e+i\ Now suppose ¿=X2-»+(l-X)2-("+1), with XG[0, l]. Then
let P1i=XP12-" + (l-X)P12-("+1> and pt=\p2-n+(l-\)p2-<»+». From (a)
and (b) above and the relevant definitions it follows that the triple involved is
in t(2~(n+1)e, 2_(n+1,e, diam. B) (and, in particular, is an admissible triple) so
it makes sense to define

PH = [Int pi2-<"+» P°2-<"+1>, P°2-", X].

By (3.2), P°t is star-shaped from Int P^-^OInt PH/4-, so it makes sense
to define

PH = [Int PH/4-, PH, PH, 1 - r]

for each rE[0, l[. Now clearly PV is continuous, and from (3.4) it follows
that P°t is continuous. But

(Int PH/4-, PH, PH) G 5E(2-<"+3>í, 2-<»+2>e, diam. B),

so from (3.6) it follows that PPr¿¡ (r, t) is continuous. Thus (5) holds, (a)
follows at once from the fact that P°l = P*1 =B, so it remains to establish
(ß), (y), and («).

To prove (e), let us suppose that r, t, and a are as indicated and suppose
for the sake of notational simplicity that pt=<f>. Let m=f/t(pt+<r)~1 and
n=p^(pt+tj)~1. Then m is characterized by the fact that muEFPH and n
by the fact that naEFPH. But P>f- [int PH/4, PH, P°t, i-r] and pi
GInt PH/4, so we have (\—r)noEPrt and hence (l—r)n^m^n. Thus
n — m^n — (l—r)n = rn<5 and (e) has been proved.

To. establish (7) it suffices to show that np°2-a = Y (which was done in
(c) above) and that nPr2~a=A when r>0. So suppose gGnPr2-a. Then
there are points WßEFPl2~ß and yBEFP"2-fi such that rwa+(l— r)ya—>q.
Thus (utilizing the definitions of the sets Po2~0 and Pl2~ß, the compactness
of [O, l], and the weak compactness of Y) there are points xßEGß, UßEGß,
VßEHß, and numbers XßE [O, l] such that X„ converges (say to XG [0, l]), va
converges weakly (say to vE Y), and

rxa + (1 - r)\aua + (1 - r)(l - \a)va —> q.

But then if Zß = rXß+(l—r)\ßUß, za converges weakly to q — (1— r)(i— \)v.
However, Zß = [r+(l — r)\ß]gß with gßEGß, and since r+(1 — r)\a does not —>0,
the weak convergence of za contradicts the fact that flGa=A.
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We wish finally to verify (i)-(v) of §2 in order to establish (ß). Since Prt
is star-shaped from PH/i (by 3.2) and ptdlnt Pl//4, (i) and (ii) are satisfied.
Condition (iii) follows from (3.3) and the relevant definitions, and (v) is
obvious. It remains to establish (iv) and we do this only for Pr with r>0,
since the case of P° is similar. LetxG-B and/ = inf {s|xGPrs}. Since fLPrr=A,
t>0, and from the continuity of Prr it follows that xCPrt. We wish to show
that xEFPH. Let gGInt PH/8 and notice that for s>t/2, Prs is star-shaped
from PH/8. Let p = Ray [q,x [C\FPrt and let K be the set of all points v such
that xGK v[ for some uGPH/8. If x&FPrt, then £GInt K and by con-
tinuity of FP't it follows that FPrs intersects K (and hence xCPrs) for all 5
sufficiently close to I. Since this contradicts the definition of I, we must have
xEFP't. Thus \jFPrT = P'l=B and the proof of (4.3) is complete.

For convenient reference, we restate the Isotopy Theorem as
(4.4) Suppose Y is a weakly compact subset of the nonreflexive normed

linear space E and B is a bounded convex body in E such that FCC-B. Then
there is an h-isotopy r¡ of E almost-onto E such that (i) if t = 1 or xGP~Int B,
■qtx = x; (ii) r)aE = E~Y; (iii) lim¡_0 Vov71 = rli and lim(<0 VtVo1=ni\E~Y,
the convergence being uniform on each compact set.

Proof. Let the polar nets ^5r, O^r^l, be as in (4.3), and for each r let Tr
be the transformation of P>-~riPrr onto ]0, l]xS which is associated with
$r by means of equation (1) in §12. By (2.2), each Tr is a homeomorphism.
For each (x, r)G-BX[0, l], let i)(x, r) = r~1rix, and for (x, r)E(E~B)
X [0, l], let r](x, r)=x. By an argument analogous to that of (2.2), using
(ß) and (ô) of (4.3), it follows that in* is a homeomorphism, and hence (using
(a) and (7) of (4.3)) r¡ is an A-isotopy of E almost-onto E such that (i) and
(ii) are satisfied. To establish (iii), note first that 7]0r]r1 = Tö1Tt and ■rjtVo1
_ j--iy0j sowe must show that if xa—>yG Fand ra—»0, then ||T^r^Xa — xa\\
—*0, and that if also x/sGP~F, then ||j'~1J'oXa— xa||—>0. We discuss only the
first case, since the second is similar. In this situation, there are numbers
tßC]0, 1 ] and points o^GS such that

ra —1
Xß = ptß + plß(ptß + o-ß)   o-ß

and

To Trßxß = ptß + ptß(ptß + <rß)   <rß,

so the desired conclusion follows from (e) of (4.3).

Chapter II. Topological properties of nonreflexive and
INFINITE-DIMENSIONAL ¿"-SPACES

III. Simple properties. Most of the constructions in our proofs will be
carried out in nonreflexive spaces. The following lemma makes it possible to
apply the results to Hubert space.

(1.1) Suppose M is a measure-space and l^p<*>. For each fCLlM, let
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Tf=\f\1/p sgn /. Then T is a homeomorphism of LlM onto LPM which maps
the unit cell of LlM onto that of LPM. If some point z of M lias positive finite
measure, then \f\fEL1M andfz — 0} is a hyperplane in LXM which maps under
T onto a hyperplane in LPM. If M contains an infinite sequence Xa of pairwise
disjoint sets, each of positive finite measure, then L1M is nonreflexive.

Proof. That J" is a homeomorphism of LXM onto LPM was proved by
Mazur [22] for M= ]0, 1 [, and the same proof is valid for arbitrary M. The
statements about unit cells and hyperplanes are obvious. To see that LlM
is nonreflexive let fß = (mß)~lTß, where mß is the measure and Tß the char-
acteristic function of Xß. Then ||/^||=1. Let Cß = Cl conv {/„| w èj3}. Then
C„ is a decreasing sequence of bounded closed convex sets whose intersection
is empty, so by (14.2), LlM is nonreflexive.

By infinite-dimensional Lp-space we shall mean a space LPM where l^p
< °° and M contains a sequence Xa as in (1.1). If M = (X, m), where X has
cardinality N and m is the counting measure on X, then LPM will be denoted
by /pltf and will be called an infinite-dimensional ¡"-space iff ^ is infinite.
We write LM for LlM and / « for PN.

From (14.1) and (1.1) we obtain
(1.2) Suppose E is a nonreflexive normed linear space {infinite-dimensional

Lp-space), B is a bounded convex body in E, and Y is a weakly compact (com-
pact) set such that YE EB. Then there is a homeomorphism of E onto E~ Y
which is the identity on E~Int B.

(1.3) Suppose E is either a nonreflexive normed linear space or an infinite-
dimensional Lp-space and U is the unit cell of E. Then there is a homeomorphism
h of E~-Tnt U onto U which is the identity on FU.

Proof. For each xGE~Int U, let/iX = ||x||_2x. Then/i is a homeomorphism
of E~Int U onto i/'~{</)} which is the identity on FU. Thus h=f%fi is the
desired homeomorphism, with/2 as in (1.2) for F= {</>}.

Kakutani [13] showed that (in Hubert space) FU is a deformation-re-
tract of U. From (1.3) we see that there is an almost-Ä-isotopy 77 of U into
U such that 770 is the identity map on U and 771 is a retraction of U onto FU.

(1.4) With Eand U as in (1.3), there is a homeomorphism of period two with-
out fixed points of E onto itself which takes U onto itself.

Proof. Let h be as in (1.3). For xGE~£7, let Tx=—x; for xEU, let
Tx = h( — hrlx). Then Pis the desired homeomorphism.

(1.5) If E is a nonreflexive normed linear space, then every hyperplane in E
is homeomorphic with the unit sphere S of E.

Proof. Let II be a hyperplane in E. We assume without loss of generality
that 4>EH, whence H= [/; 0] = {x|/(x) =0} for some not-identically-zero
continuous linear functional / on E. From the characterization of reflexivity
in terms of weak compactness it follows readily that H must be nonreflexive,
and hence by (1.3) that there is a homeomorphism h of í¡T~Int U onto H(~\ U
which is the identity on HC\S. Now let yEUf^[f;<0] and let P be the
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projection from y of KC\ U onto S(~\ [/; ^0]. P is a homeomorphism which is
the identity on H(~\S. Now for xCH^U let Tx = —Phx; and Tx=Px for
x£HT\U. Then T is the desired homeomorphism.

(1.6) Each infinite-dimensional Lp-space is homeomorphic with its unit
sphere.

Proof. Let LpM be the space under consideration. By using (1.1) and a
known property of complete inner-product spaces we can find an infinite
cardinal ^ and homeomorphisms ht such that h\LvM = L2M, h2L2AI = Pi$,
W2fc$ =/'£$, and each hi preserves unit spheres. But PtA is homeomorphic
with each of its hyperplanes, so the proof is completed by (1.5).

(1.7) Suppose E is either a nonreflexive normed linear space or an infinite-
dimensional lp-space, U is the unit cell and Q a closed half-space of E. Then
there is a homeomorphism of Q onto U which takes FQ onto FU.

Proof. We assume without loss of generality that cp is in the bounding
hyperplane FQ of Q. We then have, for some continuous linear functional
/ on E, FQ= [f; 0] and Q = [f; ^0]. Obviously there is a homeomorphism
gi of Q onto Qi = [/; ^0]Pi [f; < 1 ] which is the identity on FQ. Pick y G [f; 1 ]
and let h be the homeomorphism of FQ onto FU whose existence is guaranteed
by (1.5) and (1.6). For each xCFQ let g2 map the segment ]y, x] linearly onto
the segment ]</>, hx]. Then g2 is a homeomorphism of Qi onto Z7~{(p} which
takes FQ onto FU. And by (1.2) there is a homeomorphism g3 of i/'~{<p}
onto U which is the identity on FU. Thus g3g2gi is the desired homeomorphism
of Q onto U.

112. An embedding property. This section establishes for certain sets an
embedding property which is used in several proofs. Suppose B is a metric
space and FCP. We shall say that F is conveniently situated in B iff there is
an open set CO F and a continuous map D of FUX [0, l] into Cl U such
that UC.NeYfor some e< °° and

(a) D maps FUX]0, l] topologically onto Cl (U)~Y;
(ß) for each uEFU, D(u, 1) = w and D(u, 0) G F;
(7) if D(ua, ta)-^y(E F, then ¿a—>0 and D(ua, ra)—*y whenever ra-*0.

If B is a subset of a normed linear space we shall say that F is very con-
veniently situated in B iff the neighborhood U and function D can be so
chosen that J?({«} X [0, l]) is a line-segment for each uCU.

(112.1) Suppose E is a strictly convexifiable normed linear space and K is
a boundedly compact convex subset of E. Then K is very conveniently situated in
E.

Proof. We may as well suppose that E is actually strictly convex. By
(A2.1) and (A2.2) (see Appendix), K has the nearness property in E and K-
is a retraction of E onto K. For some e>0 let U=NtK and for each u£FU
and ¿G [0, l] take D(u, t) =tu-\-(l —t)Ku. Clearly D is continuous, (ß) holds,
and 2?({w}x[0, l]) is a line-segment for each uCFU, so it remains only to
verify (a) and (7).
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If D(ua, ta) =taUa + (l -ta)Kua-+yEK, then, by (A2.3), Kua = KD(ua, ta)
—»y. Thus if ta does not —>0, ua must have a subsequence which converges to y,
which is clearly impossible. Also, forra—>0 we have lim D(ua, ra) = lim .K"wa=y,
so (7) has been established.

From (A2.4) (iii) it follows that D maps FUX]0, l] biuniquely onto
Cl U~Y. Now if D(ua, ta)-^D(u, t), we have Kua-+Ku and hence taua
— taKu^>tu — tKu. Now suppose ¿>0 and consider an arbitrary convergent
subsequence of ta, tna-^s. If 5 = 0 we can conclude that u=K„, which is im-
possible since uEK. And s>0 leads to una—Hs~1u-\-(s— t)s~lKu. If S5¿1 the
limit point is interior to U, which is impossible since FU is closed. Thus ta—>t;
from this it follows readily that «„->m. Hence (a) holds and the proof of (2.2)
is complete.

We wish next to show that every finite polytope in a normed linear space
must be very conveniently situated. For this we need (2.2) below.

(2.2) Suppose E is a normed linear space and Bi is a closed linear sub space
of E which has a closed complementary subspace B2. Then if a set Y is con-
veniently or very conveniently situated in Bït it is similarly situated in E.

Proof. By hypothesis, each point xGE has a unique expression in the
form xi+x2, with x,G5>, and x,|xGE is a continuous linear transformation
of E onto Bi. Now let F be either conveniently or very conveniently situated
in Bi and let U and D be the corresponding neighborhood and transformation.
Let C denote the unit cell of B2. Then F= Z7+Int C is open in E and FV
= (FU+C)VJ(U+FC). For tE[0, l] and pEU, define Gt(p) as follows: if
PE Y, Gt(p) =p for all t; if pEY, and thus p=D(u, s) for some uEFU and
sG]0, 1], G,(p)=D(u, ts). For each vEFV and tE[0, l], let B(v, t)=Gt(v1)
+tv2. Then D is an extension of D. It is obvious that D maps FVX [0, 1 ] into
Cl V, that (for each vEFV) D(v, l)=v, D(v, 0)EY, and D({v}x[0, l])
is a line segment whenever .D({î>i} X [0, l]) is. Continuity of D follows from
that of v(\ v and Gt(vi) | (vu t), which is not difficult to establish. By a straight-
forward argument using the fact that D satisfies (7) it can be seen that D
does also. Finally, it is tedious but not difficult to show that if xGCl F~F,
then

forxiGF, 5-1(x) = (xi+||x2||-1x2, ||x2||),
for XiGF (and hence X\ = D(u, s) for a unique uEFU and sG]0, l]),

D-\x) = (GIK„-4{>i) + ||x2||-1x2, ||x2||), if ||x2|| è s,

D-*(x) = (u + s-^2, s) if ||x2|| ^ s.

From these equations it follows that D satisfies (a) also, and the proof of
(2.2) is complete.

The proof of (2.3) below was suggested by Dr. M. L. Curtis. It is simpler
than the author's original proof.

(2.3) In a normed linear space, every finite polytope is very conveniently
situated.
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Proof. Let P be the poly tope in question, E the containing space, and L
the linear hull of P. Then L is finite-dimensional and hence has a closed
complementary subspace, so by (2.2) our problem is reduced to the case in
which £ is a Euclidean »-space for some n. For a (simplicial) complex 5 in E",
| S\ will denote the union of all simplexes in K. Now for our polytope PC-E"
there are complexes Cand K such that CCK and P= ] C| CInt \K\. Let C'
and K' be the barycentric derived complexes of C and K, St C' the star of C
in K' and U= \ St C'\. Then U is open and from results of [21, p. 292] it fol-
lows that there is a continuous map p of FU onto P| C'| = FP such that the
set Cl (£/)~Int P is simply covered by the family of segments { [u, pu]\u
EFU}. Now f or each u G U and/ G [O, l] let D(u, t) =tu + (l -t)pu. It is easy
to verify that D satisfies (a), (ß), and (7) and hence P is very conveniently
situated in E.

The property of conveniently situated sets which makes them useful for
our purposes is expressed in the next result.

(2.4) Suppose B is a metric space and Y is conveniently situated in B (via an
open set U and transformation D). Let Z/ = ((P~F)x]0, 2])U(Fx{0, 2})
and L = {(B~Y)X ]0, 2])W(Fx{l, 2}). Then there is a homeomorphism of
V onto L which is the identity on ((P>~Z7)X]0, 2[)U(5x{2¡) and takes
(y, 0) onto (y, 1) for each y CY.

Proof. For t G [0, l] and r G [0, 2] let

a(t, r) =

2t - 1 1
1/2

1/
and    b(l, r) = ■   - 2t + 3r/2 + 1 [    if

. 1 + r/2
r g At - 2 1

At - 2 ^ r ^ 2/
21 ^ r

Then the transformation m: (t, r)—*(a(t, r), b(t, r)) is a homeomorphism of
[0, 1]X[0, 2] onto itself which is the identity on ({l}x[0, 2])U([0, l]
X {2 j[), and takes conv {(1, 2), (1, 0), (1/2, 0)}, conv {(1,2), (1/2, 0), (0, 0)},
and conv {(1, 2), (0, 0), (0, 1)} linearly onto conv {(1, 2), (1, 0), (0, 0) j,
conv {(1, 2), (0, 0), (0, 1)}, and conv {(1, 2), (0, 1), (0, 2)} respectively.

Now let the transformation G be the identity on (B~U)X [0, 2], G(y, 0)
— (y, 1) for each yGF and on (Cl U~Y)X]0, 2] define G by the equation
G(D(u, t), r) = (D(u, a(t, r)), b(t, r)). We have defined G at least once every-
where on L', and different definitions agree where both apply. It is clear
that g maps L' biuniquely onto L and we wish to show that both G and G-1
are continuous. Except at points of Fx{o} and FX {1} respectively, this
follows readily from (i) above and the fact that D is continuous.

To establish continuity of G at (y, 0) for y£Y we must show that if
D(ua, ta)^>y and ra—>0, then D(ua, a(ta, ra))—*y and b(ta, ra)—»1. Now from
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(7) above it follows that ta—+0. But then from the definition of m it follows
that m(ta, ra)—»(0, 1), and by applying (7) again we see that, since a(ta, ra)
—»0, D(ua, a(ta, ra))—>y and thus G is continuous.

Suppose, on the other hand, that D(ua, a(ta, r„))—>yG Fand b(ta, r„)—*1.
We see by (7) that a(ta, ra)—>0 and thence from the definition of a and b
that /„—>0 and ra—>0. Then (using (7) again) we see that D(ua, ta)—*y and
thus G_1 is continuous.

113. Further results.
(3.1) Suppose Y is a subset of the normed linear space E and at least one of

the conditions below is satisfied. Then there is an h-isotopy r\ of E onto E such
that 770 is the identity map on E and rji projects Y linearly into a hyperplane.

(i) F is convex and weakly compact, E cannot be covered by countably many
weakly compact sets;

(ii)   F is weakly compact, E is nonreflexive and complete;
(iii) F is convex and compact, E cannot be covered by countably many com-

pact sets;
(iv)   F is compact, E is infinite-dimensional and complete.
Proof. Note first that if (ii) holds then every weakly compact set is

nowhere dense in E. (For otherwise the unit cell would be weakly compact
and the space therefore reflexive.) And E, being complete, cannot be covered
by countably many nowhere dense sets. Furthermore, by a theorem of Krein
and Smulian [19, p. 581 ], Cl conv F is weakly compact, so E and Cl conv F
satisfy condition (i). Similarly, if (iv) holds then E cannot be covered by
countably many compact sets and by a theorem of Mazur [23], Cl conv F
is compact. In this case, then, E and Cl conv F satisfy condition (iii). In
the rest of this proof we consider only cases (i) and (ii), since the others are
similar but somewhat simpler.

Let AT = C1 conv F (so that, in case (i), X=Y). Then A —X is weakly
compact and hence there is a point pCE~{<p\ such that Ray [<p,p[(~}(X — X)
= {<p}. (Otherwise Uñ,in(X — X) —E, which contradicts (i).) Since X — X is
convex and symmetric about <j>, this implies that no translate of the line
{tp\ — co <t< 00 } can intersect X — X more than once, and hence no trans-
late intersects X more than once. Thus (by translating the space if necessary)
we can obtain a hyperplane H— [/; O] complementary to this line and a
multiple q of p such that gG [/; l], A"C [/; >2], and X is mapped biuniquely
into H by the projection P which takes h+tq onto h for each hCH and
¿G ] — °°, °° [. P is linear and is continuous in both weak and strong topologies.
Since X is weakly compact, P| AT is actually a weak homeomorphism. We
wish next to show that on PX, P~l is strongly continuous.

Consider an arbitrary sequence ha in PX, with ha-^ho and P~lhß = hß
+tßq. We wish to show that ¿a—>/0- If it does not, then by the boundedness and
weak compactness of X there must be a subsequence not, a number t^to,
and a point h+sq of X such that /„«—>/ and hna-\-tnaa—»(weakly) h+sq. But
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f(hßJrtßq)=tß and f(h+sq)=s, so from the weak convergence we have
tna—*s and thus s = t and hna—»(weakly) h. Since also Aa—»Ao, we then have
h = ho and thus ha+tq and h0-\-toq are both in X. But t^to and P is single-
valued, so this is a contradiction showing that P\ X is a homeomorphism.

Now PA is closed and convex, so by a theorem of Dugundji [7, p. 358]
there is a retraction p oí H onto PA. For each h EH let fh be the (unique)
number s such that ph+sqEX. Then/ maps H continuously into ]2, Af [ for
some M< ». Now for sG [0, l] and ¿G-ff, let ?;a(Ä+/g) =Â+i(l -s+sfh)~lq
for 2>0 and = &-H<Z for i^O. Then 77 is the desired isotopy.

(3.2) Suppose E is an infinite-dimensional normed linear space, X a com-
pact subset of E, and M a compact metric space. Then every continuous map
of M into E~A is homotopic to zero in £~A. If E is complete, then every
homeomorphism of M into E~A is almost-h-isotopic to zero in E~X.

Proof. If E is noncomplete, then it is nonreflexive, and by (1.2) E~X is
homeomorphic with E, so the assertion of (3.2) is obvious. Now suppose E is
complete (and infinite-dimensional) and h is a homeomorphism of M into E.
As in the proof of (3.1), there is a point pEE~{<p) such that each translate
of the line {tp\ — »</<» } intersects XVJhM at most once. Let [f; c] be
an arbitrary hyperplane in E such that XE[f; <c] and fp¿¿0. Then for a
sufficiently large K>0, the map t?(m, /) =hu+tK(fp)p\ uEM, tE [0, l] is an
Ä-isotopy of M into E~X such that t]\ME\f; >c+2]. But then as in the
proof of (3.1) it follows that 771 is Ä-isotopic in E~A to a homeomorphism
772 of M into [f; c + l], and it is clear that 772 is almost-fe-isotopic to zero in
[f; ^ c+1 ] CE~A. Thus every homeomorphism of M into E~X is almost-Ä-
isotopic to zero in E~X. The statement (for E complete) about homotopies
follows easily from this.

(3.3) Suppose E is a normed linear space which is either nonreflexive or an
infinite-dimensional P-space, Q= [/; >0] is an open half-space in E with
bounding hyperplane H= [/; O], F is a compact subset of E, and at least one of
the following is true: (i) Y is conveniently situated in some hyperplane in E;
(ii) F is a finite polytope; (iii) F is convex, E is complete and strictly convexi-
fiable. Then if YEQ, there is a set Y'EH and homeomorphism of Q onto Q\J Y'
which takes Y onto Y'. If Y EH and X is a relatively open subset of Y, then there
are homeomorphisms hi(Q\JX) = Q and hz(Q\J Y) = Q such that h{ is the identity
on [/; ^2] and /z2 simply translates Y into [f; l].

Proof. If YEQ, it is not difficult to describe (using (3.1)) in case (iii) a
homeomorphism h of Q onto Q such that hY is contained in a translate of
Hand still satisfies either (i), (ii), or (iii). Thus the case YEQ is reduced to
the case YEH. Note also that if A is a relatively open subset of F, then
X~Y is compact and hence (3.3)'s assertion about X follows from (1.2)
and (3.3)'s assertion about F. Furthermore, we see from (2.1) and (2.3)
that cases (ii) and (iii) are included in case (i), so it remains only to show
that if F is conveniently situated in H, then there is a homeomorphism of
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Q\J Y onto Q which translates F into Q. This amounts to finding a homeo-
morphism q of <.ffX]0, oo [)W(FX {0}} onto Hx]0, « [ such that g(y, 0)
= (y, 1) for each yG F. And because of (1.1) we can assume that H is a non-
reflexive normed linear space.

Since F is conveniently situated in H, there are a bounded open set UQH
and a mapping D such that (a) — (y) of §2 are satisfied. Let B be a bounded
convex body in iïsuch that Cl £/CP. Then if pQB or ¿G[0, 2], let g(p, i)
= (p,t). It remains to define a homeomorphism of Zi = (SX]0, 2])W(FX {o})
onto Z4 = PX]0, 2] which is the identity on 5=(PPX]0, l])U(PXJ2J).
LetZ2 = ((P~F)X]0,2])U<Fx{0})andZ3=((P~F)x]0,2])W<FX|l}).
From (2.4) it follows that there is a homeomorphism h2 of Z2 onto Z3 which is
the identity on 5 and takes (y, 0) into (y, 1) for each yCY. Now if n is as
in the Isotopy Theorem (II.1) and f as in (11.2), then f* is a homeomorphism
of 5X[0, 1] onto ((P~F)X]0, l])U(SX{o}) which is the identity on
(FBX [0, l])U(PX {0}). But then in an obvious way f* can be used to de-
fine a homeomorphism hi of Zi onto Z2 which is the identity on SU( FX {0} )
and f *_1 can be used to define a homeomorphism &3 of Z3 onto Z4 which is the
identity on 5U(5X {l})- Then g\B = h3h2hi\B completes the desired defini-
tion of g and the proof of (3.3).

We saw in (II1.1) that if E is nonreflexive or an infinite-dimensional
Lp-space, then an arbitrary compact set can be taken away from E without
changing its topological structure. In the theorem just proved, Q is of course
homeomorphic with E, so (3.3) shows, in a sense, that certain sets can be
added to E without changing its topological structure. Applied when F
contains a single point, (3.3) will be fundamental in demonstrating that
Hubert space ¡Q is homeomorphic with its unit cell. It will also be used in
discussing periodic homeomorphisms of §.

If A is a compact subset of ¡Q, then $£~X is homeomorphic with § and
hence is contractible. However, Blankinship [3] proved contractibility of
¡Q~X assuming merely that Cl X is compact. By an easy application of
(3.3) (iii) and Mazur's theorem [23] on compactness of a convex hull we
have

(3.4) Suppose E is a Banach space which is either nonreflexive or an infinite-
dimensional P-space, XC.E, p£LE~ Cl conv X, and Cl (X) is compact.
Then the identity map on E~X is almost-h-isotopic (in E~X) to the map taking
all points of P~A into p.

Chapter III. Convex bodies and periodic homeomorphisms
IN HILBERT SPACE

III1. Convex bodies. In (III.6) we saw that Hubert space § is homeo-
morphic with its unit sphere. We show here that it is also homeomorphic
with its unit cell, and in fact that all closed convex bodies in ^ are mutually
homeomorphic. In (III.7) it was proved that every closed half-space in § is
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homeomorphic with the unit cell. And of course every open half-space in § is
homeomorphic with § itself, so the next step will be to show that open half-
spaces and closed half-spaces are topologically the same.

We work first with the space L]0, » [ of Lebesgue integrable functions
on ]0, » [. The functions mentioned in (1.1) and (1.2) below are considered
as points of this space, so LX (for AC ]0, » [) means the subspace of L]0, » [
consisting of all functions in L]0, » [ which vanish almost everywhere on
]0, » [~A.

(1.1) There is an h-isotopy rj of L]0, » [ almost-onto L]0, » [ such that 771
is the identity map on L]0, » [ and r¡0L]0, » [ = L]l, » [.

Proof. For each ¿G[0, l] and/G£]0, » [, let t]tf=ft, where ft is defined
as follows: for xG]0, 1 [, ftx = tf(tx); for xG[L » [, ftX=f(x-\-t — 1). It is
clear that each 77 ( has the desired domain and range and that 771 is the identity.
We must show that 77* is a homeomorphism.

Note first that for tE [0, l] and {/, £} EL]0, » [,
i% 1 /• CO

j    11 f(tx) - £(tx) I dx +  I     I f(x + t - 1) - £(x + t - 1) I dx
J 0 J1

=   f'|/-f|+  f"l/-i|.
«/ 0 J t

whence

a) „/i-a-llz-fli.
Also,

ri p »I tf(tx) - sf(sx) I dx +  I     I f(x + t - 1) - /(* + j - 1) I dx.

Now if / is a continuous function vanishing everywhere on ]a, » [ for
some a < », then from the uniform continuity of / it follows readily that
limÍH., ||/í—/«|| =0. And for each ££L]0, » [ and e>0 there is such a continu-
ous/for which II5-/II <€. (See, for example, [24, p. 229].) But then from (1)
and the triangle inequality we see that ||£j — £«|| <2í + ||/¡—/«||, and hence

(2) lim ||f( - e.|| = 0.

We have ||/,-£«|| á||/-€||+||f(-€.|| and \lf-^\\ft-^\+\\^-^\\, from
which it follows by use of (2) that 77* is a homeomorphism.

(1.2) L]0, » [x[0, l] is homeomorphic with both L]0, » [x]0, l] and
L]0, »[X]0, 1[.

Proof. Let A=L]0, »[x[0, l], B = (L]0, »[x]0, l])W(L]l, »[
X{0}>, and C=(L]0, l[x]0, l])W{(0, 4>)}. Then 77* (as in (1.1)) is a
homeomorphism of A onto B. The map m which takes ((t,f), g)ECXL]l, » [
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onto (t, f+g)CB is a homeomorphism of C onto B. By (113.3), there is a
homeomorphism of Conto L]0, l[x]0, l] which is the identity on L]0, l[
X {l}, and this can be used to define a homeomorphism h of CXL[i, oo [
onto L]0, l[x]0, l]Xi]l, <» [, which is homeomorphic with L]0, °o[x]0,
l] under the map m. Thus mhm~1r¡* is a homeomorphism of L]0, °° [X [0, l]
onto L]0, co [x]0, l] which is the identity on M = L]0, °° [X {l}, and ex-
tending by reflection across M yields a homeomorphism of L]0, co [x [0, 2]
onto L]0, co [x]0, 2[, completing the proof of (1.2.)

Now since every hyperplane in § is homeomorphic with §, as (by II 1.1))
is L]0, co [, by combining (III.6), (III.7), and (1.2) we obtain

(1.3) Hubert space § is homeomorphic with its unit sphere, tts unit cell,
£X]0, 1], and §X[0, l].

To show that all closed convex bodies in § are mutually homeomorphic
we employ the characteristic cone introduced by Steinitz and employed also
by Stoker [29]. Let K be a closed convex set in a normed linear space and
u a point of K. Then Ku= {u}^J{p\ Ray [u,p[CK}. It is readily verified
that Ku is a closed convex cone with vertex u, and that Kv = Ku-3r(v — u)
whenever v£K- For any u£K, Ku is called a characteristic cone of K.

(1.4) Suppose E is a normed linear space and K is a closed convex body in
E whose characteristic cone is not a linear manifold. Then there is a homeo-
morphism of K onto a closed half-space Q which takes FK onto FQ.

Proof. 5 and C will denote respectively the unit sphere and the unit cell
of E. We assume without loss of generality that <pGInt K. Then since K+
is not a linear manifold, there is a point yCS such that Ray [<p,y]CInt K
but —myCFK for some m>0. By the Mazur support theorem [15, (9.1)]
there is a continuous linear functional / with ||/||=1 such that f( — my)
= mixEKfx. Letfr=[f;0], C' = conv <(CfW)U{y, -y}), S' = FC'', and let

ju be the gauge function of K relative to <p. For each s G S' and /^0 such that
ts£K let T(ts) =(í-\-ps)t(í-\-t)~1s. Then T is a homeomorphism of K onto
Int C'KJX, where X = S'~(K4,f^S'). X is relatively open in S' and (since
[f;f( — my)] bounds K) XZ) \f; <0\P\S'. Now notice that T maps the closed
half-space [f; ^f(-my)] onto P^Int C'U(5T\[/; <0]). Thus if we can
map TK topologically onto B with Int K mapping onto Int C, the proof of
(1.4) will be complete.

Consider an arbitrary xCHr\S = HC\S'. There is a number txC [0, l[
such that ty + (l—t)x is in X for 0^t<tx but not for t>tx. And always
[—y, x[CA. Now let G map [y, txy + (l— tx)x] linearly onto [y, x], [txy
+ (1— tx)x, x] linearly onto [x, — tzy + (i — tx)x], and [x, — y] linearly onto
[ — txy-\-(\— tx)x, —y]. Since tx is bounded from 1, G is a homeomorphism of
TKC~\S' onto PP\S', and thus the desired homeomorphism can be obtained
by extending radially from <p.

(1.5) Suppose E is a normed linear space and K is a closed convex body in E
with <pGInt K. Suppose the characteristic cone Kj, of K is a linear subspace M
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which has a closed complementary subspace M'. Let C' be the unit cell of M'. Then
there is a homeomorphism of K onto MXX' which takes FK onto MX FC'.

Proof. We have MEK. Let B = MT\K. Then B is a closed convex body
whose gauge function (relative to <p) vanishes only at 4> and we have K — M
+B, FK = M+FB (with FB being taken relative to M'). It is easy to define
a homeomorphism analogous to T in the proof of (1.4) which maps B and
FB onto C and FC' respectively, and this completes the proof.

Applying (1.4) and (1.5) we obtain (1.6) below, which was proved for
E3 by Stoker [29].

(1.6) Suppose K is a closed convex body in Euclidean n-space E". If the
characteristic cone of K is not a linear manifold, then K is homeomorphic with
En~1X [0, 1 [ and FK with En~l. If the characteristic cone is an m-dimensional
linear manifold, then K is homeomorphic with Emx[0, \\n~m and FK with
EmXSn-m-K

And applying (1.3)—(1.5) to l£>, we have
(1.7) Suppose K is a closed convex body in §. Then K is homeomorphic

with §. If K's characteristic cone is not a linear manifold, or is a linear manifold
of infinite deficiency in ÍQ, then FK is also homeomorphic with ¡£>. If the char-
acteristic cone is a linear manifold of deficiency n, then FK is homeomorphic
with &XSn~\

It should be noticed that for m<n, ¡£>XSm is not homeomorphic with
§ XSn. For every map of 5" into ¿p XSm is homotopic to zero but the natural
map of Sn into fQXS" is not homotopic to zero.

Combining (1.6) and (1.7) with a result of Keller [14] quoted in §IV1,
we have a complete description of all topological possibilities for a closed con-
vex set KE& provided K either has an interior point, is compact, or is
finite-dimensional.

1112. Periodic homeomorphisms. We shall first state some facts concerning
periodic homeomorphisms in Euclidean w-space En, and then establish the
results on Hubert space stated in the introduction.

Let T be a homeomorphism of period & =5 2 on En and let F be its fixed-
point set. If n = 3, or Pis locally analytic and n=4, or k is a power of a prime,
then F is nonempty and is "homologically similar" to Em for some m^n.
(For proofs and more precise statements see [26].) It is not known in general
whether F must be homeomorphic with some Em nor whether (for w>4 and
k not a prime power) F must be nonempty.

For each n there is an e(n)>0 such that En does not admit a periodic
homeomorphism having each orbit of diameter <e(n). (This result, due to
Smith [27], is a strengthened form of a theorem of Newman.)

On E", every pointwise periodic homeomorphism is periodic [25].
We shall say that a transformation is of pure period n iff each non-fixed

point is of period n and there is at least one non-fixed point. A closed linear
subset L of H will be called an intermediate subspace iff both L and its or-
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thogonal complement are infinite-dimensional. If L\ and L2 are intermediate
subspaces of H, then there is a linear isometry of H onto itself which takes
L\ onto L2.

(2.1) For each n ^ 2, H admits a linear isometry T of pure period nfor which
<f> is the only fixed point.

Proof. Representing H as /2N0, let T(x°, x1, x2, • • • ) = (y°, y1, y2, • • • ),
where y2|3+iy2/S+1=exp (2Tri/n)(x2ß-{-ix2ß+1), or in other words,

yW = x2ß cos (2,r/w) _ xW+i sin (2r/n)    and

yiß+i = xw sin (2X/W) + x2»+i cos (2w/n).

(This transformation was suggested by the referee.) It is easy to verify that
T has the desired properties.

(2.2) For each n^2, ÍQ admits a homeomorphism of pure period n without
fixed points.

Proof. Let Abea homeomorphism of § onto ^>^-/{(b} and let S = h~1Th,
where T is as in (2.1). Then S is the desired homeomorphism.

(2.3) Suppose Y is compact and conveniently situated in a hyperplane in §
(or, in particular, that Y is a finite polytope in §), X is a relatively open subset
of Y, and n è 2. Then § admits a homeomorphism of pure period n whose fixed-
point set is Y, and also one of pure period n whose fixed-point set is homeo-
morphic with X.

Proof. We may suppose that for some continuous linear functional / on
§, FC[f; 1]. Let Q = [f; >0] and H= [/; 0]. By (II3.3) there is a set Y'EH
and a homeomorphism of Q onto Q^J Y' which takes F onto Y'. And if X'
is the image of X under this homeomorphism, then QSJX' is homeomorphic
with Q~(Y~X), which by (112.1) is homeomorphic with Q. Since there is a
homeomorphism of § onto Q which leaves each point of Y fixed, our problem
is reduced to that of describing on Q\J Y' a homeomorphism of pure period n
with Y' as its set of fixed points.

By using 77* of (1.1) and the homeomorphism in (II1.1) between L]0, » [
and L2]0, » [ we can obtain a subset Y" of an intermediate subspace L\ of
H and a homeomorphism of QU Y' onto Q\J Y" which takes Y' onto Y".
Let L2 be the orthogonal complement in § of Zi and let L3 be the intersection
of Q with the orthogonal complement in § of Li+Z2. (L3 is merely a ray.)
Then C = Zi-f-Z2 + (Í3'~{</>})• By the Isotopy Theorem (as used in the proof
of (113.3) to obtain a homeomorphism of Zi onto Z2) {<£}U[Z,2-|-(.L3~{<?i})]
is homeomorphic with {<j>} W[L2~{0})-|-(Z,2~ {$})], so there is a homeo-
morphism of Q\JY" onto [Z,1+(Z,2~{<A}) + (Z3~{^)})]UF" which is the
identity on Y". Now let T be of pure period n on L2 with <p as its only fixed
point (see 2.1) and for each x = Xi+x2+x3GÇWF" (with XiELî) let Gx
= Xi+Px2-[-X3. Then G is of pure period n and has Y" as its set of fixed
points, so the proof of (2.3) is complete.

From  (2.3)  it follows that every open subset of a finite-dimensional
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Euclidean space can be topologically attained as the fixed-point set of a peri-
odic homeomorphism in Hubert space.

(2.4) Let € be an arbitrary positive number, n an arbitrary integer ^2.
Then § admits a homeomorphism of pure period n with fixed-point set \x\ ||x||
a«}- (Here every orbit is of diameter <2e, so Newman's theorem is not valid

for H.)
Proof. From (III.7) it follows that there is a homeomorphism of § onto

itself which takes {x| ||x|| —e\ onto a hyperplane [f; O] and {x| ||x|| Sïe} onto
[/; ^0]. Let L be an intermediate subspace of [/; 0] and pC[f; l]. By an
argument analogous to that of (2.3) there is a homeomorphism of § onto

A = (L+ {/í|'áO))U([/;>0]~(I+ {tp\t>0}))

which takes (/; ^0] onto the left-hand set, and then A admits a homeo-
morphism of pure period n with this as its fixed-point set, so the proof is
complete.

A slight elaboration of the same argument proves
(2.5) Let f be a not-identically-zero continuous linear functional on ÍQ, G

an open subset of ] — oo, oo [, r the set of all components of G, and p a function
on r to the set of integers ^ 2. Then § admits a homeomorphism with fixed-point
setf~l(\— oo, co [~G) which for each CCX is of pure period pC on f~lC.

Chapter IV. Additional results and problems
1. Compact convex sets. Some of our theorems on closed convex bodies

are analogous to the following results of Keller [14] on compact convex sets:
Let $ be the class of compact convex infinite-dimensional subsets of Hubert
space. Then all sets in $ are topologically equivalent. The Hubert parallelo-
tope P (and hence every set in S) is homogeneous; that is, for each pair of
points x and y of P there is a homeomorphism hP = P such that hx — y.
We indicate here a proof of the following extension of Keller's first result.

(1.1) Let $' be the class of all sets K having the following property: For some
separable Banach space E having a basis, K is a compact convex subset of E
which is not contained in any hyperplane. Then all sets in $' are topologically
equivalent.

From (1.1) and Keller's second result it follows that every set in $' is
homogeneous.

The basic idea and most of the details of Keller's proof apply in proving
(1.1). However, certain modifications are necessary, and we proceed to de-
velop the necessary preliminary results.

If A is a convex set in a normed linear space and xGA, then x is called a
non-support point of X iff there is no hyperplane which bounds A and con-
tains x. Following Keller, X will be called elliptically convex provided the seg-
ment ]x, y [ consists entirely of non-support points of X whenever x and y are
distinct points of X.
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(1.2) Suppose X is a bounded convex subset of the strictly convexifiable
normed linear space E, and that X contains at least one non-support point.
Then X has an elliptically convex homeomorph in E.

Proof. We may assume that <p is a non-support point of X and that the
norm || || in E is strictly convex. Since X is bounded, we have X CNd <¡> for
some positive d. Now let g be a real-valued, continuous, concave, and strictly
monotone decreasing function on the interval [0, d], with g0>0 and tgt\t
strictly monotone increasing. (With 0<b<(2d)~1, 1— ¿>/|¿G[0, d] is such a
function.) Let Gx = (g||x||)x for each xCNa<f>.

Since tgt\t is strictly increasing, G defines a biunique transformation of
Na4> onto Ndgd<t>. Clearly G is continuous. We show next that G_1 is continu-
ous. Suppose y a—>yo, with yß = Gxß. We wish to show that xa—>Xq. And since
each point maps onto a multiple of itself, it suffices to show that ||x„||—>||x0)|.
But this follows at once from the fact that tgt\t, being strictly monotone,
defines a homeomorphism of [0, d[ onto [0, dgd[. We still must show that
F=GA is elliptically convex. Consider any two points u and » of J and an
arbitrary point zG]Gw, Gv[. Let a = g||w|| >0 and /3=g||^|| >0. Then there are
a point y G ]u, v[ and a number t G ]0, 1 [ such that y = tu-\-(\—t)v and z — my,
with m=aß/[ßt+a(l-t)]. We have

g\\y\\ = *(||i« + (i - 0»||) > g(t\\u\\ + (1 - oMI) £ ta + (1 - 0/3 ̂  «,
where the  first inequality is justified by the strict convexity of ||   J  and
strict monotoneity of g, the second by the concavity of g.

We now have myC_]4>> Gy[CGA. Since <p is clearly a non-support point
of Y = GX, so is my, since any hyperplane which bounded F and contained
my would also contain <f>, which is impossible. Hence F is elliptically convex
and the proof is complete.

(1.3) Suppose S is a separable Banach space which has a basis, K is a
convex subset of S, and <¡> is a non-support point of K. Then S has a basis
{ju ^2, • • • } such that for each i, [<p, yi](ZK.

Proof. Let {xi, x2, • • • } be an arbitrary basis for 5. By a theorem of
Krein, Milman, and Rutman [18], there is a sequence 8a of positive numbers
such that if \\yß — xß\\ <8ß then {yu y2, • • • } is a basis for S. Let Cß be the
star from <p over NSßXß. UK does not intersect Cß, it follows by a theorem of
Tukey [15, (9.1)] that there is a hyperplane H which separates K and Cß.
But then H34>, which contradicts the fact that <p is a non-support point of
K. Thus if yßCzK(~\Cß, {yi, y2, • ■ ■ } \s the desired basis.

Proof, of (1.1). Consider first a single set KC$t', and let E be the space
described in (1.1). From theorem (12.1) in [15] (which is an extension of
Keller's Theorem 3) it follows that K has a non-support point. A theorem of
Clarkson [6] (and also (A1.10)) asserts that every separable Banach space
is strictly convexifiable, so by (2.2) K has an elliptically convex homeo-
morph Ki in E such that <p is a non-support point of Ki. Then by (1.3) there
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is basis {yi, y2, • • • } for E such that [<¡>, y]EK.
Now given another set in $', K'EE', we define K[ and {y(, y{, ■ ■ • }

in an analogous fashion, and then Keller's proof (pp. 754-756) applies almost
without change to define a homeomorphism of Ki onto K{.

IV2. Some comments and questions. This section is devoted to a discus-
sion of what seem to the author to be some of the most important remaining
questions concerning the topology of linear spaces.

Perhaps the most basic question is the following: Are all infinite-dimen-
sional separable Banach spaces mutually homeomorphic? Very little is
known concerning this question, and it even appears to be unknown whether
the space of continuous real functions on the unit square is homeomorphic
with that on the unit interval. Mazur's result [22] on homeomorphy of
Z>-spaces has been extended by Kaczmarz [12] and M. H. Stone [30] to
wider classes of spaces. Borsuk [4] has proved that if W„ is the Banach space
of all real continuous functions on the «-cell, then WnXWn is isomorphic
(and hence homeomorphic) with Wn. The author [17] has proved that a
Banach space cannot be homeomorphic with a non-complete normed linear
space.

The more detailed results of this paper have been proved only for non-
reflexive and infinite-dimensional Lp-spaces. In order to extend their scope,
it would be of interest to know that every infinite-dimensional Banach space
admits a homeomorphism onto a space in this favored class, and if possible
a homeomorphism which takes the unit sphere of the first onto that of the
second.

Although much less fundamental, the following problem on the homeo-
morphy of linear spaces may be of interest. Let E be a smooth reflexive
Banach space. Then for each x£E there is an unique fxEE* such that \\fx\\
= ||x|| and/2:x = ||/I||||x(|. From the weak compactness of E and E* it follows
that the transformation T:x—>fx takes E onto E* and is continuous as a map
of E onto E% (E* in its weak topology.) Now if E is also strictly convex
then E* is smooth and T defines a biunique transformation of E onto E*,
T being continuous on E to EX¡ and P_1 being continuous on E* to Ew. Prob-
lem: Characterize intrinsically those spaces E for which T is a homeo-
morphism of E onto E* (or of Ew onto E*).

In view of (113.3) and (III2.3) it would be of interest to extend as far as
possible the class of subsets of § which are known to be conveniently situ-
ated, or to be homeomorphic with a conveniently situated subset of §.

It is desirable to remove the assumption of a basis in (IV1.1). One way
to do this would be to prove that every separable Banach space E has a
basis over the space liAo, in the following sense; there is a sequence of elements
xa of E such that if /„ is a sequence of real numbers having S|/a| < » and
2iaxa=<£, then tß = 4>. Keller's result and those of §1111 describe all topo-
logical possibilities for a closed convex subset of H which is either compact,
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finite-dimensional, or has an interior point. What can be said without this
last restriction? Are there still only countably many possibilities? Is every
infinite-dimensional closed convex set homogeneous? What stronger homo-
geneity properties are possessed by the Hubert parallelotope?

We have seen (III1.3) that if X is an w-cell, then XX¡Q is homeomorphic
with §. What other Peano continua have this property? A triod? An arbitrary
dendrite?

Suppose K is a compact subset of § and A is a homeomorphism of K into
§. Can h be extended to a homeomorphism of § onto §?

To conclude this section, we prove below a theorem on isotopies in §,
the proof due jointly to Prof. James Dugundji and the author. This theorem
stimulates the following question: Suppose ho and hi are homeomorphisms
of § onto ÍQ. Is there an isotopy 77 of § onto § such that 770 = Ao and 771 = Ai?

(2.1) If M is a metric space, then the homeomorphisms of M into § are all
mutually h-isotopic.

Proof. Let Li, L2, and L3 be linear subspaces of § such that L\ and E2
are intermediate subspaces, L3 is one-dimensional, and LiC\Lj= {<p} for i^j.
For xE&, let x=Xi+x2+x3 be the unique representation of x with x,£L,-.
Now let yELi~{<t>], Z0 = LU and Zi=L2+y. Let p be the identity map on
§. By (III1.1) there are A-isotopies f* of § into § such that fí=p and
Çi0H = Zi. Then with yp\ = fthi, it is easy to verify that yp* is an A-isotopy of M
into § such that \p\ = hi and yp\MEZi. With this in view, we need consider
henceforth only the case in which htMEZi-

Now in this case, let r¡(p, t) = (1 —t)hQp+thip for each tE [0, 1 ] and pEM.
It is clear that 77 is continuous. And since -n(p, t)i = (l—t)h0p, t](p, t)2
= t[hip— y], and r¡(p, t)¡ = ty, it is easily verified that 77 is biunique and í?-1 is
continuous. Thus 77 is a homeomorphism, whence it follows easily that 77* is a
homeomorphism, completing the proof.

Appendix. Strict convexity and the nearest-point mapping
Al. Remarks on smoothness and strict convexity. A convex body will

be called strictly convex iff its boundary contains no line segments and smooth
iff it has a unique supporting hyperplane through each boundary point. In a
sense to be made precise later in this section, there is a strong duality be-
tween these notions. Thus we adopt the notational convention that if 5 de-
notes one of the adjectives (strictly convex, smooth) S* will denote the other.
A normed linear space will be called 5 iff its unit sphere is S, and S-able
(strictly convexifiable, smoothable) iff it is isomorphic (in the sense of
Banach [l, p. 180 ]) with an 5 space. In connection with several results of
this paper, and also with certain other questions of functional analysis, it is
of interest to extend as far as possible the class of spaces known to be strictly
convexifiable. (It appears unlikely that every space is in the class, but this
question remains unanswered.) In the present section, we extend the class
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beyond what was previously known and establish some characterizations of
5-able spaces.

(Al.l) If E* is S*, then E is S.
Proof. Let C and 5 (C* and S*) be respectively the unit cell and unit

sphere of E(E*). If C is not smooth, then for some xG-S there are distinct
functionals/, gCS* for which fx = gx = 1. But then S* contains the segment
[/, g] and is not strictly convex. If C is not strictly convex, it contains a
segment [xt, x2]. Let/ in S* be such that/[(x+y)/2] = 1. Then /=1 on
[xi, y2] and {g|gG-E* and gx; = l} are different hyperplanes supporting C*
at/, so C* is not smooth. This completes the proof.

(A1.2) // E* is S*-able by means of a w*-compact unit cell, then E is S-able.
Proof. Let C= {x|/x :£1 for all/GG*}, where C* is the w*-compact set

mentioned in the hypothesis. Let Ei(E2) be the space E(E*) as renormed by
the gauge function (relative to the neutral element) of C(C*). We know that
E2 is 5 and is isomorphic with E*. It is easy to verify that Pi is isomorphic
with E, and from the w*-compactness of C* it follows that E* = E2. The
proof is completed by (Al.l).

From (Al.l) and (A1.2) we obtain
(A1.3) Suppose E is reflexive. Then E is S(S-able) if and only if E* is

S*(S*-able).
(A1.4) The following statements are equivalent: (i) E is strictly convexifiable;

(ii) E contains a convex body which is strictly convex near one of its boundary
points; (iii) some convex open set in E admits a strictly convex continuous func-
tional; (iv) E admits a norm N^\\ || such that (E, N) is strictly convex; (v)
there is a biunique continuous linear transformation T on E such that TE is
strictly convexifiable ; (vi) among the bounded closed convex bodies in E (metrized
by the Hausdorff distance) the strictly convex ones are dense.

Proof, (ii) implies (iii). Let C be the body described in (ii), <p the
boundary point in question, H a hyperplane supporting C at 4>, pGInt C,
and P the projection of E onto H which maps p onto <p. For a sufficiently
small open convex LO<p, U(~\FC contains no line segments and P maps
UC\FC homeomorphically onto a convex open IO<p. For each A G V let rfh
be such that h-\-(r¡h)pCUr\FC. Then r¡ is a strictly convex continuous func-
tional defined on V, and r¡h-\-t2\ h-\-tp is such a functional defined on V
-+- ] — co,  <x>[p, completing the proof.

(iii) implies (iv). Let r\ be a strictly convex continuous functional defined
on a convex open set LO(/>. Set W=U(~\(— U) and for each xCW let
i/'x = sup (r](x), ?j( —x)). Then \p is strictly convex and attains its minimum
m only at <p. For e>0, let C,= {x\\l/x?¿m-\-e}. Each Ce is convex and has <p
as an interior point. For e sufficiently small, Cl CeCJF, and in this case
FCf= {x\\f/x = m-\-e}, so C, is strictly convex. Thus for t sufficiently large,
the gauge function (from <j>) of tCf is the desired N.

(iv) implies (i). With N as in (iv), (E, N-{-\\  ||) is a strictly convex iso-
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morph of (E, ||  ||).
Thus we have shown that (i), (ii), (iii), and (iv) are mutually equivalent.

Clearly (iv) and (v) are equivalent and (vi) implies (iii); to complete the
proof we show that (i) implies (vi). Let (E, M) be a strictly convex isomorph
of (E, || ||). Consider an arbitrary positive e and bounded closed convex body
C in E such that <t>Elnt C. Let p be the gauge function of C relative to <p
and for each 5>0 let Cs= {x|px + 5ilfx^l}. Then each C¡ is a closed strictly
convex body contained in C. It can be verified that for 5 sufficiently small,
CENtd, completing the proof of (A1.4).

Similar techniques serve to establish (A1.5)-(A1.6) below.
(A1.5) For the statements below—(i) and (ii) are equivalent and are both

implied by (iii) and by (iv). If E is reflexive, all four are equivalent, (i) E is
smoothable; (ii) E contains a bounded smooth convex body; (iii) E contains a
bounded convex body which is smooth near one of its extreme points ; (iv) among
the bounded closed convex bodies in E, the smooth ones are dense.

(A 1.6) For the statements below—(i) and (ii) are equivalent and are both
implied by (iii). If E is reflexive, all three are equivalent, (i) E has an isomorph
which is both S and S*; (ii) E contains a bounded closed convex body which is
both S and S*; (iii) among the bounded closed convex bodies in E, those which are
both S and S* are dense.

We next establish
(A1.7) Suppose E is a reflexive Banach space. Then if E is S-able, so is

every continuous linear image of E.
Proof. We may as well suppose E to be S. Let C be the unit cell of E and

let TE = E\ be a continuous linear transformation. Then T is also weak-
weak continuous, so TC must be weakly compact and hence closed. Since
T is interior [l, p. 40], TC is a bounded closed convex set in E\, containing
0i in its interior and such that —TC=TC. Thus the gauge function of
TC is an admissible norm for Ei. Since (TC being closed) the fact that C
is S implies readily that TC is S, the proof is complete.

(A 1.8) For each cardinal K, li$ is strictly convexifiable. For each e>0,
¿Ko admits a norm N in which it is both smooth and strictly convex and suck
that (f) 0^||/||1-A/<e||/||1/or eachfEMo.

Proof. For each /G/N, let if/=||/||1+||/||2. Then || \\1^M^2\\ ||x and
(IK, M) is strictly convex. (Here ||/||j, is the norm of/as a member of /"ft.)

To handle the case of IR0, let r be such that 0<r<min (1, e)/2 and e^>0
suchthat l-rß'ß<rß. Take £/= £r |/*| 1+ei> C= {f\£f£ 1}, and let N be the
gauge-function (from <¡>) of C. If £/;£ 1, then each |/j3| ^1 and hence

0 á H/lli - if « ¿ I fi\ (1 - \fi |«0 ̂    E    r< +    Z    (1 - r"H)
1 1/ilSr* l/i|>r*

00

^ Z rl = r/(l - r) < 2r < e.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1953] CONVEX BODIES 39

Now when Nf=i we have £f=l and ||/||i^l, so (t) holds. Due to homo-
geneity of the inequality (f), this establishes (f) for all/.

Now each function |/¡| 1+e»|/ is convex. Hence so is ¿and thus C is convex
and closed. Then N is an admissible norm for /N0 and C is the unit cell for
N. Now if g and h are distinct points of FC, then for some j, gj^hj. Since
¿1+ej|¿ is strictly convex, ]g, Ä[CInt C and C is strictly convex.

Now let g be a boundary point of C, H a hyperplane supporting C at g,
and 7] the unique linear functional which is equal to 1 everywhere on H.
Then r¡ ̂  £ and r¡g = £g = 1. Now for each _; let h¡ be the characteristic function
(on the set of all positive integers) of {j}, Uj = ^(g-\-thj)\t real, and v¡
= t)(g-\-thj)\t real. Then v} is linear, z>y = M¿ and vfi=ufi = l. Since u¡ is dif-
ferentiate, fly is completely determined by these conditions. Thus r¡(g+t8j)
is uniquely determined for all t and j, so r¡ (and hence H) is uniquely de-
termined and C is smooth.

In relation to (A1.7) and (A1.8), it is of interest to note that every Banach
space is a continuous linear image of some /N, and every separable Banach
space is a continuous linear image of /No [2, p. 111].

(A1.9) Suppose X is a topological space which admits a measure m defined
at least for all open sets and such that mX = 1 and mG > 0 for each nonempty
open G CX. Then the space CX of all bounded real-valued functions on X is
strictly convexifiable.

Proof. The usual norm
[fxßdm]1'*. Then N ^||

II of CA is defined by ||/|| =supiex/x. Let Nf
and (CX, N) is strictly convex, so (CA, || || +N)

is a strictly convex isomorph of (CX, \\  \\).
(A1.10) If E is a separable Banach space, both E and E* are strictly con-

vexifiable.
Proof. As observed in [2, p. 107], both E and E* are equivalent to linear

subsets of the space (m), and strict convexifiability of (m) follows from (A 1.9).
That separable spaces are all strictly convexifiable was proved differently

by Clarkson [6, p. 413].
From (A1.10) and (A1.3) we obtain
(A 1.11) Every separable reflexive Banach space is both S-able and S*-able.
(A1.12) If X is a compact Hausdorff space which is an absolute retract rela-

tive to such spaces, then CX is strictly convexifiable.
Proof. A can be topologically embedded in a parallelotope P. Let p be a

retraction of P onto X, and for each/GCA let Tf be the function/py| y GP.
Then T is an isometry of CA into CP. By (A1.9), CP is strictly convexifiable,
and thus so is CA.

(Al.l3) Suppose E is a normed linear space and X is the unit cell of E* in
its *-weak topology. If X is an absolute retract relative to compact Hausdorff
spaces, then E is strictly convexifiable.

Proof. For each xGP let Tx be the function /x|/GA. Then T is a linear
isometry of E into CA, so the proof is completed by (Al.l2).
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To see that (A1.13) is not universally applicable to establish strict con-
vexifiability, let X be the unit cell of l2&*( =/2i$i) in the weak topology.
As naturally embedded in the parallelotope P= [ — 1, l]**1, X is closed and
convex. However, it can be verified that P has a countable dense subset while
A has not, and thus X is not even a continuous image of P. (This example is
due jointly to Dr. Ernest Michael and the author.)

A2. Convex sets and the nearest-point mapping. We next discuss the
nearest-point mapping in normed linear spaces, since certain of its properties
are needed in §112. If A is a subset and p a point of the metric space (M, p),
then Xp will denote the set (possibly empty) of all points qEX such that
P(P, <z) =intx£.x p(P> x)- X will be said to have the nearness property in M iff
Xp contains exactly one point for each pEM. A subset A of a normed linear
space is called boundedly (weakly) compact iff XC\nC is (weakly) compact for
each n, C being the unit cell. A convex set is boundedly (weakly) compact iff
it is closed and locally (weakly) compact.

Standing hypotheses for this section: E is a normed linear space and K is
a nonempty subset of E.

(A2.1) Suppose E is strictly convex and K is boundedly weakly compact.
Then K has the nearness property in E.

Proof. Consider an arbitrary pEE. From the boundedly weak compact-
ness of K and the fact that C is weakly closed it follows that there is at least
one /^0 such that (p-\-tC)r\Ky¿K. and this intersection (for the least such t)
is of course Kp. That Kp contains only one point follows from the strict
convexity of E.

We shall be concerned with spaces £ having the following property (P) :
for each pair u, v of distinct points of E and each B>0 there is a number
ô>0 and a weakly open set W^u such that ||x —w||+5<||x —f|| whenever
xEW and ||x|| <B. It is easily verified that if E is either finite-dimensional
or an inner-product space, then E has property (P).

(A2.2) Suppose K is boundedly compact and has the nearness properly in
E. Then Kx\xEE is continuous. If in addition E has the property P, then
Kx\xEE is weak-strong continuous.

Proof. Since the mapping K- takes bounded sets onto bounded sets, the
first assertion follows easily from compactness and the triangle inequality.
To prove the second it suffices to show that if (A, >) is a directed set and
pa\aEA is a bounded function on A to E such that (relative to >) pa
converges weakly to poEE and Kpa converges to q, then q = Kpo. Now
suppose Kpo^q and let u = Kp0, v = q, 5 = sup {||pa|| |aG^4 } • Let 5, W
be as in the definition of property (P). Then ultimately (in terms of > ) we
have 11/»a — Kp0\\ +5<|]pa — ç||. But since Kpa converges to q, ultimately
||/>a — q\\ <||pa —A^>o||, a contradiction completing the proof.

An easy application of the triangle inequality yields
(A2.3) Suppose xEE, qEKx, and yE[x, q]. Then qEKy.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1953] CONVEX BODIES 41

Our principal result on the nearness property is
(A2.4) Suppose K has the nearness property in E, xCE^K, Kx=y, and

£GRay [y,x[. Then each of the following implies that Kp=y.
(i) E is finite-dimensional;
(ii) E is reflexive and Xx|xG-E is continuous in both weak and strong

topologies.
(iii) K is convex and E is strictly convex.
Proof. Since the nearness property implies that K is closed, if E is finite-

dimensional K is boundedly compact and we see from (A2.2) that case (i)
is included in (ii). Before proving (ii), let us deduce (iii) from (i). Let x, y,
and p be as in the hypotheses and suppose Kp = z¿¿y. Let E' be the linear
hull of {<p, x, y, p, z] and K' =ET\K. Then K' is boundedly compact and
convex, and E' is strictly convex, so it follows from (A2.1) that K' has the
nearness property in £'. But K'x=y and K'p = Z9iy, which contradicts case
(i) and completes the proof of (iii) (once case (ii) is successfully handled).

Turning now to case (ii), we note first that (due to (A2.3)) we need merely
K(y+t(x — y))=y for arbitrarily large values of /. Suppose this is not the
case and take y =<p. Then there is a point z (a multiple of x) such that Kz=<p
but Klz^cp if t> 1. By continuity of K- there are bounded closed convex sets
U and V and a hyperplane H3<f> such that <pGInt U, zGInt V, KVCU,
and z/2 + H separates U from V. By the choice of z and the continuity of K-
there is a number s>l and a bounded closed convex set W'3<t> such that
WCHfMI, (pElnt W (relative to H), sz+W'C V, and K(sz+W')3<p. But
since sz+W is weakly compact and K- weakly continuous, K(sz+W) is
weakly compact, hence closed and at positive distance from <p. Thus for
W = rW and a sufficiently small r>0, there is no point u£ sz+W such that
[u, Ku] intersects [sz, z].

For each wCW let fw be defined by the condition, z+fwC [sz+W,
K(sz+w)]C\(z+H). Then / is weakly continuous. Let m>0 be such that
w/wG W and for each ¿G [0, 1 ] and wG W let g(t, w) = (1 —t)w+tmfw. Then
each g(t, ■) is a weakly continuous map of W into itself. By the choice of r,
the segment [w, fw] contains <p only when w=<p, and even then f<p9¿<p.
Thus 4>Cg(t, W) only when / = 0.

Now by a proof analogous to that of [10, p. 75], using the Tychonoff
fixed-point theorem [31] and the weak compactness of W, it can be shown
that (in a sense involving both weak and strong topologies) <p is a stable value
of the identity map h on W. Specifically, there is an e>0 such that if h' is
any weakly continuous map of W onto itself for which ||ä'w — hw\\ <e for all
w£-W, thencpEh'W. But h=g(0, ■) and lim^0sup„GWr||g(<, w)-g(0, w)\\ =0,
so we have a contradiction to the fact that 4>Cg(t, W) only when t=0. This
completes the proof of (A1.4).

From (A2.4) we deduce a well-known characterization of convexity and
a generalization thereof.
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(A2.5) Suppose E is smooth and strictly convex. Then each of the following
additional conditions implies that K is closed and convex iff K has the nearness
property in E: (i) E is finite-dimensional; (ii) E is reflexive and has property (P)
and K is boundedly compact.

Proof. In both cases the "only if part follows from (A2.1). Suppose
conversely that K has the nearness property in E and for each xEE^K let
Qx be the (unique) closed half-space which contains Kx but does not inter-
sect N¡\x_kx\\X. From (A 1.4) and the smoothness of E it follows that K
EOxEE^kQz- On the other hand, if xEK, then xEQx, so the reverse inclu-
sion is also valid and K is convex.

For a much simpler proof of case (i) of (A2.5), see [5] and [11 ].
In connection with the results of this section, the following result of

Kuratowski [20] may be of interest: Suppose A is a metrizable space and A
a subset of X. Then if A is a retract of A, A admits a metric for which A has
the nearness property in A.
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