CONVEX COMBINATIONS OF MARKOV
TRANSITION FUNCTIONS!

S. R. FOGUEL

1. Introduction. Let (2, 2, N\) be a measure space with A(Q)=1.
Consider the set ¥ of all the operators, P, on Ly(Q, Z, \) such that:

(1.1) [lP[ =1

(1.2) P1 =1

(1.3) if fEL, and f=0 then Pf=0 a.e.

These operators are given by a Markov transition function for which
A\ is an invariant measure.

The set ¥ is a weakly closed convex set and is selfadjoint.

We shall study several notions that are related to “mixing” prop-
erties and will show:

a convex combinaiion mixes better than its generators.

Many of the results can be phrased, and their proofs are identical,
for general contractions on a Hilbert space. This will be mentioned
without details to avoid repetitions.

Let us repeat the following definitions from [1]. For each PE¥:

(1.4) K(P)={f: FELMN)| P =l P*f =[A, n=1,2,-- - }.

(1.5) Ho(P)={f: fEL:(\), weak lim Prf=0}.

(1-6) H1(P)=H0(P)J'-

It is proved in [1, Theorems 2 and 4] that these are subspaces and
Hi(P)CK(P) and

(1.7) K(P)=Ly(h, 21, N\) Z:CZ and UZ,=0Q,.

Except for (1.7) all these definitions and results are valid for general
contractions on a Hilbert space.

Our aim will be to find how “small” is Hy(P). Thus if 2, is atomic
the “Limit Theorem” [1, Theorem 8] holds and if H;=constant func-
tions, then P is strongly mixing.

"I[‘he notions of ergodic and strongly mixing operators are defined
in [3].

2. Convex combination of finitely many Markov transition func-
tions.

THEOREM 1. Let Py, - - -, P, belong to A and P=Zo;P; where o;>0
and Za;=1. Then
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oy KB =DK@ {5 Py =Py Py =P

forall 1 < 4,7 < m}.

Proor. It is enough to consider the case m =2 since a convex com-
bination of Py, - - -, P, can be represented as a convex combination
of P, and Q where Q is a convex combination of Py, - + -, P.

Let fEK(P) then

h

Il = llePi+ (4 = P < 2’1 = )" PLPE - - - PYPYY
2a'(1 = )" |fll = [I/]

where h;k; assume the values 0, 1 and Zh; =3, Zk;=n—j and the sum
is taken over all such choices when j ranges between 0 and #z. Thus
each of the terms in the sum must have the norm [|f|| (since the
operators P; and P, are contractions). In particular || Pif|| =||Pzf]]
=|f]|. Also a Hilbert space is strictly convex and equality can occur
in the triangular inequality only when the terms are proportional.
Thus P}f=+P3f for some v =0 and since they have the same norms
Pif=Pjf. Finally if fEK(P) then ||P*f]|=||f|| and the same argu-
ment would apply to Pi* and P5*.
Conversely let Pif=P3f, P#f=Ps"f and fEK (P1). Then

P’IHP’;l L. P;'nP’;nf= P’lllp’;l L P'llnp’;nf____ P’;IP,;‘ L. P:n+"nf
continuing in this way we shall get P}f and thus P»f= P}f. Now since
FEK(P), || P =] Pifll =|lfll. The result for P* is analogous.

THEOREM 2. Let Py - - - P,EWN and P=Za;P; where a;>0 and
Za;=1. Then

n—j

IIA

Hy(P) = n H(P)N N {f: Pif =P}, Pi'f= P}y
(22) i=1 n=1

forall 1 < 4,7 < m}.

Proor. If fEH(P) then f&EK(P) hence P'f=Pif for every
1<i=<m. By [2, Theorem 3.1] f& Hi(P;). The converse is proved in
the same way.

Note that Theorems 1 and 2 hold for any contraction in a Hilbert
space.

From (2.1) follows that, under the assumptions of Theorem 1,
Z1(P)CNE, Z1(P;). Hence if at least one of the fields Z,(P;) is atomic,
then so is Z,(P).
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From (2.2) follows, under the assumptions of Theorem 2, that if at
least one of the operators P; is strongly mixing so is P. Thus if P,
is strongly mixing and P, any operator in Y then aP;4(1—a)P; is
strongly mixing for any choice of 0 <a<1. Thus P; can be approxi-
mated in norm by strongly mixing operators. Let Q be an invertible
ergodic transformation in 9. By the Second Category Theorem [3,
p. 78] such transformations exist. Put P=31(Q+0Q?. Now if
fEK(P) then Qf=Q? by Theorem 1 hence f=(Qf and f is a constant.
This shows that there is at least one strongly mixing operator in
and hence a dense set of . Notice that we did not show the existence
of strongly mixing transformations but only operators in ¥.

Let us conclude this chapter with the following remark: Let P
and Py belong to U. There exists an operator Py in N such that P is a
convex combination of Py and P, iff for some 0<a <1 PfZaP:f for
every f=0.

Clearly the condition is necessary. Now if Pf=aP,f for every f=0
define Pof=(1—oa)~1(Pf—Pyf). Then P, satisfies (1.2) and (1.3). In
order to prove (1.1) it is enough to observe that P, is a contraction on
L, and if f=2c14,, where 4; are disjoint sets and 14; denote their
characteristic functions, then

f | Pof| dN < 2| el (1 = a)—lf (P — aP)1ad\ = Z| ci| M(4))
since

f (P — aP)1adh = (P — aP)1a, 1) = (14, (P* — aP#*)1)
= (1 - a)<14.'y 1> = (1 - a))\(Ai)7
where (f, g) is the inner product of f and g.

3. Integral averages. Following Choquet’s theory let us consider,
throughout this chapter, the following setup:

(3.1) Let p be a regular positive measure, of total mass 1, defined on
the Borel subsets of A with its weak operator topology. Put

0= [ ruan.

The operator Q is defined by (Qf, g)=[a(Pf, g)u(dP). The integral
exists since for every pair of vectors f, g the function ¢(P) = (Pf, g)
is continuous in the weak operator topology. Thus [a(Pf, g)u(dP)
defines a bilinear form and hence is equal to (Qf, g) for some operator
Q. It is easy to check that Q belongs to ¥.
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Let us consider all the open subsets of % on which u vanishes. Since
u is regular u vanishes also on the union of all these sets. Denote by
B (support of u) the complement of this set. Thus

(3.2) PyESDB iff u does not vanish on any neighborhood of P,.

TuEOREM 3. Given Q by (3.1) then
(3.3) K(Q) = an K(P)N nsB {f: Prf = Qnf, P*nf = Q*nf for all n}.
€ Pe

Proor. Let fEK(Q) and Py&PB and let D be any weak neighbor-
hood of P,. Put

0 = w(®) (u(‘D)“ ] mPu(dP)> + u(® — D) (m ~o Mm(dp)).

Then, by Theorem 1, (u(D)~! [oPu(dP))(f) = Qf. Or, for any g& Lo
w(D)"fo(Pf, g)u(dP)=(Qf, g). If for some g (Pdf, g)=(Qf, g) say
(Pof, g) <{(Qf, g) then taking for D the open set {P: (Pf, g) <(Qf, &)}
we shall get a contradiction. Thus for every PED, Pf=(Qf. Now
Prf=Pr1Qf and QfEK(Q) too and by an induction argument
Prf=Qrf. The argument for P* is analogous.

Conversely, if f belongs to the right side of (3.3) then take any P
in B and [|Qf]| =[| P~ =|/f]], since FEK(P).

REMARK. Theorem 3 can be viewed as a necessary condition for an
element P of U to belong to the support of any representation of the

type (3.1).
THEOREM 4. Given Q by 3.1 then
(3.4 Hi(Q) = K@ N N Hy(P).
Pe®B

The proof is identical to the proof of Theorem 2.

4. Semigroup of contractions. Let us conclude this note with a
study of convergence of iterates of the resolvent of a semigroup of
contractions. The situation is somewhat similar to the one studied in
Chapter 3 but much stronger results are valid.

Let P, be a strongly continuous semigroup of contractions in the
Hilbert space H. Let Ry=[ye*Pdt, A>0. Thus R\, A>0, is the
resolvent of the infinitesimal generator, 4, of P, at the point A. Let
U, be the strong dilation of the semigroup see [4, Theorem IV]. Then
U, is a strongly continuous semigroup of unitary operators. Let the
infinitesimal generator of U, be iB. Then B is selfadjoint [5, p. 385].
Thus
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f e™MUdt = (N —iB)™! A>0.
0

The spectrum of A\(A—<B)~! is included in {)\()\—it)‘lz ¢ is real } This
set is inside the unit circle and touches the circumference of the unit
circle at the point 1 only. Now AA—4B)~! is a normal operator and,
from the Spectral Theorem and the above description of the spec-
trum, follows that W(A—<B)~1)*f is strongly convergent for every f
in the larger space where the U, are defined.

THEOREM 5. Let Ry= [ge P dt, \>0. Then lim(AR\)"f = projection
of f on the set {g: Pg=g forall t>0}.

Proor. Let L= {g: P,g=g forallt} and f=f+f: where fiEL and
fa LL. Clearly AR\fi=4f1 and we shall consider f; only. Now ||P /| <1
and thus P,g=g if and only if P¥g=g or L' is invariant under P..
Now

(AR)" = )\nf . f e_)‘("+"'+'")Pz,+---+t,.dt1 - dt,
0 0

and is equal to the projection of [A\(\—2B)~!]* on H. Thus AR\)"f
is strongly convergent too. Let its limit be 2. Then ARk =h. Hence
k belongs to the domain of definition of 4 and (4 —N)k=X(4 —N)R\k
=Nk or Ar=0. Thus kEL but f, and (AR\)"f> belong to L. There-

fore £=0.
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