CONVEX COMBINATIONS OF MARKOV TRANSITION FUNCTIONS¹

S. R. FOGUEL

1. Introduction. Let $(\Omega, \Sigma, \lambda)$ be a measure space with $\lambda(\Omega) = 1$. Consider the set \mathfrak{A} of all the operators, P, on $L_2(\Omega, \Sigma, \lambda)$ such that:

(1.1) ||P|| = 1

(1.2) P1 = 1

(1.3) if $f \in L_2$ and $f \ge 0$ then $Pf \ge 0$ a.e.

These operators are given by a Markov transition function for which λ is an invariant measure.

The set \mathfrak{A} is a weakly closed convex set and is selfadjoint.

We shall study several notions that are related to "mixing" properties and will show:

a convex combination mixes better than its generators.

Many of the results can be phrased, and their proofs are identical, for general contractions on a Hilbert space. This will be mentioned without details to avoid repetitions.

Let us repeat the following definitions from [1]. For each $P \in \mathfrak{A}$:

(1.4) $K(P) = \{f: f \in L_2(\lambda), ||P^n f|| = ||P^{*n} f|| = ||\tilde{f}||, n = 1, 2, \cdots \}.$

(1.5) $H_0(P) = \{f: f \in L_2(\lambda), \text{ weak lim } P^n f = 0\}.$

(1.6) $H_1(P) = H_0(P)^{\perp}$.

It is proved in [1, Theorems 2 and 4] that these are subspaces and $H_1(P) \subset K(P)$ and

(1.7) $K(P) = L_2(\Omega_1, \Sigma_1, \lambda) \Sigma_1 \subset \Sigma$ and $U\Sigma_1 = \Omega_1$.

Except for (1.7) all these definitions and results are valid for general contractions on a Hilbert space.

Our aim will be to find how "small" is $H_1(P)$. Thus if Σ_1 is atomic the "Limit Theorem" [1, Theorem 8] holds and if H_1 =constant functions, then P is strongly mixing.

The notions of ergodic and strongly mixing operators are defined in [3].

2. Convex combination of finitely many Markov transition functions.

THEOREM 1. Let P_1, \dots, P_m belong to \mathfrak{A} and $P = \Sigma \alpha_i P_i$ where $\alpha_i > 0$ and $\Sigma \alpha_i = 1$. Then

Received by the editors November 18, 1966.

¹ The research reported in this document has been sponsored by the Office of Scientific Research, OAR under Grant AF EOAR 66-18 through the European Office of Aerospace Research, United States Air Force and by NSF-GP 3906 and NSF-GP 4033 in the University of Minnesota, Minneapolis.

S. R. FOGUEL

(2.1)
$$K(P) = \bigcap_{i=1}^{m} K(P_i) \cap \bigcap_{n=1}^{\infty} \left\{ f \colon P_i^n f = P_j^n f, P_i^{*n} f = P_j^{*n} f f \right\}$$
$$for all \ 1 \leq i, j \leq m \left\}.$$

PROOF. It is enough to consider the case m=2 since a convex combination of P_1, \dots, P_m can be represented as a convex combination of P_1 and Q where Q is a convex combination of P_2, \dots, P_m .

Let $f \in K(P)$ then

$$\begin{aligned} \|f\| &= \left\| \left[\alpha P_1 + (1-\alpha) P_2 \right]^n f \right\| \leq \Sigma \alpha^j (1-\alpha)^{n-j} \|P_1^{h_1} P_2^{h_1} \cdots P_1^{h_n} P_2^{h_n} f \| \\ &\leq \Sigma \alpha^j (1-\alpha)^{n-j} \|f\| = \|f\| \end{aligned}$$

where $h_i k_i$ assume the values 0, 1 and $\Sigma h_i = j$, $\Sigma k_i = n - j$ and the sum is taken over all such choices when j ranges between 0 and n. Thus each of the terms in the sum must have the norm ||f|| (since the operators P_1 and P_2 are contractions). In particular $||P_1^n f|| = ||P_2^n f||$ = ||f||. Also a Hilbert space is strictly convex and equality can occur in the triangular inequality only when the terms are proportional. Thus $P_1^n f = \gamma P_2^n f$ for some $\gamma \ge 0$ and since they have the same norms $P_1^n f = P_2^n f$. Finally if $f \in K(P)$ then $||P^{*n}f|| = ||f||$ and the same argument would apply to P_1^* and P_2^* .

Conversely let $P_1^n f = P_2^n f$, $P_1^{*n} f = P_2^{*n} f$ and $f \in K(P_1)$. Then

$$P_1^{h_1}P_2^{k_1}\cdots P_1^{h_n}P_2^{k_n}f = P_1^{h_1}P_2^{k_1}\cdots P_1^{h_n}P_1^{k_n}f = P_1^{h_1}P_2^{k_1}\cdots P_2^{h_n+k_n}f$$

continuing in this way we shall get $P_1^n f$ and thus $P^n f = P_1^n f$. Now since $f \in K(P_1)$, $||P^n f|| = ||P_1^n f|| = ||f||$. The result for P^* is analogous.

THEOREM 2. Let $P_1 \cdots P_m \in \mathfrak{A}$ and $P = \sum \alpha_i P_i$ where $\alpha_i > 0$ and $\sum \alpha_i = 1$. Then

(2.2)
$$H_{1}(P) = \bigcap_{i=1}^{m} H_{1}(P_{i}) \cap \bigcap_{n=1}^{\infty} \{f: P_{i}^{n}f = P_{j}^{n}, P_{i}^{*n}f = P_{j}^{*n}f$$
$$for all 1 \le i, j \le m\}$$

PROOF. If $f \in H_1(P)$ then $f \in K(P)$ hence $P^n f = P_i^n f$ for every $1 \leq i \leq m$. By [2, Theorem 3.1] $f \in H_1(P_i)$. The converse is proved in the same way.

Note that Theorems 1 and 2 hold for any contraction in a Hilbert space.

From (2.1) follows that, under the assumptions of Theorem 1, $\Sigma_1(P) \subset \bigcap_{i=1}^m \Sigma_1(P_i)$. Hence if at least one of the fields $\Sigma_1(P_i)$ is atomic, then so is $\Sigma_1(P)$.

346

[April

From (2.2) follows, under the assumptions of Theorem 2, that if at least one of the operators P_i is strongly mixing so is P. Thus if P_1 is strongly mixing and P_2 any operator in \mathfrak{A} then $\alpha P_1 + (1-\alpha)P_2$ is strongly mixing for any choice of $0 < \alpha < 1$. Thus P_2 can be approximated in norm by strongly mixing operators. Let Q be an invertible ergodic transformation in \mathfrak{A} . By the Second Category Theorem [3, p. 78] such transformations exist. Put $P = \frac{1}{2}(Q+Q^2)$. Now if $f \in K(P)$ then $Qf = Q^2 f$ by Theorem 1 hence f = Qf and f is a constant. This shows that there is at least one strongly mixing operator in \mathfrak{A} and hence a dense set of \mathfrak{A} . Notice that we did not show the existence of strongly mixing transformations but only operators in \mathfrak{A} .

Let us conclude this chapter with the following remark: Let Pand P_1 belong to \mathfrak{A} . There exists an operator P_2 in \mathfrak{A} such that P is a convex combination of P_1 and P_2 iff for some $0 < \alpha < 1$ $Pf \ge \alpha P_1 f$ for every $f \ge 0$.

Clearly the condition is necessary. Now if $Pf \ge \alpha P_1 f$ for every $f \ge 0$ define $P_2 f = (1-\alpha)^{-1} (Pf - P_1 f)$. Then P_2 satisfies (1.2) and (1.3). In order to prove (1.1) it is enough to observe that P_2 is a contraction on L_{∞} and if $f = \Sigma c_i \mathbf{1}_{A_i}$, where A_i are disjoint sets and $\mathbf{1}_{A_i}$ denote their characteristic functions, then

$$\int |P_2 f| d\lambda \leq \Sigma |c_i| (1-\alpha)^{-1} \int (P-\alpha P_1) \mathbf{1}_{A_i} d\lambda = \Sigma |c_i| \lambda(A_i)$$

since

$$\int (P - \alpha P_1) \mathbf{1}_{A_i} d\lambda = \langle (P - \alpha P_1) \mathbf{1}_{A_i}, 1 \rangle = \langle \mathbf{1}_{A_i}, (P^* - \alpha P_1^*) 1 \rangle$$
$$= (1 - \alpha) \langle \mathbf{1}_{A_i}, 1 \rangle = (1 - \alpha) \lambda(A_i),$$

where $\langle f, g \rangle$ is the inner product of f and g.

3. Integral averages. Following Choquet's theory let us consider, throughout this chapter, the following setup:

(3.1) Let μ be a regular positive measure, of total mass 1, defined on the Borel subsets of \mathfrak{A} with its weak operator topology. Put

$$Q=\int_{\mathfrak{A}}P\mu(dP).$$

The operator Q is defined by $\langle Qf, g \rangle = \int \mathfrak{A} \langle Pf, g \rangle \mu(dP)$. The integral exists since for every pair of vectors f, g the function $\phi(P) = \langle Pf, g \rangle$ is continuous in the weak operator topology. Thus $\int \mathfrak{A} \langle Pf, g \rangle \mu(dP)$ defines a bilinear form and hence is equal to $\langle Qf, g \rangle$ for some operator Q. It is easy to check that Q belongs to \mathfrak{A} .

S. R. FOGUEL

Let us consider all the open subsets of \mathfrak{A} on which μ vanishes. Since μ is regular μ vanishes also on the union of all these sets. Denote by \mathfrak{B} (support of μ) the complement of this set. Thus

(3.2) $P_0 \in \mathfrak{B}$ iff μ does not vanish on any neighborhood of P_0 .

THEOREM 3. Given Q by (3.1) then

$$(3.3) \quad K(Q) = \bigcap_{P \in \mathfrak{B}} K(P) \cap \bigcap_{P \in \mathfrak{B}} \{f \colon P^n f = Q^n f, \ P^* n f = Q^* n f \text{ for all } n\}.$$

PROOF. Let $f \in K(Q)$ and $P_0 \in \mathfrak{B}$ and let \mathfrak{D} be any weak neighborhood of P_0 . Put

$$Q = \mu(\mathfrak{D}) \bigg(\mu(\mathfrak{D})^{-1} \int_{\mathfrak{D}} P \mu(dP) \bigg) + \mu(\mathfrak{B} - \mathfrak{D}) \bigg(\mu(\mathfrak{B} - \mathfrak{D})^{-1} \int_{\mathfrak{B} - \mathfrak{D}} P \mu(dP) \bigg).$$

Then, by Theorem 1, $(\mu(\mathfrak{D})^{-1} \int_{\mathfrak{D}} P\mu(dP))(f) = Qf$. Or, for any $g \in L_2$, $\mu(\mathfrak{D})^{-1} \int_{\mathfrak{D}} \langle Pf, g \rangle \mu(dP) = \langle Qf, g \rangle$. If for some $g \langle P_0f, g \rangle \neq \langle Qf, g \rangle$ say $\langle P_0f, g \rangle < \langle Qf, g \rangle$ then taking for \mathfrak{D} the open set $\{P: \langle Pf, g \rangle < \langle Qf, g \rangle\}$ we shall get a contradiction. Thus for every $P \in \mathfrak{B}$, Pf = Qf. Now $P^n f = P^{n-1}Qf$ and $Qf \in K(Q)$ too and by an induction argument $P^n f = Q^n f$. The argument for P^* is analogous.

Conversely, if f belongs to the right side of (3.3) then take any P in \mathfrak{B} and $||Q^n f|| = ||P^n f|| = ||f||$, since $f \in K(P)$.

REMARK. Theorem 3 can be viewed as a necessary condition for an element P of \mathfrak{A} to belong to the support of any representation of the type (3.1).

THEOREM 4. Given Q by 3.1 then

(3.4)
$$H_1(Q) = K(Q) \cap \bigcap_{P \in \mathfrak{B}} H_1(P).$$

The proof is identical to the proof of Theorem 2.

4. Semigroup of contractions. Let us conclude this note with a study of convergence of iterates of the resolvent of a semigroup of contractions. The situation is somewhat similar to the one studied in Chapter 3 but much stronger results are valid.

Let P_t be a strongly continuous semigroup of contractions in the Hilbert space H. Let $R_{\lambda} = \int_0^{\infty} e^{-\lambda t} P_t dt$, $\lambda > 0$. Thus R_{λ} , $\lambda > 0$, is the resolvent of the infinitesimal generator, A, of P_t at the point λ . Let U_t be the strong dilation of the semigroup see [4, Theorem IV]. Then U_t is a strongly continuous semigroup of unitary operators. Let the infinitesimal generator of U_t be iB. Then B is selfadjoint [5, p. 385]. Thus

[April

$$\int_0^\infty e^{-\lambda t} U_t dt = (\lambda - iB)^{-1} \qquad \lambda > 0.$$

The spectrum of $\lambda(\lambda - iB)^{-1}$ is included in $\{\lambda(\lambda - it)^{-1}: t \text{ is real}\}$. This set is inside the unit circle and touches the circumference of the unit circle at the point 1 only. Now $\lambda(\lambda - iB)^{-1}$ is a normal operator and, from the Spectral Theorem and the above description of the spectrum, follows that $(\lambda(\lambda - iB)^{-1})^n f$ is strongly convergent for every fin the larger space where the U_t are defined.

THEOREM 5. Let $R_{\lambda} = \int_0^{\infty} e^{-\lambda t} P_t dt$, $\lambda > 0$. Then $\lim (\lambda R_{\lambda})^n f = projection$ of f on the set $\{g: P_t g = g \text{ for all } t > 0\}$.

PROOF. Let $L = \{g: P_t g = g \text{ for all } t\}$ and $f = f_1 + f_2$ where $f_1 \in L$ and $f_2 \perp L$. Clearly $\lambda R_\lambda f_1 = f_1$ and we shall consider f_2 only. Now $||P_t|| \leq 1$ and thus $P_t g = g$ if and only if $P_t^* g = g$ or L^{\perp} is invariant under P_t . Now

$$(\lambda R_{\lambda})^{n} = \lambda^{n} \int_{0}^{\infty} \cdots \int_{0}^{\infty} e^{-\lambda(t_{1}+\cdots+t_{n})} P_{t_{1}+\cdots+t_{n}} dt_{1} \cdots dt_{n}$$

and is equal to the projection of $[\lambda(\lambda - iB)^{-1}]^n$ on H. Thus $(\lambda R_\lambda)^n f_2$ is strongly convergent too. Let its limit be h. Then $\lambda R_\lambda h = h$. Hence h belongs to the domain of definition of A and $(A - \lambda)h = \lambda(A - \lambda)R_\lambda h$ $= \lambda h$ or Ah = 0. Thus $h \in L$ but f_2 and $(\lambda R_\lambda)^n f_2$ belong to L. Therefore h = 0.

References

1. S. R. Foguel, The ergodic theorem for Markov processes, Israel J. Math. 4 (1966), 11-22.

2. —, Invariant subspaces of a measure preserving transformation, Israel J. Math. 2 (1964), 198-200.

3. P. R. Halmos, *Lectures on ergodic theory*, The Mathematical Society of Japan, 1956.

4. B. Sz.-Nagy, Prolongements des transformations de l'espace de Hilbert qui sortent de cet espace (Appendice au livre Leçons d'analyse fonctionelle), Akadémiai Kiadó, Budapest, 1955.

5. F. Riesz and B. Sz.-Nagy, Functional analysis, Ungar, New York, 1955.

THE HEBREW UNIVERSITY OF JERUSALEM AND

UNIVERSITY OF MINNESOTA, MINNEAPOLIS

1968]