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1. Introduction. Let (Q, 2, X) be a measure space with X(Q) = 1.

Consider the set 21 of all the operators, P, on L2(^l, 2, X) such that:

(1.1) ||P||=1

(1.2) PI   =1
(1.3) if/GA2 and/^0 then P/^0 a.e.

These operators are given by a Markov transition function for which

X is an invariant measure.

The set 21 is a weakly closed convex set and is selfadjoint.

We shall study several notions that are related to "mixing" prop-

erties and will show:

a convex combination mixes better than its generators.

Many of the results can be phrased, and their proofs are identical,

for general contractions on a Hilbert space. This will be mentioned

without details to avoid repetitions.

Let us repeat the following definitions from [l]. For each PG2I:

(1.4) A(P)={/:/Gi2(X),||P«/||=||P*»/|| =||/||, n=l,2, ■■■}.
(1.5) H0(P)={f:fEL2(X),    weak lim P"/=0}.
(1.6) HiiP)=HoiP)x.

It is proved in [l, Theorems 2 and 4] that these are subspaces and

HiiP)EKiP) and
(1.7) KiP)=L2iQi, Si, X) SiCS and U2i = fii.

Except for (1.7) all these definitions and results are valid for general

contractions on a Hilbert space.

Our aim will be to find how "small" is HiiP). Thus if Si is atomic

the "Limit Theorem" [l, Theorem 8] holds and if i?i = constant func-

tions, then P is strongly mixing.

The notions of ergodic and strongly mixing operators are defined

in [3].

2. Convex combination of finitely many Markov transition func-

tions.

Theorem 1. Let P\, • • • , Pm belong to 21 and P = Sa,P,- where a,>0

and Sa,-= 1. Then
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m oo

k(p) = n K(Pi) n n {/: p!/ = p7, p*7 = p*7
(,^.1J <_1 n=l

for all 1 ^ *,_; g w}.

Proof. It is enough to consider the case m — 2 since a convex com-

bination of Pi, ■ ■ ■ , Pm can be represented as a convex combination

of Pi and Q where Q is a convex combination of P2, • • • , Pm.

Let fEK(P) then

ll/ll = || [aPx + (1 - a)P2]"/|| ̂ 2o/(l - aT^P^ ■ • • l>I"Pfr||

g s«j-(i - «rii/ii=ii/ii
where &<£,• assume the values 0, 1 and Sfe,=j, 1,ki = n—j and the sum

is taken over all such choices when j ranges between 0 and n. Thus

each of the terms in the sum must have the norm ||/|| (since the

operators Pi and P2 are contractions). In particular ||P£f|| =||P£/j|

= ||/||. Also a Hilbert space is strictly convex and equality can occur

in the triangular inequality only when the terms are proportional.

Thus Py=yP%/ for some 7^0 and since they have the same norms

P\j = PiJ. Finally if /EK(P) then ||P*»/|| =||/|| and the same argu-

ment would apply to P* and P2*.

Conversely let P"xf=Pl/, Pi*'/ = P2*"/ and/EK(Px). Then

PxRi ■ ■ ■ PiPtf = Pi p2 • • • PiPif = Pi p2 ■ • • p2 7

continuing in this way we shall get P"f and thus Pnf=P\\f. Now since

fEK(Pi), \\P»f\\ =\\Pnxf\\ =||/||- The result for P* is analogous.

Theorem 2. Let Px • • • PmE§l and P = '2aiPi where a,>0 and

2a,-=1. Then

m 00

Hx(p) = n Hx(Pi) n n {/: pI/ = p", p,7 = p,7
(2.2) i=x n=l

/or all 1 ^ i,j ^ »z}.

Proof. If /EHi(P) then /EK(P) hence Pn/=PnJ for every

lrgigra. By [2, Theorem 3.1] /EHi(Pi). The converse is proved in

the same way.

Note that Theorems 1 and 2 hold for any contraction in a Hilbert

space.

From (2.1) follows that, under the assumptions of Theorem 1,

2i(P) Cnr=1 Si(P,). Hence if at least one of the fields 2i(P,-) is atomic,

then so is 2i(P).
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From (2.2) follows, under the assumptions of Theorem 2, that if at

least one of the operators P,- is strongly mixing so is P. Thus if Pi

is strongly mixing and P2 any operator in 21 then aPi+(l—a)Pi is

strongly mixing for any choice of 0<a<l. Thus P2 can be approxi-

mated in norm by strongly mixing operators. Let Q be an invertible

ergodic transformation in 21. By the Second Category Theorem [3,

p. 78] such transformations exist. Put P = hiQ+Q2)- Now if

fEKiP) then Qf= Q2f by Theorem 1 hence/= Qf and / is a constant.
This shows that there is at least one strongly mixing operator in 21

and hence a dense set of 21. Notice that we did not show the existence

of strongly mixing transformations but only operators in 21.

Let us conclude this chapter with the following remark: Let P

and Pi belong to 21. There exists an operator P2 in 21 such that P is a

convex combination of Pi and P2 iff for some 0<a<l Pf^aPif for

every f^O.
Clearly the condition is necessary. Now if Pf=aPif for every/^0

define P2f=il-a)~1iPf-Pif). Then P2 satisfies (1.2) and (1.3). In
order to prove (1.1) it is enough to observe that P2 is a contraction on

Z„ and if/=2c,lJii, where Ai are disjoint sets and 1^,. denote their

characteristic functions, then

j | P2f\ dX =g 2 | a\ (1 - a)"1 J (P - «Pi)U^X = 21 d\ XiAt)

since

j (P - aPi)lAidX = ((P - aPi)lAi, 1) = 0*,, (P* ~ <*Pi*)D

= (1 - «)(lAi, 1) = (1 - a)XiAi),

where (f, g) is the inner product of / and g.

3. Integral averages. Following Choquet's theory let us consider,

throughout this chapter, the following setup:

(3.1) Let p. be a regular positive measure, of total mass 1, defined on

the Borel subsets of 21 with its weak operator topology. Put

Q=  f PuidP).

The operator Q is defined by (Qf, g)=J%(Pf, g)pidP). The integral
exists since for every pair of vectors/, g the function 4>iP) = (Pf, g)

is continuous in the weak operator topology. Thus J%(Pf, g)pidP)

defines a bilinear form and hence is equal to (Qf, g) for some operator

Q. It is easy to check that Q belongs to 21.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



348 S. R. FOGUEL [April

Let us consider all the open subsets of §1 on which p. vanishes. Since

p, is regular p vanishes also on the union of all these sets. Denote by

SB (support of p.) the complement of this set. Thus

(3.2) PoE93 iff p does not vanish on any neighborhood o/ P0.

Theorem 3. Given Q by (3.1) then

(3.3) K(Q) =    fi   K(P)(~\   fi    {/: P"/= (?"/, P*nf = Q*"f for all n}.
P€S8 PSSB

Proof. Let fEK(Q) and P0ES3 and let 3) be any weak neighbor-

hood of Po. Put

Q = n(®) (mC©)-1 J" Pm(<*P)) + m(» - S» (m(» - Z))-1 f^P»(dP)\ -

Then, by Theorem 1, (p(T>)-1fT,Pn(dP))(f) = Q;f. Or, for any gE£2.
M(®)-1/s(P/, g)n(dP) = (Qf, g). H for some g (P0/, *>*<#, g> say

(Po/, g) <{Qf, g) then taking for SD the open set {P: <P/, g>< (Qf, g)}
we shall get a contradiction. Thus for every PESB, Pf=Qf. Now

P"f=Pn~1Qf and QfEK(Q) too and by an induction argument

Pn/=Qn/. The argument for P* is analogous.

Conversely, if/ belongs to the right side of (3.3) then take any P

in £3 and ||<2"/|| =||P"/!I =||/||, since/EK(P).
Remark. Theorem 3 can be viewed as a necessary condition for an

element P of 21 to belong to the support of any representation of the

type (3.1).

Theorem 4. Given Q by 3.1 then

(3.4) Hi(Q) = K(Q) n    D    Hi(P).

The proof is identical to the proof of Theorem 2.

4. Semigroup of contractions. Let us conclude this note with a

study of convergence of iterates of the resolvent of a semigroup of

contractions. The situation is somewhat similar to the one studied in

Chapter 3 but much stronger results are valid.

Let P( be a strongly continuous semigroup of contractions in the

Hilbert space H. Let Rx= ft'e~uP\dt, \>0. Thus Rx, X>0, is the

resolvent of the infinitesimal generator, A, of Pt at the point X. Let

Ut be the strong dilation of the semigroup see [4, Theorem IV]. Then

£/, is a strongly continuous semigroup of unitary operators. Let the

infinitesimal generator of Ut be iB. Then B is selfadjoint [5, p. 385].

Thus
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/»   CO

e~uUtdt = (X - iB)'1        X > 0.
o

The spectrum of X(X—iB)-1 is included in {X(X — it)-1: t is real}. This

set is inside the unit circle and touches the circumference of the unit

circle at the point 1 only. Now XfX—iB)-1 is a normal operator and,

from the Spectral Theorem and the above description of the spec-

trum, follows that (X(X — iB)-1)"/ is strongly convergent for every/

in the larger space where the Ut are defined.

Theorem 5. Let A\=/0°°e_x'P<d<, X>0. Then lim(XA\)n/ = projection

of f on the set {g: P tg = g   foralltX)}.

Proof. Let A = {g:P(g = g foralU} andf =fi+f2 where fiEL and
fil-L. Clearly XPx/i=/i and we shall consider f2 only. Now ||Pf|| ^1

and thus Ptg = g if and only if P*g = g or Ax is invariant under Pt.

Now

... |    er^+--+^Pll+...+tJti • • -dtn
o " o

and is equal to the projection of [X(X — iB)~1]n on H. Thus (XR\)nf2

is strongly convergent too. Let its limit be h. Then \R\h = h. Hence

h belongs to the domain of definition of A and (A —\)h = \(A —X)R\h

= Xh or Ah = 0. Thus hEL hut f2 and (XR\)nf2 belong to L. There-
fore fe = 0.
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