CONVEX COMBINATIONS OF MARKOV TRANSITION FUNCTIONS ${ }^{1}$

S. R. FOGUEL

1. Introduction. Let $(\Omega, \Sigma, \lambda)$ be a measure space with $\lambda(\Omega)=1$. Consider the set \mathfrak{H} of all the operators, P, on $L_{2}(\Omega, \Sigma, \lambda)$ such that:
(1.1) $\|P\|=1$
(1.2) $P 1=1$
(1.3) if $f \in L_{2}$ and $f \geqq 0$ then $P f \geqq 0$ a.e.

These operators are given by a Markov transition function for which λ is an invariant measure.

The set \mathfrak{A} is a weakly closed convex set and is selfadjoint.
We shall study several notions that are related to "mixing" properties and will show:
a convex combination mixes better than its generators.
Many of the results can be phrased, and their proofs are identical, for general contractions on a Hilbert space. This will be mentioned without details to avoid repetitions.

Let us repeat the following definitions from [1]. For each $P \in \mathfrak{H}$:
(1.4) $K(P)=\left\{f: f \in L_{2}(\lambda),\left\|P^{n} f\right\|=\left\|P^{*_{n} f}\right\|=\|f\|, n=1,2, \cdots\right\}$.
(1.5) $H_{0}(P)=\left\{f: f \in L_{2}(\lambda)\right.$, weak $\left.\lim P^{n} f=0\right\}$.
(1.6) $H_{1}(P)=H_{0}(P)^{\perp}$.

It is proved in [1, Theorems 2 and 4] that these are subspaces and $H_{1}(P) \subset K(P)$ and
(1.7) $K(P)=L_{2}\left(\Omega_{1}, \Sigma_{1}, \lambda\right) \Sigma_{1} \subset \Sigma$ and $U \Sigma_{1}=\Omega_{1}$.

Except for (1.7) all these definitions and results are valid for general contractions on a Hilbert space.

Our aim will be to find how "small" is $H_{1}(P)$. Thus if $\boldsymbol{\Sigma}_{1}$ is atomic the "Limit Theorem" [1 , Theorem 8] holds and if $H_{1}=$ constant functions, then P is strongly mixing.

The notions of ergodic and strongly mixing operators are defined in [3].
2. Convex combination of finitely many Markov transition functions.

Theorem 1. Let P_{1}, \cdots, P_{m} belong to \mathfrak{A} and $P=\Sigma \alpha_{i} P_{i}$ where $\alpha_{i}>0$ and $\Sigma \alpha_{i}=1$. Then

[^0]\[

$$
\begin{equation*}
K(P)=\bigcap_{i=1}^{m} K\left(P_{i}\right) \cap \bigcap_{n=1}^{\infty}\left\{f: P_{i}^{n} f=P_{j}^{n} f, P_{i}^{* n} f=P_{j}^{* n} f\right. \tag{2.1}
\end{equation*}
$$

\]

$$
\text { for all } 1 \leqq i, j \leqq m\}
$$

Proof. It is enough to consider the case $m=2$ since a convex combination of P_{1}, \cdots, P_{m} can be represented as a convex combination of P_{1} and Q where Q is a convex combination of P_{2}, \cdots, P_{m}.

Let $f \in K(P)$ then

$$
\begin{aligned}
\|f\|=\left\|\left[\alpha P_{1}+(1-\alpha) P_{2}\right]^{n} f\right\| & \leqq \Sigma \alpha^{j}(1-\alpha)^{n-j}\left\|P_{1}^{h_{1}} P_{2}^{k_{1}} \cdots P_{1}^{h_{n}} P_{2}^{k_{n}} f\right\| \\
& \leqq \Sigma \alpha^{j}(1-\alpha)^{n-j}\|f\|=\|f\|
\end{aligned}
$$

where $h_{i} k_{i}$ assume the values 0,1 and $\Sigma h_{i}=j, \Sigma k_{i}=n-j$ and the sum is taken over all such choices when j ranges between 0 and n. Thus each of the terms in the sum must have the norm $\|f\|$ (since the operators P_{1} and P_{2} are contractions). In particular $\left\|P_{1}^{n} f\right\|=\left\|P_{2}^{n} f\right\|$ $=\|f\|$. Also a Hilbert space is strictly convex and equality can occur in the triangular inequality only when the terms are proportional. Thus $P_{1}^{n} f=\gamma P_{2}^{n} f$ for some $\gamma \geqq 0$ and since they have the same norms $P_{1}^{n} f=P_{2}^{n} f$. Finally if $f \in K(P)$ then $\left\|P^{*_{n}} f\right\|=\|f\|$ and the same argument would apply to P_{1}^{*} and P_{2}^{*}.

Conversely let $P_{1}^{n} f=P_{2}^{n} f, P_{1}^{* n} f=P_{2}^{* n} f$ and $f \in K\left(P_{1}\right)$. Then

$$
P_{1}^{h_{1}} P_{2}^{k_{1}} \cdots P_{1}^{h_{n}} P_{2}^{k_{n}} f=P_{1}^{h_{1}} P_{2}^{k_{1}} \cdots P_{1}^{h_{n}} P_{1}^{k_{n}} f=P_{1}^{h_{1}} P_{2}^{k_{1}} \cdots P_{2}^{k_{n}+k_{n}} f
$$

continuing in this way we shall get $P_{1}^{n} f$ and thus $P^{n} f=P_{1}^{n} f$. Now since $f \in K\left(P_{1}\right),\left\|P^{n} f\right\|=\left\|P_{1}^{n} f\right\|=\|f\|$. The result for P^{*} is analogous.

Theorem 2. Let $P_{1} \cdots P_{m} \in \mathfrak{A}$ and $P=\Sigma \alpha_{i} P_{i}$ where $\alpha_{i}>0$ and $\Sigma \alpha_{i}=1$. Then

$$
\begin{align*}
& H_{1}(P)=\bigcap_{i=1}^{m} H_{1}\left(P_{i}\right) \cap \bigcap_{n=1}^{\infty}\left\{f: P_{i}^{n} f=P_{j}^{n}, P_{i}^{* n} f=P_{j}^{* n} f\right. \tag{2.2}\\
& \quad \text { for all } 1 \leqq i, j \leqq m\} .
\end{align*}
$$

Proof. If $f \in H_{1}(P)$ then $f \in K(P)$ hence $P^{n} f=P_{i}^{n} f$ for every $1 \leqq i \leqq m$. By [2, Theorem 3.1] $f \in H_{1}\left(P_{i}\right)$. The converse is proved in the same way.

Note that Theorems 1 and 2 hold for any contraction in a Hilbert space.

From (2.1) follows that, under the assumptions of Theorem 1, $\Sigma_{1}(P) \subset \bigcap_{i=1}^{m} \Sigma_{1}\left(P_{i}\right)$. Hence if at least one of the fields $\Sigma_{1}\left(P_{i}\right)$ is atomic, then so is $\Sigma_{1}(P)$.

From (2.2) follows, under the assumptions of Theorem 2, that if at least one of the operators P_{i} is strongly mixing so is P. Thus if P_{1} is strongly mixing and P_{2} any operator in \mathfrak{N} then $\alpha P_{1}+(1-\alpha) P_{2}$ is strongly mixing for any choice of $0<\alpha<1$. Thus P_{2} can be approximated in norm by strongly mixing operators. Let Q be an invertible ergodic transformation in \mathfrak{A}. By the Second Category Theorem [3, p. 78] such transformations exist. Put $P=\frac{1}{2}\left(Q+Q^{2}\right)$. Now if $f \in K(P)$ then $Q f=Q^{2} f$ by Theorem 1 hence $f=Q f$ and f is a constant. This shows that there is at least one strongly mixing operator in $\mathfrak{\Re}$ and hence a dense set of \mathfrak{N}. Notice that we did not show the existence of strongly mixing transformations but only operators in \mathfrak{A}.

Let us conclude this chapter with the following remark: Let P and P_{1} belong to \mathfrak{N}. There exists an operator P_{2} in \mathfrak{A} such that P is a convex combination of P_{1} and P_{2} iff for some $0<\alpha<1 \quad P_{f} \geqq \alpha P_{1}$ f for every $f \geqq 0$.

Clearly the condition is necessary. Now if $P f \geqq \alpha P_{1} f$ for every $f \geqq 0$ define $P_{2} f=(1-\alpha)^{-1}\left(P f-P_{1} f\right)$. Then P_{2} satisfies (1.2) and (1.3). In order to prove (1.1) it is enough to observe that P_{2} is a contraction on L_{∞} and if $f=\Sigma c_{i} 1_{A_{i}}$, where A_{i} are disjoint sets and $1_{A_{i}}$ denote their characteristic functions, then

$$
\int\left|P_{2} f\right| d \lambda \leqq \Sigma\left|c_{i}\right|(1-\alpha)^{-1} \int\left(P-\alpha P_{1}\right) 1_{A_{i}} d \lambda=\Sigma\left|c_{i}\right| \lambda\left(A_{i}\right)
$$

since

$$
\begin{aligned}
\int\left(P-\alpha P_{1}\right) 1_{A_{i}} d \lambda & =\left\langle\left(P-\alpha P_{1}\right) 1_{A_{i}}, 1\right\rangle=\left\langle 1_{A_{i}},\left(P^{*}-\alpha P_{1}^{*}\right) 1\right\rangle \\
& =(1-\alpha)\left\langle 1_{A_{i}}, 1\right\rangle=(1-\alpha) \lambda\left(A_{i}\right),
\end{aligned}
$$

where $\langle f, g\rangle$ is the inner product of f and g.
3. Integral averages. Following Choquet's theory let us consider, throughout this chapter, the following setup:
(3.1) Let μ be a regular positive measure, of total mass 1, defined on the Borel subsets of \mathfrak{Q} with its weak operator topology. Put

$$
Q=\int_{\mathfrak{n}} P \mu(d P) .
$$

The operator Q is defined by $\langle Q f, g\rangle=\int_{\because}\langle P f, g\rangle \mu(d P)$. The integral exists since for every pair of vectors f, g the function $\phi(P)=\langle P f, g\rangle$ is continuous in the weak operator topology. Thus $\int_{\mathfrak{q}}\langle P f, g\rangle \mu(d P)$ defines a bilinear form and hence is equal to $\langle Q f, g\rangle$ for some operator Q. It is easy to check that Q belongs to \because.

Let us consider all the open subsets of \mathfrak{A} on which μ vanishes. Since μ is regular μ vanishes also on the union of all these sets. Denote by \mathfrak{B} (support of μ) the complement of this set. Thus
(3.2) $P_{0} \in \mathfrak{B}$ iff μ does not vanish on any neighborhood of P_{0}.

Theorem 3. Given Q by (3.1) then

$$
\begin{equation*}
K(Q)=\bigcap_{P \in \mathscr{B}} K(P) \cap \bigcap_{P \in \mathfrak{B}}\left\{f: P^{n f}=Q^{n f}, P^{* n} f=Q^{* n} f \text { for all } n\right\} . \tag{3.3}
\end{equation*}
$$

Proof. Let $f \in K(Q)$ and $P_{0} \in \mathfrak{B}$ and let \mathfrak{D} be any weak neighborhood of P_{0}. Put
$Q=\mu(\mathfrak{D})\left(\mu(\mathfrak{D})^{-1} \int_{\mathfrak{D}} P \mu(d P)\right)+\mu(\mathfrak{B}-\mathfrak{D})\left(\mu(\mathfrak{B}-\mathfrak{D})^{-1} \int_{\mathfrak{P}-\mathscr{D}} P \mu(d P)\right)$.
Then, by Theorem 1, $\left(\mu(\mathfrak{D})^{-1} \int_{\mathfrak{D}} P \mu(d P)\right)(f)=Q f$. Or, for any $g \in L_{2}$, $\mu(\mathfrak{D})^{-1} \int_{\mathfrak{D}}\langle P f, g\rangle \mu(d P)=\langle Q f, g\rangle$. If for some $g\left\langle P_{0} f, g\right\rangle \neq\langle Q f, g\rangle$ say $\left\langle P_{0} f, g\right\rangle<\langle Q f, g\rangle$ then taking for \mathfrak{D} the open set $\{P:\langle P f, g\rangle\langle\langle Q f, g\rangle\}$ we shall get a contradiction. Thus for every $P \in \mathfrak{B}, P f=Q f$. Now $P^{n f}=P^{n-1} Q f$ and $Q f \in K(Q)$ too and by an induction argument $P^{n} f=Q^{n} f$. The argument for P^{*} is analogous.

Conversely, if f belongs to the right side of (3.3) then take any P in \mathfrak{B} and $\left\|Q^{n f}\right\|=\left\|P^{n f}\right\|=\|f\|$, since $f \in K(P)$.

Remark. Theorem 3 can be viewed as a necessary condition for an element P of \mathfrak{Q} to belong to the support of any representation of the type (3.1).

Theorem 4. Given Q by 3.1 then

$$
\begin{equation*}
H_{1}(Q)=K(Q) \cap \bigcap_{P \in \mathfrak{P}} H_{1}(P) . \tag{3.4}
\end{equation*}
$$

The proof is identical to the proof of Theorem 2.
4. Semigroup of contractions. Let us conclude this note with a study of convergence of iterates of the resolvent of a semigroup of contractions. The situation is somewhat similar to the one studied in Chapter 3 but much stronger results are valid.

Let P_{t} be a strongly continuous semigroup of contractions in the Hilbert space H. Let $R_{\lambda}=\int_{0}^{\infty} e^{-\lambda t} P_{t} d t, \lambda>0$. Thus $R_{\lambda}, \lambda>0$, is the resolvent of the infinitesimal generator, A, of P_{t} at the point λ. Let U_{t} be the strong dilation of the semigroup see [4, Theorem IV]. Then U_{t} is a strongly continuous semigroup of unitary operators. Let the infinitesimal generator of U_{t} be $i B$. Then B is selfadjoint [5, p. 385]. Thus

$$
\int_{0}^{\infty} e^{-\lambda t} U_{t} d t=(\lambda-i B)^{-1} \quad \lambda>0
$$

The spectrum of $\lambda(\lambda-i B)^{-1}$ is included in $\left\{\lambda(\lambda-i t)^{-1}: t\right.$ is real $\}$. This set is inside the unit circle and touches the circumference of the unit circle at the point 1 only. Now $\lambda(\lambda-i B)^{-1}$ is a normal operator and, from the Spectral Theorem and the above description of the spectrum, follows that $\left(\lambda(\lambda-i B)^{-1}\right)^{n} f$ is strongly convergent for every f in the larger space where the U_{t} are defined.

Theorem 5. Let $R_{\lambda}=\int_{0}^{\infty} e^{-\lambda t} P_{t} d t, \lambda>0$. Then $\lim \left(\lambda R_{\lambda}\right)^{n} f=$ projection of f on the set $\left\{g: P_{t} g=g\right.$ for all $\left.t>0\right\}$.

Proof. Let $L=\left\{g: P_{t} g=g\right.$ for all $\left.t\right\}$ and $f=f_{1}+f_{2}$ where $f_{1} \in L$ and $f_{2} \perp L$. Clearly $\lambda R_{\lambda} f_{1}=f_{1}$ and we shall consider f_{2} only. Now $\left\|P_{t}\right\| \leqq 1$ and thus $P_{t} g=g$ if and only if $P_{t}^{*} g=g$ or L^{\perp} is invariant under P_{t}. Now

$$
\left(\lambda R_{\lambda}\right)^{n}=\lambda^{n} \int_{0}^{\infty} \cdots \int_{0}^{\infty} e^{-\lambda\left(t_{1}+\cdots+t_{n}\right)} P_{t_{1}+\cdots+t_{n}} d t_{1} \cdots d t_{n}
$$

and is equal to the projection of $\left[\lambda(\lambda-i B)^{-1}\right]^{n}$ on H. Thus $\left(\lambda R_{\lambda}\right)^{n} f_{2}$ is strongly convergent too. Let its limit be h. Then $\lambda R_{\lambda} h=h$. Hence h belongs to the domain of definition of A and $(A-\lambda) h=\lambda(A-\lambda) R_{\lambda} h$ $=\lambda h$ or $A h=0$. Thus $h \in L$ but f_{2} and $\left(\lambda R_{\lambda}\right)^{n} f_{2}$ belong to L. Therefore $h=0$.

References

1. S. R. Foguel, The ergodic theorem for Markov processes, Israel J. Math. 4 (1966), 11-22.
2. -_, Invariant subspaces of a measure preserving transformation, Israel J. Math. 2 (1964), 198-200.
3. P. R. Halmos, Lectures on ergodic theory, The Mathematical Society of Japan, 1956.
4. B. Sz.-Nagy, Prolongements des transformations de l'espace de Hilbert qui sortent de cet espace (Appendice au livre Lȩ̧ons d'analyse fonctionelle), Akadémiai Kiad6, Budapest, 1955.
5. F. Riesz and B. Sz.-Nagy, Functional analysis, Ungar, New York, 1955.

The Hebrew University of Jerusalem and
University of Minnesota, Minneapolis

[^0]: Received by the editors November 18, 1966.
 ${ }^{1}$ The research reported in this document has been sponsored by the Office of Scientific Research, OAR under Grant AF EOAR 66-18 through the European Office of Aerospace Research, United States Air Force and by NSF-GP 3906 and NSF-GP 4033 in the University of Minnesota, Minneapolis.

