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Abstract

We characterize the maximum controlled invariant (MCI) set for discrete- as
well as continuous-time nonlinear dynamical systems as the solution of an infinite-
dimensional linear programming problem. For systems with polynomial dynamics
and compact semialgebraic state and control constraints, we describe a hierarchy of
finite-dimensional linear matrix inequality (LMI) relaxations whose optimal values
converge to the volume of the MCI set; dual to these LMI relaxations are sum-of-
squares (SOS) problems providing a converging sequence of outer approximations
to the MCI set. The approach is simple and readily applicable in the sense that
the approximations are the outcome of a single semidefinite program with no addi-
tional input apart from the problem description. A number of numerical examples
illustrate the approach.

1 Introduction

Given a controlled dynamical system described by a differential (continuous-time) or
difference (discrete-time) equation, its maximum controlled invariant (MCI) set is the
set of all initial states that can be kept within a given constraint set ad infinitum using
admissible control inputs. This set goes by many other names in the literature, e.g.,
viability kernel in viability theory [5], or (A, B)-invariant set in the linear case [14].

Set invariance is an ubiquitous and essential concept in dynamical systems theory, as far
as both analysis and control synthesis is concerned. In particular, by its very definition,
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the MCI set determines fundamental limitations of a given control system with respect
to constraint satisfaction. In addition, there is a very tight link between invariant sets
and (control) Lyapunov functions. Indeed, sub-level sets of a Lyapunov function give
rise to invariant sets. Conversely, at least in the linear case, any controlled invariant set
gives rise to a control Lyapunov function, and therefore these sets can be readily used to
design stabilizing control laws; see, e.g., [9] for a general treatment and, e.g., [18, 27] for
applications in model predictive control design.

The problem of (maximum) controlled invariant set computation for discrete-time systems
has been a topic of active research for more than four decades. The central tool in this
effort has been the contractive algorithm of [7] and its expansive counterpart [19]. For an
exhaustive survey and historical remarks see the survey [9] and the book [13].

Both algorithms, although conceptually applicable to any nonlinear system, have been
predominantly applied in a linear setting where they boil down to a sequence of linear
programs and polyhedral projections. Finite termination of this sequence is a subtle prob-
lem and sharp results are available only in the uncontrolled setting where no projections
are required [17]; for discussion of finite-termination in the controlled case see [44]. The
contractive and expansive algorithms were combined in [18] to design an algorithm termi-
nating in a finite number of iterations and outputting an ǫ-accurate inner approximation
of the MCI set (with the accuracy measured by the Hausdorff distance). Another line
of research, culminating in [41], exploits the linearity of the system dynamics in a more
systematic way and approximates the maximum (or minimum) robust controlled invariant
set by the Minkowski sum of a parametrized family of sets. Very recently, in continu-
ous time, [31] developed a parallel algorithm for ellipsoidal approximations of the robust
MCI set scalable to very high dimensions. Computation of low-complexity polyhedral
controlled invariant sets was investigated in [11] and [12].

In the nonlinear case, a common practice is to exploit the tight connection between in-
variance and Lyapunov functions and seek invariant sets as sub-level sets of a (control)
Lyapunov function; see, e.g., [15, 50] and references therein for recent theoretical devel-
opments on the related problem of region of attraction computation and, e.g., [35] for
practical applications of these techniques. This, however, typically leads to non-convex
bilinear optimization problems which are notoriously hard to solve. Therefore, one of-
ten has to resort to ad-hoc analysis of the specific system at hand, which is typically
tractable only in small dimensions; see [45, 46] for concrete examples. Related in spirit
is the localization technique of [26] for discrete-time uncontrolled systems, also requiring
considerable effort in analysing the system.

Recently, a general approach using a hierarchy of finite-dimensional linear programs (LPs)
was used in [6] to design a controller ensuring invariance of a given candidate polyhedral
set. In our opinion, although being the current state of the art, this work still suffers
from the following drawbacks: 1) the sets obtained are convex polytopes (not general
semi-algebraic sets, a fact particularly limiting in the nonlinear case where nonconvex
MCI sets are common); 2) the geometry of the candidate polytopic set must be given a
priori; 3) there are no convergence guarantees to the MCI set. In this paper, we explicitly
address all these points.

Building upon our previous work [20] on the computation of the region of attraction (ROA)
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for polynomial control systems, in this paper we characterize the maximum controlled
invariant (MCI) set for discrete- as well as continuous-time polynomial systems as the
solution to an infinite-dimensional LP problem in the cone of nonnegative measures. The
dual of this problem is an infinite-dimensional LP in the space of continuous functions.
Finite-dimensional relaxations of the primal LP and finite-dimensional approximations of
the dual LP turn out to be semidefinite programs (SDPs) also related by duality. The
primal relaxations lead to a truncated moment problem while the dual approximations to
a sum-of-squares (SOS) problem. Super-level sets of one of the polynomials appearing in
the dual SOS problem then provide outer approximations to the MCI set with guaranteed
convergence as the degree of the polynomial tends to infinity.

The main mathematical tool we use are the so-called occupation measures which allow
us to study the time evolution of the whole ensemble of initial conditions (described by a
measure) rather than studying trajectories associated to each initial condition separately.
The use of measures to study dynamical systems has a very long tradition: see [43] for
probably the first systematic treatment1; for purely discrete-time treatment see [23, Chap-
ter 6]. To the best of the authors’ knowledge our paper is the first one to use occupation
measures for MCI set (approximate) computation. The MCI set was previously charac-
terized using occupation measures in [16], but there the characterization is rather indirect
and not straightforwardly amenable to computation. Apart from the authors’ work [20],
the related problem of region of attraction computation was tackled using measures in [51].
There, however, a very different approach was taken, not using occupation measures but
rather analyzing convergence via discretization of the state-space and propagating the
initial distribution by means of a discretized transfer operator. Here, instead, we employ
the (discounted) occupation measure which captures the behaviour of the trajectories
emanating from the initial distribution over the infinite time horizon. As a result, our
approach requires no discretization and, contrary to [51], provides true guarantees (not
in an “almost-everywhere” or “coarse” sense) and, more importantly, is applicable in a
controlled setting. Closely related to the occupation measures used here is the Rantzer’s
density [42] which was used in [40] to assess the stability of attractor sets of uncontrolled
nonlinear systems. The approach, however, does not immediately yield approximations
of the MCI set (or the region of attraction) and applies to uncontrolled systems only.

Similar in spirit to our approach, from the dual viewpoint of optimization over functions,
are the Hamilton-Jacobi approaches (e.g., [36, 37]). However, contrary to these methods,
our approach does not require state-space discretization and comes with convergence
guarantees.

The contribution of our paper with respect to previous work on the topic can be summa-
rized as follows:

• we deal with fully general continuous-time and discrete-time polynomial dynamics
under semi-algebraic state and control constraints;

• our approximated MCI set is described by (the intersections of) polynomial super-
level sets, including more restrictive classes (e.g. polytopes, ellipsoids, etc.);

1In [43], J. E. Rubio used Young measures [49] rather than occupation measures, but the basic idea
of “linearizing” a nonlinear problem by going into an infinite-dimensional space of measures is the same.
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• we provide a convex infinite-dimensional LP characterization of the MCI set;

• we describe a hierarchy of convex finite-dimensional SDPs to solve the LP with
convergence guarantees;

• our approach is simple and readily applicable in the sense that the approximations
are the result of a single SDP with no additional data required apart from the
problem description.

The contribution with respect to our previous work [20] can be summarised as follows:

• in [20] we compute the ROA, which is a related although different object: it is the
set of all of initial conditions that can be steered to a given target set while satisfying
state and control constraints. In particular, the MCI set differs from the ROA in
the sense that we do not try to hit any target set at a given time but rather try to
keep the state within a given set forever. Therefore we had to adapt our technique
to deal explicitly with invariance;

• in [20] we dealt with continuous-time systems only, whereas we can cope, with
minor modifications, with discrete-time systems as well; we choose to describe both
the continuous-time and discrete-time setups in parallel precisely to underline these
common features;

• in [20] we considered only a finite time-horizon, whereas here we show how to cope,
with the help of discounting, with an infinite horizon. This brought additional
technical issues not encountered in finite time.

What can be considered a drawback of our approach is the fact that the approximations
to the MCI set we obtain are from the outside and therefore not invariant. However,
accurate outer approximations provide important information as to the performance lim-
itations of the control system and are of practical interest, e.g., in collision avoidance.
Therefore we believe that our work bears both theoretical and practical value, and natu-
rally complements existing inner-approximation techniques.

The paper is organised as follows. The problem to be solved is described in Section 2.
Occupation measures are introduced in Section 3. The infinite-dimensional primal and
dual LPs are described in Sections 4 and 5, respectively. The finite-dimensional relaxations
with convergence results are presented in Section 6. Numerical examples are in Section 7.
A reader interested only in the semialgebraic outer approximations of the MCI set can
consult directly the infinite-dimensional dual LPs (8) and (9) and their finite-dimensional
approximations (11) and (13) in discrete and continuous time, respectively.

1.1 Notation

Measures are understood as signed Borel measures on a Euclidean space, i.e., as countably
additive maps from the Borel sets to the real numbers. From now on all subsets of a
Euclidean space we refer to are automatically understood as Borel. The vector space of
all signed Borel measures with its support contained in a set X is denoted by M(X).
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The support (i.e., the smallest closed set whose complement has a zero measure) of a
measure µ is denoted by spt µ. The space of continuous functions on X is denoted by
C(X) and likewise the space of once continuously differentiable functions is C1(X). The
indicator function of a set X (i.e., a function equal to one on X and zero otherwise) is
denoted by IX(·). The symbol λ denotes the n-dimensional Lebesgue measure (i.e., the
standard n-dimensional volume). The integral of a function v with respect to a measure
µ over a set X is denoted by

∫

X
v(x) dµ(x). Sometimes for conciseness we use the shorter

notation
∫

v dµ omitting the integration variable and also the set over which we integrate
if they are obvious from the context. The ring of polynomials in (possibly vector) variables
x1,. . . ,xn is denoted by R[x1, . . . , xn].

2 Problem statement

The approach is developed in parallel for discrete and continuous time.

2.1 Discrete time

Consider the discrete-time control system

xt+1 = f(xt, ut), xt ∈ X, ut ∈ U, t ∈ {0, 1, . . . } (1)

with a given polynomial vector field f with entries fi ∈ R[x, u], i = 1, . . . , n, and given
compact basic semialgebraic state and input constraints

xt ∈ X := {x ∈ R
n : gXi(x) ≥ 0, i = 1, 2, . . . , nX},

ut ∈ U := {u ∈ R
m : gU i(u) ≥ 0, i = 1, 2, . . . , nU}

with gXi ∈ R[x], gU i ∈ R[u].

The maximum controlled invariant (MCI) set is defined as

XI :=
{

x0 ∈ X : ∃
(
{xt}

∞
t=1, {ut}

∞
t=1

)
s.t. xt+1 = f(xt, ut),

ut ∈ U, xt ∈ X, ∀t ∈ {0, 1, . . .}
}

.

A control sequence {ut}
∞
t=0 is called admissible if ut ∈ U for all t ∈ {0, 1, . . . }.

In words, the MCI set is the set of all initial states which can be kept inside the constraint
set X ad infinitum using admissible control inputs.

2.2 Continuous time

Consider the relaxed continuous-time control system

ẋ(t) ∈ conv f(x(t), U), x(t) ∈ X, t ∈ [0,∞), (2)
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where conv denotes the convex hull, f is a polynomial vector field with entries fi ∈
R[x, u], i = 1, . . . , n, and compact basic semialgebraic state and input constraint sets are
defined by

X := {x ∈ R
n : gXi(x) ≥ 0, i = 1, 2, . . . , nX},

U := {u ∈ R
m : gU i(u) ≥ 0, i = 1, 2, . . . , nU}

with gXi ∈ R[x], gU i ∈ R[u]. The meaning of the convex differential inclusion (2) is as
follows: for all time t, the state velocity ẋ(t) is constrained to the convex hull of the
set f(x(t), U) := {f(x(t), u) : u ∈ U} ⊂ R

n. The connection of this convexified (or
relaxed) control problem (2) and the classical control problem ẋ = f(x, u) is the Filippov-
Ważewski Theorem [5], which shows that the trajectories of ẋ = f(x, u) are dense (in the
supremum norm) in the set of trajectories of the convexified inclusion2 (2). Therefore,
from a practical point of view, there is little difference between the two formulations for
the purposes of MCI set computation; see Section 3.2 and Appendices B and C of [20] for
a detailed discussion on this subtle issue. The simplest assumption under which the MCI
sets for both systems coincide is f(x, U) being convex for all x, which is in particular true
for input-affine systems of the form ẋ = f(x) + g(x)u with U convex.

The maximum controlled invariant (MCI) set is defined as

XI :=
{

x0 ∈ X : ∃ x(·) s.t. ẋ(t) ∈ conv f(x(t), U) a.e., x(t) ∈ X ∀ t ∈ [0,∞)
}

,

where x(·) is required to be absolutely continuous and a.e. stands for “almost everywhere”
with respect to the Lebesgue measure on [0,∞).

In words, the MCI set is the set of all initial states for which there exists a trajectory of
the convexified inclusion (2) which remains in X ad infinitum.

3 Occupation measures

In this section we introduce the concept of occupation measures which is the centrepiece
of our approach.

3.1 Discrete time

Given a discount factor α ∈ (0, 1), an initial condition x0 and an admissible control
sequence {ut|x0

}∞t=0 such that the associated state sequence {xt|x0
}∞t=0 remains in X for all

time, we define the discounted occupation measure µ(· | x0) ∈ M(X × U) as

µ(A × B | x0) :=
∞∑

t=0

αtIA×B(xt|x0
, ut|x0

) (3)

for all sets A ⊂ X and B ⊂ U .

2Note that the set conv f(x(t), U) is closed for every t since f is continuous and U compact; therefore
there is no need to take closure of the convex hull in order to apply the Filippov-Ważewski theorem.
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In words, the discounted occupation measure measures the (discounted) number of visits
of the state-control pair trajectory (x(· |x0), ν(· |x0)) to subsets of X×U . The discounting
in the definition of the occupation measure ensures that µ(A×B | x0) is always finite; in
fact we have µ(X × U | x0) = (1 − α)−1.

Now suppose that the initial condition is not a single point but an initial measure3 µ0 ∈
M(X) and an admissible control sequence is associated to each initial condition from the
support of µ0 in such a way that the corresponding state sequence remains in X. Then
we define the average discounted occupation measure µ ∈ M(X × U) as

µ(A × B) :=

∫

X

µ(A × B |x0) dµ0(x0).

The average discounted occupation measure measures the discounted average number of
visits in subsets of X × U of trajectories starting from the initial distribution µ0.

Now we derive an equation linking the measures µ0 and µ. This equation will play a key
role in subsequent development and in a sense replaces the dynamics equation (1). To
derive this equation fix an initial condition x0 ∈ X and a control sequence {ut|x0

}∞t=0 such
that the associated state sequence {xt|x0

}∞t=0 stays in X. Then for any v ∈ C(X) we have

∫

X×U

v(x) dµ(x, u |x0) =
∞∑

t=0

αtv(xt|x0
) = v(x0|x0

) + α
∞∑

t=0

αtv(xt+1|x0
)

= v(x0|x0
) + α

∞∑

t=0

αtv(f(xt|x0
, ut|x0

))

= v(x0|x0
) + α

∫

X×U

v(f(x, u)) dµ(x, u |x0).

Integrating w.r.t. µ0 we arrive at the sought equation

∫

X×U

v(x) dµ(x, u) =

∫

X

v(x) dµ0(x) + α

∫

X×U

v(f(x, u)) dµ(x, u) ∀v ∈ C(X). (4)

Note that this is an infinite-dimensional linear equation in variables (µ0, µ).

The following crucial Lemma establishes the connection between the support of any initial
measure µ0 solving (4) and the MCI set XI .

Lemma 1 For any pair of measures (µ0, µ) satisfying equation (4) with spt µ0 ⊂ X and
spt µ ⊂ U × X we have spt µ0 ⊂ XI .

Proof: A detailed proof is in Appendix A. �

3The initial measure µ0 can be thought of as the probability distribution of the initial state, although
we do not require the mass of µ0 to be normalized to one.
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3.2 Continuous time

Given an initial condition x0 and a trajectory x(· | x0) of the inclusion (2) that remains
in X for all t ≥ 0, there exists an admissible time-varying measure-valued relaxed control
νt(· |x0) ∈ M(U), νt(U |x0) = 1, such that

ẋ(t) =

∫

U

f(x(t), u) dνt(u |x0)

almost everywhere with respect to the Lebesgue measure on [0,∞). This follows from
the definition of the convex hull (in fact, for each t, νt(· |x0) can be taken to be a convex
combination of finitely many Dirac measures).

Then, given a discount factor β > 0, we define the discounted occupation measure µ(· | x0) ∈
M(X × U) as

µ(A × B | x0) :=

∫ ∞

0

∫

U

e−βtIA×B(x(t |x0), u) dνt(u |x0) dt

for all sets A ⊂ X and B ⊂ U .

In words, the discounted occupation measure measures the (discounted) time spent by
the state-control pair trajectory (x(· |x0), ν(· |x0)) in subsets of X × U . The discounting
in the definition of the occupation measure ensures that µ(A×B | x0) is always finite; in
fact we have µ(X × U | x0) = β−1.

Now suppose that the initial condition is not a single point but an initial measure4 µ0 ∈
M(X) and a state trajectory that remains in X along with an admissible relaxed control
is associated to each initial condition from the support of µ0. Then we define the average
discounted occupation measure µ ∈ M(X × U) as

µ(A × B) :=

∫

X

µ(A × B | x0) dµ0(x0).

Now we derive an equation linking the measures µ0 and µ. This equation will play a key
role in subsequent development and in a sense replaces the dynamics equation (2). To
derive the equation, fix an initial condition x0 ∈ X, a trajectory x(· | x0) that remains
in X with an associated admissible relaxed control νt(· | x0). Then for any v ∈ C1(X)
integration by parts yields

∫

X×U

grad v · f(x, u) dµ(x, u |x0) =

∫ ∞

0

∫

U

e−βtgrad v ·f(x(t | x0), u) dνt(u |x0) dt

=

∫ ∞

0

e−βt d

dt
v(x(t |x0)) dt

= β

∫ ∞

0

e−βtv(x(t |x0)) dt − v(x(0 |x0))

= β

∫

X×U

v(x) dµ(x, u |x0) − v(x(0 |x0)),

4The initial measure µ0 can be thought of as the probability distribution of the initial state, although
we do not require the mass of µ0 to be normalized to one.
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where the boundary term at infinity vanishes due to discounting and the fact that X is
bounded. Integrating with respect to µ0 then gives the sought equation

β

∫

X×U

v(x) dµ(x, u) =

∫

X

v(x) dµ0(x)+

∫

X×U

grad v ·f(x, u) dµ(x, u) ∀v ∈ C1(X). (5)

Note that this is an infinite-dimensional linear equation in variables (µ0, µ).

The following crucial Lemma establishes the connection between the support of any initial
measure satisfying (5) and the MCI set XI .

Lemma 2 For any pair of measures (µ0, µ) satisfying equation (5) with spt µ0 ⊂ X and
spt µ ⊂ U × X we have λ(spt µ0) ≤ λ(XI).

Proof: A detailed proof is in Appendix B. �

4 Primal LP

In this section we show how the MCI set computation problem can be cast as an infinite-
dimensional LP problem in the cone of nonnegative measures. As in [20], the basic idea
is to maximize the mass of the initial measure µ0 subject to the constraint that it be
dominated by the Lebesgue measure, that is, µ0 ≤ λ. System dynamics is captured by
the equations (4) and (5) for discrete and continuous times, respectively; state and input
constraints are expressed through constraints on the supports of the initial and occupation
measure. The constraint that µ0 ≤ λ can be equivalently rewritten as µ0 + µ̂0 = λ for
some nonnegative slack measure µ̂0 ∈ M(X). This constraint is in turn equivalent to
∫

X
w(x) dµ0(x)+

∫

X
w(x) dµ̂0(x) =

∫

X
w(x) dλ(x) for all w ∈ C(X). These considerations

lead to the following primal LPs.

4.1 Discrete time

The primal LP in discrete time reads

p∗ = sup µ0(X)
s.t.

∫
v(x) dµ(x, u) =

∫
v(x) dµ0(x) + α

∫
v(f(x, u)) dµ(x, u) ∀ v ∈ C(X)

∫
w(x) dµ0(x) +

∫
w(x) dµ̂0(x) =

∫
w(x) dλ(x) ∀w ∈ C(X)

µ ≥ 0, µ0 ≥ 0, µ̂0 ≥ 0
spt µ ⊂ X × U, spt µ0 ⊂ X, spt µ̂0 ⊂ X,

(6)
where the supremum is over the vector of measures (µ, µ0, µ̂0) ∈ M(X × U) × M(X) ×
M(X).

This is an infinite-dimensional LP in the cone of nonnegative Borel measures. The fol-
lowing Lemma, which is our main theoretical result, relates an optimal solution of this
LP to the MCI set XI .
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Theorem 1 The optimal value of LP problem (6) is equal to the volume of the MCI set
XI , that is, p∗ = λ(XI). Moreover, the supremum is attained by the restriction of the
Lebesgue measure to the MCI set XI .

Proof: The proof follows from Lemma 1 by the same arguments as Theorem 1 in [20]. By
definition of the MCI set XI , for any initial condition x0 ∈ XI there exists an admissible
control sequence such that the associated state sequence remains in X. Therefore for any
initial measure µ0 ≤ λ with spt µ0 ⊂ XI there exist a discounted occupation measure µ
with spt µ ⊂ X × U and a slack measure µ̂0 with spt µ̂0 ⊂ X such that the constraints of
problem (6) are satisfied. One such measure µ0 is the restriction of the Lebesgue measure
to XI , and therefore p∗ ≥ λ(XI). The fact p∗ ≤ λ(XI) follows from Lemma 1. �

4.2 Continuous time

The primal LP in continuous time reads

p∗ = sup µ0(X)
s.t. β

∫
v(x) dµ(x, u) =

∫
v(x) dµ0(x) +

∫
grad v · f(x, u) dµ(x, u) ∀v ∈ C1(X)

∫
w(x) dµ0(x) +

∫
w(x) dµ̂0(x) =

∫
w(x) dλ(x) ∀w ∈ C(X)

µ ≥ 0, µ0 ≥ 0, µ̂0 ≥ 0
spt µ ⊂ X × U, spt µ0 ⊂ X, spt µ̂0 ⊂ X,

(7)
where the infimum is over the vector of measures (µ, µ0, µ̂0) ∈ M(X×U)×M(X)×M(X).

This is an infinite-dimensional LP in the cone of nonnegative Borel measures. The fol-
lowing Lemma, which is our main theoretical result, relates an optimal solution of this
LP to the MCI set XI .

Theorem 2 The optimal value of LP problem (7) is equal to the volume of the MCI set
XI , that is, p∗ = λ(XI). Moreover, the supremum is attained by the restriction of the
Lebesgue measure to the MCI set XI .

Proof: The fact that µ0 equal to the restriction of the Lebesgue measure to XI is feasible
in (7) (and therefore p∗ ≥ λ(XI)) follows by the same arguments as in discrete time. The
fact that p∗ ≤ λ(XI) follows from Lemma 2. �

5 Dual LP

In this section we derive LPs dual to the primal LPs (6) and (7). Since the primal LPs
are in the space of measures, the dual LPs will be on the space of continuous functions.
Super-level sets of feasible solutions to these LPs then provide outer approximations to the
MCI sets, both in discrete and in continuous time. Both duals can be derived by standard
infinite-dimensional LP duality theory; see [20] for a derivation in a similar setting or [3]
for a general theory of infinite-dimensional linear programming.
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5.1 Discrete time

The dual LP in discrete time reads

d∗ = inf

∫

X

w(x) dλ(x)

s.t. αv(f(x, u)) ≤ v(x), ∀ (x, u) ∈ X × U
w(x) ≥ v(x) + 1, ∀x ∈ X
w(x) ≥ 0, ∀x ∈ X,

(8)

where the infimum is over the pair of functions (v, w) ∈ C(X) × C(X).

The following key observation shows that the unit super-level set of any function w feasible
in (8) provides an outer-approximation to XI .

Lemma 3 Any feasible solution to problem (8) satisfies v ≥ 0 and w ≥ 1 on XI .

Proof: Given any x0 ∈ XI there exists a sequence {ut}
∞
t=0, ut ∈ U , such that xt ∈ X for

all t. The first constraint of problem (8) is equivalent to αv(xt+1) ≤ v(xt), t ∈ {0, 1, . . .}.
By iterating this inequality we get

v(x0) ≥ αtv(xt) → 0 as t → ∞

since xt ∈ X and X is bounded. Therefore v(x0) ≥ 0 and w(x0) ≥ 1 for all x0 ∈ XI . �

The following theorem is instrumental in proving the convergence results of Section 6.

Theorem 3 There is no duality gap between primal LP problems (6) on measures and
dual LP problem (8) on functions in the sense that p∗ = d∗.

Proof: Follows by the same arguments as Theorem 2 in [20] using standard infinite-
dimensional LP duality theory (see, e.g., [3]) and the fact that the feasible set of the
primal LP is nonempty and bounded in the metric inducing the weak-* topology on
M(X) × M(X × U) × M(X). To see non-emptiness, notice that the vector of measures
(µ0, µ, µ̂0) = (0, 0, λ) is trivially feasible. To see the boundedness, it suffices to evaluate the
equality constraints of (6) for v(x) = w(x) = 1. This gives µ0(X) + µ̂0(X) = λ(X) < ∞
and µ(X) = µ0(X)/(1 − α), which, since α ∈ (0, 1) and all measures are nonnegative,
proves the assertion. �

5.2 Continuous time

The dual LP in continuous time reads

d∗ = inf

∫

X

w(x) dλ(x)

s.t. grad v · f(x, u) ≤ βv(x), ∀ (x, u) ∈ X × U
w(x) ≥ v(x) + 1, ∀x ∈ X
w(x) ≥ 0, ∀x ∈ X,

(9)
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where the infimum is over the pair of functions (v, w) ∈ C1(X) × C(X).

The following key observation shows that the unit super-level set of any function w feasible
in (9) provides an outer-approximation to XI .

Lemma 4 Any feasible solution to problem (9) satisfies v ≥ 0 and w ≥ 1 on XI .

Proof: Given any x0 ∈ XI there exists an admissible relaxed control function νt(·),
νt(U) = 1, such that x(t) ∈ X for all t. For that x(t) we have d

dt
v(x(t)) =

∫

U
grad v ·

f(x(t), u) dνt(u) ≤
∫

U
βv(x(t)) dνt(u) = νt(U)βv(x(t)) = βv(x(t)). Then by Gronwall’s

inequality v(x(t)) ≤ eβtv(x0), and consequently

v(x0) ≥ e−βtv(x(t)) → 0 as t → ∞

since x(t) ∈ X and X is bounded. Therefore v(x0) ≥ 0 and w(x0) ≥ 1 for all x0 ∈ XI . �

The following theorem is instrumental in proving the convergence results of Section 6.

Theorem 4 There is no duality gap between primal LP problems (7) on measures and
dual LP problem (9) on functions in the sense that p∗ = d∗.

Proof: Follows by the same arguments as Theorem 2 in [20] using standard infinite-
dimensional LP duality theory (see, e.g., [3]) and the fact that the feasible set of the
primal LP is nonempty and bounded in the metric inducing the weak-* topology on
M(X) × M(X × U) × M(X). To see non-emptiness, notice that the vector of measures
(µ0, µ, µ̂0) = (0, 0, λ) is trivially feasible. To see the boundedness, it suffices to evaluate the
equality constraints of (7) for v(x) = w(x) = 1. This gives µ0(X) + µ̂0(X) = λ(X) < ∞
and µ(X) = µ0(X)/β, which, since β > 0 and all measures are nonnegative, proves the
assertion. �

6 LMI relaxations

In this section we present finite dimensional relaxations of the infinite-dimensional LPs.
Both in continuous and discrete time, the relaxations of the primal LPs lead to a truncated
moment problem which translates to a semidefinite program (SDP) that can be solved
by freely available software, e.g., SeDuMi [38] or SDPA [47]. Dual to the primal SDP
relaxation is a sum-of-squares (SOS) problem that again translates to an SDP problem.
The following discussion closely follows the one in [28].

We only highlight the main ideas behind the derivation of the finite-dimensional relax-
ations. The reader is referred to [20, Section 5] or to the comprehensive reference [32]
for details. First, since the supports of all measures feasible in (6) and (7) are compact,
these measures are uniquely determined by their moments, i.e., by integrals of all mono-
mials (which is a sequence of real numbers when indexed in, e.g., the canonical monomial
basis). Therefore, it suffices to restrict the test functions w(x) and v(x) in (6) and (7) to
all monomials, reducing the linear equality constraints on measures µ0, µ and µ̂0 of (6)
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and (7) to linear equality constraints on their moments. Next, by the Putinar Positivstel-
lensatz (see [32, 39]), the constraint that the support of a measure is included in a given
compact basic semialgebraic set is equivalent to the feasibility of an infinite sequence of
LMIs involving the so-called moment and localizing matrices, which are linear in the co-
efficients of the moment sequence. By truncating the moment sequence and taking only
the moments corresponding to monomials of total degree less than or equal to 2k, where
k ∈ {1, 2, . . .} is the relaxation order, we obtain a necessary condition for this truncated
moment sequence to be the first part of a moment sequence corresponding to a measure
with the desired support.

In what follows, Rk[·] denotes the vector space of real multivariate polynomials of total
degree less than or equal to k. Furthermore, throughout the rest of this section we make
the following standard standing assumption:

Assumption 1 One of the polynomials modeling the sets X resp. U is equal to gXi(x) =
R2

X − ‖x‖2
2 resp. gU i(u) = R2

U − ‖u‖2
2 with RX , RU sufficiently large constants.

This assumption is completely without loss of generality since redundant ball constraints
can be always added to the description of the compact sets X and U .

6.1 Discrete time

The primal relaxation of order k in discrete time reads

p∗k = max (y0)0

s.t. Ak(y, y0, ŷ0) = bk

Mk(y) � 0, Mk−dXi
(gXi, y) � 0, i = 1, 2, . . . , nX

Mk−dU i
(gU i, y) � 0, i = 1, 2, . . . , nU

Mk(y0) � 0, Mk−dXi
(gXi, y0) � 0, i = 1, 2, . . . , nX

Mk(ŷ0) � 0, Mk−dXi
(gXi, ŷ0) � 0, i = 1, 2, . . . , nX ,

(10)

where the notation � 0 stands for positive semidefinite and the minimum is over moment
sequences (y, y0, ŷ0) truncated to degree 2k corresponding to measures µ, µ0 and µ̂0 in (6).
The linear equality constraint captures the two linear equality constraints of (6) with
v(t, x) ∈ R2k[t, x] and w(x) ∈ R2k[x] being monomials of total degree less than or equal to
2k. The matrices Mk(·) are the moment and localizing matrices, following the notations
of [32] or [20]. In problem (10), a linear objective is minimized subject to linear equality
constraints and LMI constraints; therefore problem (10) is a semidefinite program (SDP).

The dual relaxation of order k in discrete time reads

d∗
k = inf w′l

s.t. v(x) − αv(f(x, u)) = q0(x, u) +
∑nX

i=1 qi(x, u)gXi(x) +
∑nU

i=1 ri(x, u)gU i(u)

w(x) − v(x) − 1 = p0(x) +
∑nX

i=1 pi(x)gXi(x)

w(x) = s0(x) +
∑nX

i=1 si(x)gXi(x),
(11)

where l is the vector of Lebesgue moments over X indexed in the same basis in which
the polynomial w(x) with coefficients w is expressed. The minimum is over polynomials
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v(x) ∈ R2k[x] and w ∈ R2k[x], and polynomial sum-of-squares qi, pi, si, i = 1, . . . , nX and
ri, i = 1, . . . , nU , of appropriate degrees. In problem (11), a linear objective function is
minimized subject to sum-of-squares (SOS) constraints; therefore problem (11) is an SOS
problem which can be readily cast as an SDP (see, e.g., [32]).

6.2 Continuous time

The primal relaxation of order k in continuous time reads

p∗k = max (y0)0

s.t. Ak(y, y0, ŷ0) = bk

Mk(y) � 0, Mk−dXi
(gXi, y) � 0, i = 1, 2, . . . , nX

Mk−dU i
(gU i, y) � 0, i = 1, 2, . . . , nU

Mk(y0) � 0, Mk−dXi
(gXi, y0) � 0, i = 1, 2, . . . , nX

Mk(ŷ0) � 0, Mk−dXi
(gXi, ŷ0) � 0, i = 1, 2, . . . , nX ,

(12)

where the notation � 0 stands for positive semidefinite and the minimum is over moment
sequences (y, y0, ŷ0) truncated to degree 2k corresponding to measures µ, µ0 and µ̂0 in (7).
The linear equality constraint captures the two linear equality constraints of (7) with
v(t, x) ∈ R2k[t, x] and w(x) ∈ R2k[x] being monomials of total degree less than or equal to
2k. The matrices Mk(·) are the moment and localizing matrices, following the notations
of [32] or [20]. In problem (12), a linear objective is minimized subject to linear equality
constraints and LMI constraints; therefore problem (12) is a semidefinite program (SDP).

The dual relaxation of order k in continuous time reads

d∗
k = inf w′l

s.t. βv(x) − grad v ·f(x, u) = q0(x, u)+
∑nX

i=1 qi(x, u)gXi(x)+
∑nU

i=1 ri(x, u)gU i(u)

w(x) − v(x) − 1 = p0(x) +
∑nX

i=1 pi(x)gXi(x)

w(x) = s0(x) +
∑nX

i=1 si(x)gXi(x),
(13)

where l is the vector of Lebesgue moments over X indexed in the same basis in which
the polynomial w(x) with coefficients w is expressed. The minimum is over polynomials
v(x) ∈ R2k[x] and w ∈ R2k[x], and polynomial sum-of-squares qi, pi, si, i = 1, . . . , nX and
ri, i = 1, . . . , nU , of appropriate degrees. In problem (13), a linear objective function is
minimized subject to sum-of-squares (SOS) constraints; therefore problem (13) is an SOS
problem which can be readily cast as an SDP (see, e.g., [32]).

6.3 Convergence results

In this section we state several convergence results for the finite dimensional relaxations
resp. approximations (10), (12) resp. (11), (13). Let wk and vk denote an optimal solution
to the kth dual SDP approximation (11) or (13), and define

XIk := {x ∈ X : vk(x) ≥ 0}.
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Then, in view of Lemmata 3 and 4, we know that wk over-approximates the indicator
function of the MCI set XI on X, i.e., wk ≥ IXI

on X, and that the sets XIk approximate
from the outside the MCI set XI , i.e., XIk ⊃ XI . In the sequel we prove the following:

• The optimal values of the finite-dimensional primal and dual problems p∗k and d∗
k

coincide and converge to the optimal values of the infinite dimensional primal and
dual LPs p∗ and d∗ which also coincide (in view of Theorems 3 and 4) and are equal
to the volume of the MCI set.

• The sequence of functions wk converges on X from above to the indicator function
of the MCI set in L1 norm. In addition, the running minimum mini≤k wi converges
on X from above to the indicator function of the MCI set set in L1 norm and almost
uniformly.

• The sequence of sets XIk converges to the MCI set XI in the sense that the volume
discrepancy tends to zero, i.e., limk→∞ λ(XIk \ XI) = 0.

The proofs of the results follow very similar reasoning as analogous results on region of
attraction approximations in [20, Section 6].

Lemma 5 There is no duality gap between primal LMI problems (10 and 12) and dual
LMI problems (11 and 13), i.e. p∗k = d∗

k.

Proof: The argument closely follows the one in [20, Theorem 4] and therefore we only
outline the key points of the proof. To prove the absence of duality gap, it is sufficient
to show that the feasible sets of the primal SDPs (10) and (12) are non-empty and
compact. The result then follows by standard SDP duality theory (see [20, Theorem 4]
for a detailed argument). The non-emptiness follows trivially since the vector of measures
(µ0, µ, µ̂) = (0, 0, λ) is feasible in the primal infinite-dimensional LPs (6) and (7) and
therefore the truncated moment sequences corresponding to these measures are feasible
in the primal SDP relaxations (10) and (12). To see the compactness observe that the first
components (i.e., masses) of the truncated moment vectors y0, y and ŷ are bounded. This
follows by evaluating the equality constraints of (6) and (7) for w(x) = v(x) = 1. Indeed,
in discrete-time we get (y)0 = (y0)0/(1−α) and in continuous-time we get (y)0 = (y0)0/β;
in addition, in both cases we have (y0)0 + (ŷ0)0 = λ(X) < ∞ and therefore the first
components are indeed bounded (since they are trivially bounded from below, in fact
nonnegative, due to the constraints on moment matrices). Boundedness of the even
components of each truncated moment vector then follows from the structure of the
localizing matrices corresponding to the functions from Assumption 1. Boundedness of
the entire truncated moment vectors then follows since the even moments appear on the
diagonal of the positive semidefinite moment matrices. �

The following result shows the convergence of the optimal values of the relaxations to the
optimal values of the infinite-dimensional LPs.

Theorem 5 The sequence of infima of LMI problems (11) and (13) converges monoton-
ically from above to the supremum of the LP problems (8) and (9), i.e., d∗ ≤ d∗

k+1 ≤ d∗
k
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and limk→∞ d∗
k = d∗. Similarly, the sequence of maxima of LMI problems (10) and (12)

converges monotonically from above to the maximum of the LP problems (6) and (7), i.e.,
p∗ ≤ p∗k+1 ≤ p∗k and limk→∞ p∗k = p∗.

Proof: The monotonicity of the optimal values of the relaxations p∗k resp. approximations
d∗

k is evident form the structure of the feasible sets of the corresponding SDPs. The
convergence of the primal relaxations pk to p∗ follows from the compactness of the feasible
sets of the primal SDPs (10) and (12) (shown in the proof of Lemma 5) by standard
arguments on the convergence of Lasserre’s LMI hierarchy (see, e.g., [32]). The converge
of the optimal value of the dual approximations d∗

k to d∗ then follows from Lemma 5. �

The next theorem shows functional convergence from above to the indicator function of
the MCI set.

Theorem 6 Let wk ∈ R2k[x] denote the w-component of a solution to the dual LMI
problems (11) or (13) and let w̄k(x) = mini≤k wi(x). Then wk converges from above to
IXI

in L1 norm and w̄k converges from above to IXI
in L1 norm and almost uniformly.

Proof: The convergence in L1 norm follows immediately from Theorem 5 and from the
fact that wk ≥ IXI

by Lemmata 3 and 4. The convergence of the running minima follows
from the fact that there exists a subsequence of {wk}

∞
k=0 which converges almost uniformly

(by, e.g., [4, Theorems 2.5.2 and 2.5.3]). �

Our last theorem shows a set-wise convergence of the outer-approximations to the MCI
set.

Theorem 7 Let (vk, wk) ∈ R2k[x] × R2k[x] denote an optimal solution to the dual LMI
problem (11) or (13) and let XIk := {x ∈ R

n : vk(x) ≥ 0}. Then XI ⊂ XIk,

lim
k→∞

λ(XIk \ XI) = 0 and λ(∩∞
k=1XIk \ XI) = 0.

Proof: From Lemmata 3 or 4 we have XIk ⊃ XI and wk ≥ IXI
; therefore, since w ≥ v+1

and w ≥ 0 on X, we have wk ≥ IXIk
≥ IXI

and {x : wk(x) ≥ 1} ⊃ XIk ⊃ X0. From
Theorem 6, we have wk → IXI

in L1 norm on X. Consequently,

λ(XI) =

∫

X

IXI
dλ = lim

k→∞

∫

X

wk dλ ≥ lim
k→∞

∫

X

IXIk
dλ

= lim
k→∞

λ(XIk) ≥ lim
k→∞

λ(∩k
i=1XI i) = λ(∩∞

k=1XIk).

But since XI ⊂ XIk for all k, we must have

lim
k→∞

λ(XIk) = λ(XI) and λ(∩∞
k=1XIk) = λ(XI),

and the theorem follows. �
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7 Numerical examples

In this section we present numerical examples that illustrate our results. The primal
SDP relaxations were modeled using Gloptipoly 3 [21] and the dual SOS problems using
Yalmip [34]. The resulting SDP problems were solved using SeDuMi [38] (which, in the
case of primal relaxations, also returns the dual solution providing the outer approxima-
tions). For numerical computation (especially for higher relaxation orders), the problem
data should be scaled such that the constraint sets are (within) unit boxes or unit balls;
for ease of reproduction, most of the numerical problems shown are already scaled. On
our problem class we observed only marginal sensitivity to the values of the discrete- and
continuous-time discount factors α and β and report results with α = 0.9 and β = 1 for
all examples presented.

For a discussion on the scalability of our approach and the performance of alternative
SDP solvers see the Conclusion and the acrobot-on-a-cart example below.

7.1 Discrete time

7.1.1 Double integrator

Consider the discrete-time double integrator:

x+
1 = x1 + 0.1x2

x+
2 = x2 + 0.05u

with the state constraint set X = [−1, 1]2 and input constraint set U = [−0.5, 0.5]. The
resulting of MCI set outer approximations of degree 8 and 12 are shown in Figure 1; the
approximation is fairly tight for modest degrees. The true MCI set was computed using
the standard algorithm based on polyhedral projections [9].

7.1.2 Cathala system

Consider the Cathala system borrowed from [29]:

x+
1 = x1 + x2

x+
2 = −0.5952 + x2 + x2

1.

The chaotic attractor of this system is contained in the set X = [−1.6, 1.6]2. MCI set
outer approximations are shown in Figure 2; again, the approximations are relatively tight
for small relaxation orders. The true MCI set was (approximately) computed by gridding.

7.1.3 Julia sets

Consider over z ∈ C, or equivalently over x ∈ R
2 with z := x1 + ix2, the quadratic

recurrence

z+ = z2 + c
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Figure 1: Discrete time double integrator – polynomial outer approximations (light gray)
to the MCI set (dark gray) for degrees d ∈ {8, 12}.
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Figure 2: Cathala system – polynomial outer approximations (light gray) to the MCI set (dark
gray) for degrees d ∈ {6, 10}.

with c ∈ C a given complex number and i the imaginary unit. The filled Julia set is the set
of all initial conditions of the above recurrence for which the trajectories remain bounded.
The shape of the Julia set depends strongly on the parameter c. If c lies inside the
Mandelbrot set, then the Julia set is connected; otherwise the set is disconnected. In both
cases the boundary of the set has a very complicated (in fact fractal) structure. Here we
shall compute outer approximations of the filled Julia set intersected with the unit ball. To
this end we set X = {x ∈ R

2 : ‖x‖ ≤ 1}. Figure 3 shows outer approximations of degree 12
for parameter values c = −0.7 + i0.2 (inside the Mandelbrot set) and c = −0.9 + i0.2
(outside the Mandelbrot set). The “true” filled Julia set was (approximately) obtained by
randomly sampling initial conditions within the unit ball and iterating the recurrence for
one hundred steps. Taking higher degree of the approximating polynomials does not give
significant improvements due to our choice of the monomial basis to represent polynomials.
An alternative basis (e.g. Chebyshev polynomials – see the related discussions in [22] and
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c = −0.7 + i0.2 c = −0.9 + i0.2

Figure 3: Filled Julia set – polynomial outer approximation of degree 12 (light gray) and (an
approximation of) the “true” set (dark grey) represented as an ensemble of initial conditions
randomly sampled within the state-constraint set. The dashed line shows the boundary of the
unit-ball state-constraint set.

[20]) would allow us to improve further the outer estimates and better capture the intricate
structure of the filled Julia set’s boundary.

7.1.4 Hénon map

Consider the modified controlled Hénon map

x+
1 = 0.44 − 0.1x3 − 4x2

2 + 0.25u,

x+
2 = x1 − 4x1x2,

x+
3 = x2,

adapted from [33] with X = [−1, 1]3 and U = [−umax, umax]. We investigate two cases:
uncontrolled (i.e., umax = 0) and controlled with umax = 1. Figure 4 shows outer approx-
imations to the MCI set of degree eight for both settings and the “true” MCI set in the
uncontrolled setting (approximately) obtained by random sampling of initial conditions
inside the constraint set X. The outer approximations suggest that, as expected, allowing
for control leads to a larger MCI set.

7.2 Continuous time

7.2.1 Double integrator

Consider the continuous-time double integrator

ẋ1 = x2

ẋ2 = u,
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Figure 4: Controlled Hénon map – polynomial outer approximation of degree eight in the
uncontrolled setting (darker red, smaller) and in the controlled setting (lighter red, larger).
The (approximation of) the “true” set (black) in the uncontrolled setting is represented as an
ensemble of initial conditions randomly sampled within the state-constraint set.

with state constraint set X = [−1, 1]2 and input constraint set U = [−1, 1]. The resulting
MCI set outer approximations for degrees 8 and 12 are in Figure 5. The approximations
are fairly tight even for relatively low relaxation orders. The true MCI set was (approxi-
mately) computed as in Section 7.1.1 by methods of [9] after dense time discretization.

7.2.2 Spider-web system

As our second example we take the spider-web system from [1] given by equations

ẋ1 = −0.15x7
1 + 200x6

1x2 − 10.5x5
1x

2
2 − 807x4

1x
3
2 + 14x3

1x
4
2 + 600x2

1x
5
2 − 3.5x1x

6
2 + 9x7

2

ẋ2 = −9x7
1 − 3.5x6

1x2 − 600x5
1x

2
2 + 14x4

1x
3
2 + 807x3

1x
4
2 − 10.5x2

1x
5
2 − 200x1x

6
2 − 0.15x7

2

with the constraint set X = [−1, 1]2. Here we exploit the fact that the system dynamics
are captured by constraints on v only whereas w is merely over approximating v + 1, and
the fact that outer approximations to the MCI set are given not only by {x : v(x) ≥ 0} but
also by {x : w(x) ≥ 1}. Therefore, if low-complexity outer approximations are desired, it
is reasonable to choose different degrees of v and w in (13) – high for v and lower for w –
and use the set {x : w(x) ≥ 1} as the outer approximation. That way, we expect to obtain
relatively tight low-order approximations. This is confirmed by numerical results shown
in Figure 6. The degree of v is equal to 16 for both figures, whereas deg w = 8 for the
left figure and deg w = 16 for the right figure. We observe no significant loss in tightness
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Figure 5: Continuous-time double integrator – polynomial outer approximations (light gray) to
the MCI set (dark gray) for degrees d ∈ {8, 14}.

by choosing a smaller degree of w. The true MCI set was (approximately) computed by
gridding.
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Figure 6: Spider-web system – polynomial outer approximations (light gray) to the MCI set
(dark gray) for degrees deg v = 16 and deg w = 8 on the left and deg w = 16 on the right.

7.2.3 Acrobot on a cart

As our last example we consider the acrobot on a cart system adapted from [24], which is
essentially a double pendulum on a cart where the inputs are the force acting on the cart
and the torque in the middle joint of the double pendulum. The system is sketched in
Figure 7. It is a sixth order system with with two control inputs; the dynamic equation
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is given by

ẋ =







x4

x5

x6

M(x)−1N(x, u)






∈ R

6

where

M(x) =





a1 a2 cos x2 a3 cos x3

a2 cos x2 a4 a5 cos(x2 − x3)
a3 cos x3 a5 cos(x2 − x3) a6





and

N(x, u) =





u1 + a2x
2
5 sin x2 + a3x

2
6 sin x3 − δ0x4

−a5x
2
6 sin(x2 − x3) + δ2x6 + a7 sin x2 − x5(δ1 + δ2)

u2 + a5 sin(x2 − x3)x
2
5 + δ2x5 − δ2x6 + a8 sin x3



 .

The states x1, x2, x3 represent, respectively, the position of the cart (in meters), the
angle of the lower rod and the angle of the upper rod of the double pendulum (both in
radians); the states x4, x5 and x6 are then the corresponding velocities in meters per
second for the cart and radians per second for the pendulum rods. The constants are
given by a1 = 0.85, a2 = 0.2063, a3 = 0.0688, a4 = 0.0917, a5 = 0.0344, a6 = 0.0229,
a7 = 2.0233, a8 = 0.6744, δ0 = 0.3, δ1 = 0.1, δ2 = 0.1. We are interested in computing
the maximum controlled invariant subset of the state constraint set

X = [−1, 1] × [−π/3, π/3] × [−π/3, π/3] × [−0.5, 0.5] × [−5, 5] × [−5, 5].

We investigate two cases. First, we consider the situation where only the middle joint is
actuated and there is no force on the cart; therefore we impose the constraint (u1, u2) ∈
U = {0} × [−1, 1]. Second, we consider the situation where we can also exert a force on
the cart; in this case we impose (u1, u2) ∈ U = [−1, 1] × [−1, 1]. Naturally, the MCI set
for the second case is larger (or at least the same) as for the first case. This is confirmed5

by outer approximations of degree four whose section for x1 = 0, x4 = 0, x5 = 0 is shown
in Figure 8. In order to compute the outer approximations we took a third order Taylor
expansion of the non-polynomial dynamics even though exact treatment would be possible
via a coordinate transformation leading to rational dynamics to which our methods can
be readily extended; this extension is, however, not treated in this paper and therefore we
opted for the simpler (and non-exact) approach using Taylor expansion. Before solving the
problem we made a linear coordinate transform so that the state constraint set becomes
the unit hypercube [−1, 1]6.

This example, which is the largest of those considered in this paper, took 110 seconds
to solve6 with SeDuMi for d = 4; the corresponding time with the MOSEK SDP solver
was 10 seconds. Using MOSEK we could also solve this example for d = 6 (in 420
seconds) although there the solver converged to a solution with a rather poor accuracy7

and therefore we do not report the results.

5There is no a priori guarantee on set-wise ordering of the outer approximations; what is guaranteed
is the ordering of optimal values of the optimization problems (12) or (13).

6All examples were run on an Apple iMac with 3.4 GHz Intel Core i7, 8 GB RAM and Mac OS X
10.8.2. The time reported is the pure solver time, not including the Yalmip preprocessing time.

7Note that the MOSEK SDP solver is still being developed and its accuracy is likely to improve in
the future.
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Figure 7: Acrobot on a cart – sketch
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x6 = ẋ3

−π/2
−π/4

0 π/4
π/2 −π/2
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−0.5
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Figure 8: Acrobot on a cart – section of the polynomial outer approximations of degree four for
(x1, x4, x5) = (0, 0, 0). Only the middle joint actuated – darker, smaller; middle joint and the
cart actuated – lighter, larger. The states displayed x2, x3 and x6 are, respectively, the lower
pendulum angle, the upper pendulum angle and the upper pendulum angular velocity.

8 Conclusion

We derived an infinite-dimensional convex characterization of the maximum controlled
invariant (MCI) set, finite-dimensional approximations of (the dual of) which provide
a converging sequence of semialgebraic outer-approximations to this set. The outer-
approximations are the outcome of a single semidefinite program (SDP) with no addi-
tional data required besides the problem description. Therefore the approach is readily
applicable using freely available modeling tools such Gloptipoly 3 [21] or YALMIP [34]
with no hand-tuning involved.

The cost to pay for this comfort is the relatively unfavourable scalability of the semidef-
inite programs solved – the number of variables grows as O((n + m)d), where n and m
are the state and control dimensions and d is the degree of the approximating polyno-
mial. Therefore, in order for this approach to scale to medium dimensions (say, more
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than m + n = 6) one either has to tradeoff accuracy by taking small d or go beyond
the standard freely available solvers such as SeDuMi or SDPA. One possibility is par-
allelization; for instance, the free parallel solver SDPARA [48] allows for the approach
to scale to larger dimensions. Alternatively, one can utilize one of the (few) commercial
SDP solvers; in particular, the recently released MOSEK SDP solver seems to show far
superior performance on our problem class, and therefore this may allow the approach to
scale to larger dimensions (see also the discussion following the acrobot-on-a-cart example
in Section 7.2.3). Finally, one can resort to customized structure-exploiting solutions; this
is a promising direction of future research currently investigated by the authors. At this
point it should be emphasized that, to the best of the authors’ knowledge, all of the ex-
isting approaches providing approximations of similar quality experience similar or worse
scalability properties.

Other directions of future research include the extension of the presented approach to
inner approximations of MCI sets, to stochastic systems and to uncertain systems. Par-
tial results on the inner approximations for the related problem of region of attraction
computation already exist [28], albeit in uncontrolled setting only.

Appendix A

We start by embedding our problem in the setting of discrete-time Markov control pro-
cesses; terminology and notation is borrowed from the classical reference [23]. Let us
define a stochastic kernel on U given X as a map ν(· | ·) such that ν(· | x) is a prob-
ability measure on U for all x ∈ X and ν(B | ·) is a measurable function on X for all
B ⊂ U . Any such stochastic kernel gives rise to a discrete-time Markov process when
applied to system (1) as a stationary randomized control policy (a policy which, given
x, chooses the control action randomly based on the probability distribution ν(· |x), i.e.,
Prob(u ∈ B |x) = ν(B |x) for all B ⊂ U). The transition kernel Qν(· | ·) of this stationary
Markov process is then given by

Qν(A |x) =

∫

U

IA(f(x, u)) dν(u |x) = Prob(x+ ∈ A |x) ∀A ⊂ R
n,

where x is the current state and x+ the successor state. The t-step transition kernel is
then defined by induction as

Qt
ν(A |x) :=

∫

Rn

Q(A |y) dQt−1
ν (y |x), t ∈ {2, 3, . . .}

with Q1
ν := Qν . Given an initial distribution µ0, the distribution of the Markov chain at

time t, µ̃t, is given by

µ̃t(A) =

∫

X

Qt
ν(A |x) dµ0(x) = Prob(xt ∈ A).

The joint distribution of state and control is then

µt(A × B) =

∫

A

ν(B |x) dµ̃t(x).
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The discounted occupation measure associated to the Markov process is defined by

µ(A × B) =
∞∑

t=0

αtµt(A × B).

Note that this relation reduces to (3) when µt = δ(xt,ut)

In order to prove Lemma 1 we need the following result that can be found in [23].

Lemma 6 For any pair of measures (µ0, µ) satisfying equation (4) there exists a station-
ary randomized control policy ν(· | x) such the Markov chain obtained by applying this
control policy to the difference equation (1) starting from initial distribution µ0 has the
discounted occupation measure equal to µ.

Proof: Disintegrate µ as dµ(x, u) = dν(u | x)dµ̃(x), where µ̃ denotes the x-marginal
of µ and ν is a stochastic kernel on U given X. According to the discussion preceding
Lemma 6, applying ν to (1) gives rise to a stationary discrete-time Markov process with
the transition kernel Qν starting form the initial distribution µ0.

With this notation, equation (4) can be equivalently rewritten as
∫

X

v(x) dµ̃(x) =

∫

X

v(x) dµ0(x) + α

∫

X

∫

Rn

v(y) dQν(y |x) dµ̃(x) (14)

for any measurable v(x) (derivation of equation (4) did not depend on the continuity of v).
Taking v(x) := IA(x) we obtain

µ̃(A) = µ0(A) + α

∫

X

Qν(A |x) dµ̃(x) ∀A ⊂ X. (15)

Using relation (14) with v(x) := Qν(A | x) to evaluate the integral w.r.t. µ̃ on the right
hand side of (15) we get

µ̃(A) = µ0(A) + α

∫

X

Qν(A |x) dµ0(x) + α2

∫

X

Q2
ν(A |x) dµ̃(x).

By iterating this procedure we obtain

µ̃(A) = µ0(A) +
t∑

i=1

αi

∫

X

Qi
ν(A |x) dµ0(x)

︸ ︷︷ ︸

µi(A)

+ αt+1

∫

X

Qt+1
ν (A |x) dµ̃(x)

︸ ︷︷ ︸

→ 0

, (16)

and taking the limit as t → ∞ gives

µ̃(A) =
∞∑

t=0

αtµ̃t(A),

where the third term in (16) converges to zero because α ∈ (0, 1), Qt+1
ν (A | x) ≤ 1 and

µ̃ is a finite measure. Hence the x-marginal of the discounted occupation measure of the
Markov chain coincides with the x-marginal of µ.
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Finally, to establish equality of the whole measures observe that

∞∑

t=0

αtµt(A × B) =
∞∑

t=0

αt

∫

A

ν(B |x) dµ̃t(x) =

∫

A

ν(B |x) dµ̃(x) = µ(A × B).

�

Proof of Lemma 1: Disintegrate µ to dµ(x, u) = dν(u | x)dµ̃(x) as in the proof of
Lemma 6. Then for any x ∈ S := spt µ̃ we have

∫

U

IS(f(x, u)) ν(u |x) = 1.

This relation says that the support of µ̃ is invariant under ν and follows from Lemma 6,
from the definition of the occupation measure µ, from the definition of the support and
from the fact that ν(· |x) is a probability measure for all x.

Define an admissible stationary deterministic control policy by taking any measurable
selection u(x) ∈ spt ν(· |x) ⊂ U . Define further the sequence of probability measures

νn(A |x) =
ν(B1/n(u(x)) ∩ A |x)

ν(B1/n(u(x)) ∩ U |x)
∀n ∈ {1, 2, . . .}, A ⊂ U,

where B1/n(u(x)) is a closed ball of radius 1/n centered at u(x). Then νn(· |x) converges
weakly-* (or weakly or narrowly) to δu(x) and

∫

U

IS(f(x, u)) νn(u |x) = 1 ∀n ∈ {1, 2, . . .}.

Therefore,

1 = lim sup
n→∞

∫

U

IS(f(x, u)) νn(u |x) ≤

∫

U

IS(f(x, u)) δu(x)(u) = IS(f(x, u(x))),

where the inequality follows by the Portmanteau lemma since the set {u | f(x, u) ∈
S ∩B1/n(u(x))} is closed for all x by continuity of f . Therefore in fact IS(f(x, u(x))) = 1
and so f(x, u(x)) ∈ spt µ̃ for all x ∈ spt µ̃. Therefore spt µ̃ ⊂ X is invariant for the closed
loop system xt+1 = f(xt, u(xt)), where u(x) is an admissible deterministic control policy.
Therefore necessarily spt µ̃ ⊂ XI . Finally, from equation (4) clearly sptµ0 ⊂ spt µ̃ and so
spt µ0 ⊂ XI . �

9 Appendix B

Lemma 7 For any pair of measures (µ0, µ) solving (5), there exists a family of trajec-
tories of the convexified inclusion (2) starting from µ0 such that the x-marginal of its
discounted occupation measure is equal to the x-marginal of µ.

Proof: The proof is based on fundamental results of [2] and [8] and on the compactifica-
tion procedure discussed in [30].

26



We begin by embedding the problem in a stochastic setting. To this end, define the
extended state space E as the one-point compactification of R

n, i.e., E = R
n∪{∆}, where

∆ is the point compactifying R
n. Define also the linear operator A : D(A) → C(E × U)

by
w 7→ Aw := grad w · f,

where the domain of A, D(A), is defined as

D(A) := {w : E → R | w ∈ C1(Rn), w(∆) = 0, lim
x→∆

w(x) = 0,

lim
x→∆

grad w · f(x, u) = 0 ∀ u ∈ U}.

In words, D(A) is the space all continuously differentiable functions vanishing at infinity
such that grad w · f also vanishes at infinity for all u ∈ U . Now consider the relaxed
martingale problem [8]: find a stochastic process Y : [0,∞] × Ω → E defined on some
filtered probability space (Ω,F , (Ft)t≥0, P ) and a stochastic kernel ν(· | ·) (stationary
relaxed Markov control) on U given E such that

• P (Y (0) ∈ A) = µ0(A) ∀A ⊂ E

• for all w ∈ D(A) the stochastic process

w(Y (t)) −

∫ t

0

∫

U

Aw(Y (τ), u) ν(du |Y (τ)) dτ (17)

is an Ft-martingale (see, e.g., [25] for a definition).

Observe that there exists a countable subset of D(A) (e.g., all polynomials with rational
coefficients attenuated near infinity) dense in D(A) in the supremum norm. Next, D(A)
is clearly an algebra that separates points of E and A1 = 0. Finally, since f(x, u) is
polynomial and hence locally Lipschitz, the ODE ẋ = f(x, u) has a solution on [0,∞)
for any x0 ∈ E and any fixed u ∈ U in the sense that if there is a finite escape time
te, then we define x(t) = ∆ for all t ≥ te. Each such solution satisfies the martingale
relation (17) (with a trivial probability space). Therefore, A satisfies Conditions 1-3 of [8]
and it follows from Theorem 2.2 and Corollary 2.2 therein that for any pair of measures
satisfying the discounted Liouville’s equation (5), there exists a solution to the above
martingale problem whose discounted occupation measure is equal to µ, that is,

µ(A × B) = E
{∫ ∞

0

e−βtIA×B(Y (t), u) ν(du |Y (t)) dt
}

, P (Y (0) ∈ A) = µ0(A),

where E denotes the expectation w.r.t. the probability measure P . From the martingale
property of (17) and the definition of A we get

E{w(Y (t))} − E
{∫ t

0

∫

U

grad w · f(Y (τ), u) ν(du |Y (τ)) dτ
}

= E{Y (0)}.

Now let µt denote the marginal distribution of Y (t) at time t; that is,

µt(A) := P (Y (t) ∈ A) = E{IA(Y (t))} ∀ A ⊂ X.
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Then the above relation becomes
∫

X

w(x) dµt(x) −

∫ t

0

∫

X

∫

U

grad w(x) · f(x, u) ν(du |x) dµτ (x) dτ =

∫

w(x) dµ0(x),

where we have used Fubini’s thorem to interchange the expectation operator and integra-
tion w.r.t. time. Defining the relaxed vector field

f̄(x) =

∫

U

f(x, u) ν(du |x) ∈ conv f(x, U)

and rearranging we obtain

∫

X

w(x) dµt(x) =

∫

w(x) dµ0(x) +

∫ t

0

∫

X

grad w(x) · f̄(x) dµτ (x) dτ, (18)

where the equation holds for all w ∈ C1(X) almost everywhere with respect to the
Lebesgue measure on [0,∞). The Lemma then follows from Ambrosio’s superposition
principle [2, Theorem 3.2] using the same arguments as in the proof of Lemma 4 in [20].

�

Proof of Lemma 2: Suppose that a pair of measures (µ0, µ) satisfies (5) and that
λ(spt µ0 \XI) > 0. From Lemma 7 there is a family of trajectories of (2) starting from µ0

with discounted occupation measure whose x-marginal coincides with the x-marginal of
µ. However, this is a contradiction since no trajectory starting from sptµ0 \ XI remains
in X for all times and spt µ ⊂ X. Thus, λ(spt µ0 \ XI) = 0 and so λ(spt µ0) ≤ λ(XI). �
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