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Convex-Concave Procedure for Weighted Sum-Rate
Maximization in a MIMO Interference Network

Seungil You Lijun Chen Youjian (Eugene) Liu

Abstract—The weighted sum-rate maximization in a general
multiple-input multiple-output (MIMO) interference network has
known to be a hard nonconvex problem, mainly due to the
interference between different links. In this paper, by exploring
the special structure of the sum-rate function being a difference
of concave functions, we apply the convex-concave procedure to
the weighted sum rate maximization to handle non-convexity.
With the introduction of a certain damping term, we establish
the monotonic convergence of the proposed algorithm. Numerical
examples show that the introduced damping term, which may be
needed for convergence, slows down the convergence but helps
with finding a better solution in the network with high inter-
ference. Even though our algorithm has a slower convergence
than some existing ones, it has the guaranteed convergence and
can handle more general constraints and thus provides a general
solver that can find broader applications.

Index Terms—Convex-concave procedure, weighted sum-rate
maximization, interference networks, multiple-input multiple-
output (MIMO).

I. INTRODUCTION

Channel capacity is a fundamental quantity in information
theory that specifies the hard limit in communications [1].
It is well-known that the optimal joint transmit signals that
maximize the sum capacity for parallel Gaussian channels have
the water-filling structure. However, in general MIMO additive
Gaussian channels, finding the optimal joint transmit signals is
a hard and open problem, as the interference between channels
may make the problem highly nonconvex.

In this paper, we consider the joint transmit signals design
for the weighted sum-rate maximization in a MIMO B-
MAC network, a combination of multiple interfering broadcast
channels (BC) and multiaccess channels (MAC), with the
transmit signals and noises being Gaussian and the channel
states known at the transmitters [2]. Many algorithms have
been proposed for this problem; see, e.g., the iterative weighted
MMSE (Minimization of Mean Squared Error) algorithms that
exploit the relation between the mutual information and the
MMSE [3], [4], the polite water-filling algorithm that exploits
a variant of water-filling structure at the optimum to solve
the KKT conditions [2], and the references therein. These
algorithms have various limitations, e.g., some of them are not
able to handle general constraints or do not have guaranteed
convergence.

We have recently exploited the minimax Lagrangian duality
to design an efficient algorithm for the weighted sum-rate
maximization [5], which is inspired by our new algorithm
[6]. But at this point we only handle the affine constraints.
The aim of this paper is to propose a general solver to handle
convex constraints such as nonlinear power constraints and the
condition number of power covariance matrix, etc.
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By exploring the special structure of the sum-rate function
being a difference of concave functions, we apply the convex-
concave procedure to the weighted sum-rate maximization to
handle non-convexity [7]. Specifically, we add and subtract
an appropriate quadratic term, termed a damping term, to
the sum-rate function and then apply the convex-concave
procedure to obtain an algorithm with guaranteed convergence.
The resulting algorithm generates a sequence of convex opti-
mization problems to obtain a (local) optimal solution to the
weighted sum-rate maximization, and the convex problem at
each iteration can be solved efficiently using fast (polyno-
mial time) and numerically stable (robust to the numerical
errors) methods such as the interior-point method. Numerical
examples show that the introduced damping term, which may
be needed for convergence, slows down the convergence but
helps with finding a better solution in the network with high
interference.

Even though our algorithm has a slower convergence than
some well-known existing algorithms such as the iterative
weighted MMSE algorithm [4] and the polite water-filling
algorithm [2], it has the guaranteed convergence and can
handle more general constraints and thus provides a general
solver that can find broader applications.

The similar idea has been proposed in [8], and [9] to
solve the weighted sum-rate maximization with the per-link
power constraint, and [10] in terms of soft interference nulling
scheme. To some extent, this paper can be seen as a gener-
alization of the results in [9], [10]. The main contribution of
this paper is to provide a general algorithm that can handle
general convex constraints (not necessarily affine) and ensure
the monotonic convergence of the algorithm by augmenting a
damping term which leads to better convergence and in many
cases better solutions. From this perspective, the aforemen-
tioned works can be seen as special cases of this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a MIMO B-MAC network, introduced in [2], that
consists of a set N of interfering data links, with link n ∈ N
equipped with Tn antennas at the transmitter and Rn antennas
at the receiver. The received signal at the receiver of the link
n is given by

yn =

N∑
k=1

Hnkxk + wn,

where xk ∈ CTk is a circularly symmetric complex Gaussian
transmit signal of the kth link, Hnk ∈ CRn×Tk is the channel
matrix between the transmitter of the kth link and the receiver
of the nth link, and wn ∈ CRn is circularly symmetric com-
plex Gaussian noise vector with identity covariance matrix.

If the channel matrices are known at the transmitter, then
an achievable rate of link n ∈ N is given by

Rn(Σ,Ω) = log
∣∣Ωn + HnnΣnH+

nn

∣∣− log
∣∣Ωn

∣∣, (1)
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where Σ = (Σn;n ∈ N ) with Σn = E[xnx+
n ] the power

covariance matrix at the link n; Ω = (Ωn;n ∈ N ) with

Ωn = I +
∑

k∈N\{n}

HnkΣkH
+
nk

the interference-plus-noise covariance matrix at the link n; and
‘+’ denotes the Hermitian of a matrix. We aim to maximize
the weighted sum-rate under general convex constraints

maximize
Σ,Ω

f0(Σ,Ω) =
∑
n∈N

wnRn(Σ,Ω)

subject to Σn � 0, n ∈ N ,
fi(Σ) ≤ 0, i = 1, · · · , nf ,
hj(Σ) = 0, j = 1, · · · , nh,
Ωn = I +

∑
k∈N\{n}

HnkΣkH
+
nk, n ∈ N .

(2)

Here fi are convex functions of Σ, hj are affine functions of
Σ, and nf , nh are the number of inequality constraints and
equality constraints, respectively. The Linear Matrix Inequality
X � 0 (� 0) means that X is a positive (semi)definite matrix.

As the objective function is not a concave function in
general, the weighted sum-rate maximization (2) is not a
convex program; see, e.g., [11], [12] for the theory of convex
optimization and its applications to communications, espe-
cially the role of the semidefinite program (SDP) and the linear
matrix inequality (LMI).

For notational convenience, we denote the feasible set of
the weighted sum-rate maximization problem (2) as S, which
is a convex set, and its relative interior as ri(S) = {Σ|Σn �
0, fi(Σ) < 0, hj(Σ) = 0,Ωn = I+

∑
k∈N\{n}HnkΣkH

+
nk},

i.e., the set of feasible points that satisfy the strict inequalities.
Example 1: The Total Power Constraint. Suppose that

the total power of all transmitters is bounded by PT . The
corresponding constraint function is given by

f(Σ) =
∑
n∈N

Tr (Σn)− PT ,

which is an affine function of Σ. The constraints of the
weighted sum-rate maximization (2) reduce to

Σn � 0, n ∈ N ,
∑
n∈N

Tr (Σn)− PT ≤ 0

Ωn = I +
∑

k∈N\{n}

HnkΣkH
+
nk, n ∈ N .

The feasible set S is compact, and its relative interior ri(S) is
not empty, since there exist positive definite matrices Σn =
εI, 0 < ε < PT /

∑N
n=1 Tr (Σn) satisfying the strict inequality∑N

n=1 Tr (Σn)− PT < 0.
Example 2: The Per-Link Power Constraints. Suppose

that the transmitter power of the nth link is bounded by Pn.
The corresponding constraint functions are given by

fn(Σ) = Tr (Σn)− Pn, n ∈ N ,

which are all affine. The constraints of the weighted sum-rate
maximization (2) reduce to

Σn � 0, Tr (Σn)− Pn ≤ 0, n ∈ N
Ωn = I +

∑
k∈N\{n}

HnkΣkH
+
nk, n ∈ N .

Similarly, the feasible set S of the above problem is compact
and its relative interior ri(S) is not empty.

Example 3: Maximum Beam Power Constraints. Sup-
pose that the total power of all transmitters is bounded by
PT , and moreover, the power of each beam at each link is
bounded by Pn. This constraint is equivalent to all eigenvalues
of power covariance matrix Σn being bounded by Pn, which
is nonlinear but convex. The constraints of the weighted sum-
rate maximization (2) reduce to∑

n∈N
Tr (Σn)− PT ≤ 0, 0 � Σn � PnIn, n ∈ N

Ωn = I +
∑

k∈N\{n}

HnkΣkH
+
nk, n ∈ N ,

where In is the identity matrix with proper dimension. We can
easily verify that the feasible set S is compact and its relative
interior ri(S) is not empty.

Example 4: Condition Number Constraints. Suppose
that the total power of all transmitters is bounded by PT , and
moreover, we want to fully utilize the signal space. This can be
done by imposing a conditional number constraint on power
covariance matrix Σn, say, λmax(Σn)

λmin(Σn)
≤ κn, where λmax, λmin

are the maximal and the minimal eigenvalues respectively. We
can easily see that this constraint forces to the ratio between
the maximum beam power and the minimum beam power at
link n is bounded by κn. Although this constraint is non-
convex in its “naive” form, it can be represented as LMI by
introducing a slack variable. The constraints of the weighted
sum-rate maximization (2) can be written as∑
n∈N

Tr (Σn)− PT ≤ 0, γnIn � Σn � κnγnIn, n ∈ N

Ωn = I +
∑

k∈N\{n}

HnkΣkH
+
nk, n ∈ N ,

where γn > 0 is a scalar slack variable (an additional decision
variable, but does not change the structure of the problem).
Again, we can easily verify the feasible set S is compact and
its relative interior ri(S) is not empty.

Note that the link data rate (1) is the difference of two
concave functions in (Σ,Ω). So, the weighted sum-rate max-
imization (2) is a difference of convex optimization problem.
For non-convex problems with such a structure, a general
solution approach – the convex-concave procedure – has been
proposed in [7]. We will explore the application of the convex-
concave procedure to the weighted sum-rate maximization.

III. CONVEX-CONCAVE PROCEDURE

For a maximization problem, the basic idea of the convex-
concave procedure is to linearize the convex terms of the ob-
jective function to obtain a concave objective, so as to generate
a sequence of convex problems that approximately solves the
original non-convex problem [7]. This linearization generates
the best concave approximation of the target objective function
at a given point, which is a lower bound in the entire region.
Therefore the convex-concave procedure maximizes the best
lower bound iteratively.

Under proper conditions, the convergence of the convex-
concave procedure to a stationary point is guaranteed. More-
over, there are a few efficient polynomial time and numerically
stable solvers such as the interior-point method [13] that can
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be used to find the optimal solution of the convex problem of
each iteration. Therefore, the convex-concave procedure gives
us a theoretically as well as practically good algorithm.

Note that for any given optimization problem, we can
formulate various equivalent problems [11], and these dif-
ferent equivalent problems may have different algorithmic
advantages or limitations. That said, the way we represent
the objective function (as well as the constraints) changes
the resulting algorithm from the convex-concave procedure.
For example, suppose f and g are concav, and we want to
maximize f − g. If g is concave, then (f + h) − (g + h)
is the same objective function with the same structure, i.e.,
f + h and g + h are concave. Since there are infinite number
of convex functions, it is obvious that a difference of concave
(convex) functions representation of any given function is not
unique; see, e.g., [14], [15] and the references therein for more
discussion.

Consider the following equivalent problem with additional
quadratic terms

maximize
Σ,Ω

∑
n∈N

(
wn
(
log |Ωn + HnnΣnH∗nn|

− log |Ωn|
)
− ρ
(
||Σn||2F − ||Σn||2F

))
subject to (Σ,Ω) ∈ S,

(3)

where ||Σn||F is the Frobenius norm, i.e., ||Σn||F =√
Tr (Σ∗nΣn). By including −ρ||Σn||2F in the concave part

of the objective function and +ρ||Σn||2F in the convex part
of the objective function, we can derive different algorithms
from the convex-concave procedure by varying ρ.

Applying the convex-concave procedure, we obtain the
following algorithm: Let Σ(i),Ω(i) be the optimal solution
at the ith iteration, and solve the the convex problem

maximize
Σ,Ω

∑
n∈N

(
wn

(
log |Ωn + HnnΣnH∗nn|

− Tr
(
Ω(i)
n

−1
Ωn

))
− ρ||Σn −Σ(i)

n ||2F
)

subject to (Σ,Ω) ∈ S

(4)

iteratively until the convergence is detected.1 The detailed
derivation can be found in the Appendix VII-A

On one hand, a larger ρ makes the point generated at each
iteration closer to the point from the previous iteration. Since
the first order approximation is valid around the initial point
(i.e., the point generated at the previous iteration), this leads to
a more accurate approximation at each iteration but possibly
a larger number of iterations. On the other hand, the damping
term −ρ||Σn −Σ

(i)
n ||2F with larger ρ makes the objective in

(4) a steeper function and thus an easier convex problem at
each iteration.

The proposed algorithm is summarized as follows.
Convex-Concave Procedure:

1) Initialize (Σ(0),Ω(0)) ∈ S, set i = 0.
2) Generate (i + 1)th (Ω,Σ) by solving (4), and set

i = i+ 1.
3) Repeat 2 until the convergence is detected.

1When ρ = 0 and S only contains the per-link power constraints, the
above algorithm recovers [9], so our algorithm includes an existing scheme
as a special case.

IV. CONVERGENCE ANALYSIS

The convex-concave procedure generates a sequence of
feasible points {Σ(i),Ω(i)}. In this section, we investigate the
convergence of this sequence. All the proofs can be found in
the Appendix. The first result shows the convergence of our
algorithm.

Proposition 1. Suppose S is compact and ri(S) 6= ∅, then the
sequence {Σ(i)} under the proposed algorithm converges to a
stationary point Σ(∞) of the weighted sum-rate maximization
problem (2) for ρ > 0.

Here a stationary point refers to a (local) optimal point that
satisfies the KKT conditions. Note that the convergence does
not depend on the initial point, but the stationary point may
depend on the initial point.

The requirements for the feasible set S (compact, nonempty
relative interior) hold in many practical cases, e.g., all exam-
ples in the Section II which include the network with the total
power constraint, and the network with the per-link power
constraints

The technical condition ρ > 0 ensures strict concavity
(convexity) in the concave (convex) part of the objective
function. If ρ = 0, this strict concavity (convexity) may not be
guaranteed, depending on the channel matrices Hij . Without
this property, the sequence of points generated under the
convex-concave procedure can exhibit the limit cycle behavior,
i.e., oscillate among a set of stationary points, which is a
weaker result than Proposition 1.

Proposition 2. Suppose S is compact and ri(S) 6= ∅, then
the sequence {Σ(i)} under the proposed algorithm converges
to a set A of stationary points of the weighted sum-rate
maximization problem (2), all of them achieve the same
weighted sum-rate.

Suppose A contains two points, Σ(∞) and Σ̃(∞). The above
result implies that the weighted sum-rate achieved at both
points is the same, but the sequence of points under convex-
concave procedure may oscillate between these two points.
This oscillatory behavior does not occur if ρ > 0. Therefore,
the introduction of the damping term −ρ||Σn − Σ

(i)
n ||2F can

avoid oscillation and guarantee convergence (even though it
may slow down the convergence as discussed in Section V).

Moreover, the proposed algorithm based on the convex-
concave procedure generates a monotone increasing sequence
in the weighted sum-rate.

Proposition 3. The weighted sum-rate is always
non-decreasing under the proposed algorithm, i.e.,
f0(Σ

(i),Ω(i)) ≤ f0(Σ(i+1),Ω(i+1)) for all i = 0, 1, · · · .

V. NUMERICAL EXAMPLES

In this section, we provide numerical examples to com-
plement the analysis in the previous sections. Consider a
network with |N | = 10 links, corresponding to 10 transmitter-
receiver pairs that interfere with each other. The number
of antennas at the transmitter and receiver of each link is
uniformly drawn from {2, 3, 4}. The channel matrices have
zero-mean, unit-variance, i.i.d. complex Gaussian entries. We
will consider and compare the networks with low, moderate,
and high interference, which are characterized by scaling the
interference channel matrices Hij , i 6= j with a factor of
0.1, 1, and 10 respectively. The weights wn’s are uniformly
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drawn from [0.5, 1]. Due to space limit, we only report part
of numerical examples in this paper.

Each iteration of the proposed algorithm involves solving
a max-det problem [16], for which we use SDPT3 [17]
combined with the problem parser YALMIP [18].

A. The network with the per-link power constraints
We consider Example 2 in Section II. Figure 1 shows the

convergence of the proposed algorithm, where the per-link
power budgets Pn’s are uniformly drawn from {1, 2, · · · , 10}.
We see that the larger ρ is, the slower the convergence, as the ρ
term introduce an additional damping term in the optimization
at each iteration. In the network with high interference, how-
ever, this damping term may help with finding a better solution
which has larger weighted sum-rate. Roughly speaking, when
the interference is high the weighted sum-rate maximization
becomes highly non-convex, which makes the problem harder;
but the additional term helps with finding a better solution by
jumping out of “traps” of local minima or maxima. This non-
convexity also affects the convergence speed, and the stronger
the inference, the slower the convergence is.
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Fig. 1. The network with low (top panel), moderate (middle panel), and high
(bottom panel) interference and per-link power constraint.

Note that our algorithm shows a slower convergence than
some existing algorithms [2], [4], [6]. This is mainly because
these existing algorithms exploit the particular structures of
a restrictive class of power covariance constraints (e.g., the
affine power covariance constraints). However, the convex-
concave procedure can handle more general constraints as in

the last two examples described in Section II, so our algorithm
provides a more general solver. That said, our algorithm trades
off efficiency for generality.

B. The network with nonlinear constraints
We consider Example 3 and Example 4 in Section II.

Figure 2 shows the monotonic convergence of the proposed
algorithms in a network with low interference, where the total
power budget PT = 10, per-beam power bounds Pn = 2, and
per-link conditional numbers κn = 2.
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Fig. 2. The network with maximum beam power constraints (top panel) and
condition number constraints (bottom panel).

VI. CONCLUSION

We have applied the convex-concave procedure to the
weighted sum-rate maximization in the MIMO B-MAC net-
work. By adding and subtracting a quadratic term, we ob-
tain an algorithm that guarantees monotonic convergence.
Numerical examples confirm the monotonic convergence of
the proposed algorithm and show the effect of the introduced
damping term. The damping term slows down the convergence
but guarantees the convergence, and may help with finding a
better solution in the network with high interference.

Even though our algorithm has a slower convergence than
the some of existing ones, it can handle more general con-
straints and thus provides a general solver that can find broader
applications; and we are currently exploring its practical
applications. Moreover, as the objective function at each iter-
ation is separable, the algorithm naturally admits a distributed
implementation as in [9], which we will investigate in the
future.

VII. APPENDIX

A. Linearization
Without loss of generality, assume that we linearize the

function around the point (Ω(0),Σ(0)). First, consider the
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logdet term

− log
∣∣Ω| = − log

∣∣Ω(0)| − Tr
((

Ω(0)
)−1

(Ω−Ω(0))

)
+O(||Ω−Ω(0)||2F ).

Now consider the quadratic term (the Frobenius norm)

−||Σ||2F + ||Σ||2F
= −||Σ||2F + ||Σ(0)||2F + Tr

(
Σ(0)∗(Σ−Σ(0))

)
+Tr

(
(Σ−Σ(0))∗Σ(0)

)
+O(||Σ−Σ(0)||2F )

= −||Σ−Σ(0)||2F + 2||Σ(0)||2F +O(||Σ−Σ(0)||2F ).
Combining the linearization of both terms and dropping the
constant terms, we obtain the proposed algorithm from the
convex-concave procedure.

B. Proof of Proposition 1
Proof: We apply Theorem 8 in [19] for the proof. From

the compactness of S and non emptiness of ri(S), we can
conclude that all the requirements in Theorem 8 in [19] are
satisfied except for the strict concavity of the decomposition
of the weighted sum-rate function with the damping term.
To show strict concavity, consider the concave part of the
objective function u(Ω,Σ) = log |Ω + HΣH∗| − ρ||Σ||2F .
From concavity, for any two points in the feasible set, (Ω1Σ1)
and (Ω2,Σ2), and 0 < t < 1, we have

u(tΩ1 + (1− t)Ω2, tΣ1 + (1− t)Σ2)
(ineq:1)
≥ t log |Ω1 + HΣ1H

∗|+ (1− t) log |Ω2 + HΣ2H
∗|

−ρ||tΣ1 + (1− t)Σ2||2F
(ineq:2)
≥ t log |Ω1 + HΣ1H

∗|+ (1− t) log |Ω2 + HΣ2H
∗|

−ρt||Σ1||2F − ρ(1− t)||Σ2||2F .
Note that in the feasible set, Ω � I. Now suppose Σ1 6= Σ2,
then from strict convexity of ||Σ||2F , (ineq:2) becomes strict,
provided ρ > 0. If Σ1 = Σ2 and Ω1 6= Ω2, then from
the strict convexity of the logdet function, (ineq:1) becomes
strict. Therefore, for any pair (Ω1,Σ1) 6= (Ω2,Σ2), and
0 < t < 1, we have u(tΩ1 + (1 − t)Ω2, tΣ1 + (1 −
t)Σ2) > tu(Ω1,Σ1)+ (1− t)u(Ω2,Σ2), which implies strict
concavity of u over the feasible set. Similar argument applies
to v(Ω,Σ) = log |Ω|−ρ||Σ||2F , which implies strict concavity
of v thus strict convexity of −v.

C. Proof of Proposition 2
Proof: By the same argument as in the proof of Theorem

1, we can apply the Theorem 4 in [19] to prove the result.

D. Proof of Proposition 3
Proof: Here we show that the weighted sum-rate always

increases in each iteration.

f0(Ω
(i+1),Σ(i+1))

(1)
≥

∑
n∈N

wn

(
log |Ω(i+1)

n + HnnΣ(i+1)
n H∗nn| − log |Ω(i)|

−Tr
(
Ω(i)
n

−1
(Ω(i+1)

n −Ω(i)
n )
))
− ρ||Σ(i+1)

n ||2F

+ρ
(
||Σ(i)

n ||2F + 2Tr
(
Σ(i)
n

∗
(Σ(i+1) −Σ(i))

))

(2)
≥

∑
n∈N

wn

(
log |Ω(i)

n + HnnΣ(i)
n H∗nn| − log |Ω(i)|

−Tr
(
Ω(i)
n

−1
(Ω(i)

n −Ω(i)
n )
))
− ρ||Σ(i)

n ||2F

+ρ
(
||Σ(i)

n ||2F + 2Tr
(
Σ(i)
n

∗
(Σ(i) −Σ(i))

))
= f0(Ω

(i),Σ(i)),

where the inequality (1) is from the first order condition of
convex (concave) functions, and the inequality (2) is from the
fact that (Ω(i+1),Σ(i+1)) is a global maximum of the lower
bound from the inequality (1).
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