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Abstract. Convexification based on convex envelopes is ubiquitous in the

non-linear optimization literature. Thanks to considerable efforts of the opti-

mization community for decades, we are able to compute the convex envelopes
of a considerable number of functions that appear in practice, and thus obtain

tight and tractable approximations to challenging problems. We contribute

to this line of work by considering a family of functions that, to the best of
our knowledge, has not been considered before in the literature. We call this

family ray-concave functions. We show sufficient conditions that allow us to

easily compute closed-form expressions for the convex envelope of ray-concave
functions over arbitrary polytopes. With these tools, we are able to provide

new perspectives to previously known convex envelopes and derive a previously
unknown convex envelope for a function that arises in probability contexts.

1. Introduction

Strong convex relaxations of complex optimization problems is a key compo-
nent in the development of tractable computational techniques in the field. In this
regard, a popular approach has been the study of convex underestimators of func-
tions, that is, given an arbitrary function f , find a convex function f ′ such that
f ′(x) ≤ f(x) ∀x ∈ P , where P is a given convex set. Such function can be used to
relax a sub-level set {x ∈ P : f(x) ≤ 0} with the convex set {x ∈ P : f ′(x) ≤ 0},
and thus obtain a computationally tractable approximation. The pointwise largest
convex underestimator is known as the convex envelope of f over P , and the op-
timization community has allocated considerable efforts on finding such envelopes
for various classes of functions f and sets P .

Definition 1. The convex envelope of a function f on a subset P is given by

fvex(x) = sup{g(x) : g is convex and g(x) ≤ f(x) ∀x ∈ P}

In this work, we consider P a polytope and study the convex envelope of a family
of functions that are required to be convex of the facets of P , and what we term as
ray-concavity.

Definition 2. A function f : P → R is ray-concave over P if, for every x ∈ P , the
function f restricted to {αx : α ≥ 0} ∩ P is concave.

We present sufficient conditions for deriving simple closed-form formulas of the
convex envelopes of ray-concave functions over arbitrary polytopes in any dimen-
sion.
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Our result is closely related to known results for general functions over polytopes.
To the best of our knowledge, the vast majority of the work producing closed-form
formulas of convex envelopes in arbitrary dimension either require a rectangular
domain, or require f to be edge-concave, in which case the convex envelope is
polyhedral1. With our result, through the concept of ray-concavity, we are able
to explicitly construct convex envelopes which are not necessarily polyhedral, in
any dimension, for a new family of functions that has not been explicitly exploited
before in the literature.

Our result yields a previously unknown convex envelope of a function that ap-
pears in probability contexts.

Example 1. The function f(x, y) = − x·y
x+y−x·y is ray-concave over any box [0, ux]×

[0, uy] with ux, uy ≤ 1.

This function is one of the the main motivations behind this work. Additionally,
many functions for which their convex envelope formulas are known exhibit ray-
concavity (e.g., f(x1, x2) = −x1x2 or f(x1, x2) = x1/x2 for x1, x2 > 0), and our
result provide a new perspective on these expressions and alternative derivations.

2. Literature review

The literature of convex envelopes is vast. Probably the most well-known and
used convex envelope is that of the bilinear function f(x1, x2) = x1x2 over a rect-
angular region, for which its convex (and concave) envelope is obtained through
the McCormick envelopes [18, 1].

To the best of our knowledge, the first method capable of constructing the convex
envelope for a family of functions (as opposed to a particular function) is provided
in [30]. Based on disjunctive programming, they show a general expression of the
convex envelope for functions that are concave on one variable, convex on the rest,
and defined over a rectangular region. Later on, in [5] the authors show how to
compute the evaluation of fvex when f is an (n − 1)-convex function (i.e., f is
convex whenever one variable is fixed to any value) over a rectangular domain.
The function evaluation requires the resolution of a convex optimization problem.
In [7, 8], the authors formulate the convex envelope of a lower semi-continuous
function over a compact set as a convex optimization problem. They use this to
compute, explicitly, the convex envelope for various functions that are the product
of a convex function and a component-wise concave function, over a box. We remark
that in all the aforementioned cases, the convex envelopes may be non-polyhedral,
and that explicit calculations consider hyper-rectangular domains.

Considerable efforts have been put in the case of polyhedral convex envelopes.
In [27, 28], it is shown that edge-concavity of a function f (i.e., concavity over all
edge directions of a polytope P ) implies that the convex envelope of f over P is
polyhedral. The construction of these convex envelopes is studied in [20]. In [22],
necessary and sufficient conditions for the convex envelope to be polyhedral are
also provided, and they are used to obtain the convex envelope of a multilinear
function over the unit box (see also [25, 23]). In [19], the authors provide explicit
expressions for the facets of the convex envelope of a trilinear monomial over a
box. In [3], the authors design a cutting plane approach to generate, on-the-fly,
the convex envelope of a bilinear function over a box. The strength of the convex

1A function is polyhedral if its epigraph is a polyhedron.
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underestimator of a bilinear function that is obtained from using a term-wise convex
envelopes is analyzed in [17].

Other known results include the convex envelopes of odd-degree monomials over
an interval [11] and the fractional function f(x1, x2) = x1/x2 over a rectangle [31,
30]. Recently, in [15] the author computed the convex envelope of cubic functions
in two dimensions, over a rectangular region.

While a big portion of these works involve rectangular regions, there exist im-
portant work considering sets beyond boxes in two dimensions. In [26], the authors
derive explicit formulas for the convex envelope of bilinear bivariate functions over
a class special polytopes called D-polytopes. The case of the fractional function
x1/x2 over a trapezoid is studied in [9]. This was expanded in [4], where convex
envelopes for bilinear and fractional bivariate functions over quadrilaterals are con-
structed. The convex envelope of a bilinear bivariate function over a triangle has
been carefully studied in [26, 12, 2]. Such envelopes were tested computationally
in [12] within a branching scheme for QCQPs with positive results. In [16] it is
shown how to evaluate the convex envelope, and obtain a supporting hyperplane,
for bivariate functions over arbitrary polytopes. This approach involves solving a
low-dimensional convex problem. This procedure was refined in [14], by shifting the
calculations to the solution of a KKT system. These last techniques were exten-
sively tested in [21] to improve general-purpose optimization routines. In [13], the
author characterizes the convex envelope of various bivariate functions (including
the bilinear and fractional functions) over arbitrary polytopes using a polyhedral
sub-division of the polytopes. In some cases, the convex envelope in each element
of the sub-division can be given explicitly.

To the best of our knowledge, there is no construction that can provide a closed-
form formula for the convex envelope of Example 1, and almost no construction
allowing the explicit computation of non-polyhedral convex envelopes over poly-
topes beyond boxes in dimension n ≥ 3. The only exception that we are aware of
is [29]. In this work, the authors derive explicit convex and concave envelopes of
several functions on sub-sets of a hyper-rectangle, which are obtained through poly-
hedral subdivisions. In this case the authors can obtain, in closed form, the convex
envelope of disjunctive functions of the form xf(y), and the concave envelope of
concave-extendable supermodular functions. This may produce non-polyhedral en-
velopes. We remark some similarities with their construction below, however, it
is worth noting that the results in [29] cannot directly provide a formula for fvex
for the function f in Example 1. On one hand, such function f does not fit the
disjunctive framework of [29], so we cannot apply their convex envelope construc-
tion. On the other hand, one could consider using their concave envelope results
with −f , thus effectively constructing fvex. However, we show below that the con-
vex envelope of such f requires a polyhedral partition that introduces new vertices
in the box, while the construction of the concave envelope for concave-extendable
functions (see [29, Corollary 2.8]) is based solely on the original vertices of the
polytope.

3. Convex envelopes for ray-concave functions

Overall, we consider a polytope P ⊂ Rn with non-empty interior.
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Definition 3. For any v ∈ Rn \{0} such that ∃α ≥ 0, αv ∈ P (i.e., the ray defined
by v intersects the polytope) we define

v+ = α+v, where α+ = arg max{α : α ≥ 0, αv ∈ P} and

v− = α−v, where α− = arg min{α : α ≥ 0, αv ∈ P}.

In simple words, v+ and v− are the intersections of the ray given by v with the
boundary of P (see Figure 2). Note that if 0 ∈ P then v− = 0 for all v ∈ P .

We remark that v± are continuous functions of v. Below, we emphasize this
functional aspect when taking derivatives.

Using this definition, a function f : P → R is ray-concave iff f restricted to the
segment [v−, v+] is concave for all v where v± is well defined. Our main results pro-
vides an explicit characterization for the convex envelope of ray-concave functions
that are convex on the facets of P .

Theorem 1. Let f : P → R be a continuously differentiable and ray-concave
function over a polytope P , such that f is convex over the facets of P . Let g : P → R
be defined as

g(v) = αvf(v−) + (1− αv)f(v+),(1)

where αv ∈ [0, 1] is such that v = αvv
−+(1−αv)v+. If g is positively homogeneous,

then fvex = g.

Remark 1. In Section 3.3 we provide more insights on the positively homogeneous
requirement. For example, we show that whenever 0 ∈ P , g is positively homoge-
neous iff f(0) = 0. The latter is not a restrictive requirement, as we can compute
the convex envelope of f − f(0) instead.

A linear interpolation of a similar type as (1) has been considered in multiple
articles. The general result in [5], for example, shows that to evaluate fvex for an
edge-convex function f over a box, it suffices to consider the lines passing through
x where the function f is concave, similarly to our result. Each evaluation involves
solving an optimization problem (see [5, Theorem 3.1]). Another example is given
by [29], who construct envelopes explicitly using secants of a similar type. In [12],
the author also uses such lines in his construction of convex envelopes of the bilinear
function over triangles.

In our case, by considering ray-concavity, we only need to consider secants on
the rays emanating from the origin in the envelope construction.

To prove Theorem 1, we first provide three lemmas about the convexity of the
function g over different regions of the domain. We divide the polytope P into
subregions using the rays that pass through the vertices of P .

Definition 4. Let F be the set of facets of P . If 0 /∈ P , for each pair of facets
Fi, Fj ∈ F we define the region

Bij = {v ∈ P : v− ∈ Fi, v+ ∈ Fj}.
We refer to the hyperplane containing the facet Fi as the in-hyperplane of Bij , and
to the hyperplane containing the facet Fj as the out-hyperplane of Bij . Alterna-
tively, if 0 ∈ P , for each facet Fj ∈ F we define the region

B0j = {v ∈ P : v+ ∈ Fj}.
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Figure 1. Polyhedral sub-division of P into regions B according
to intersection of rays with the boundary

In this case we only define the out-hyperplane of B0j . We denote by B the set of
all full-dimensional regions Bij .

In Figure 1 we illustrate the regions we consider in B, which clearly form a sub-
division of P . Note that if Bij 6= ∅ then Bji = ∅. Also note that every Bij ∈ B is
polyhedral: for example, in the case 0 6∈ P , it is not hard to see that

(2) Bij = cone(Fi) ∩ cone(Fj) ∩ P.

Polyhedrality follows since both Fi and Fj are polyhedra.

Remark 2. For a given region Bij ∈ B we can provide an explicit formula for
v±. In fact, note that we can assume that the out-hyperplane of Bij has the form
a+

ᵀ
~x = 1. Since v and v+ lie on the same ray, we obtain v+ = 1

a+ᵀvv for any
v ∈ Bij . Similarly, for the case 0 /∈ P , we may assume that the in-hyperplane of
Bij has the form a−

ᵀ
~x = 1, and then v− = 1

a−ᵀvv for any v ∈ Bij .
Moreover, since v = αvv

− + (1− αv)v+, this implies that

(3)
αv
a−ᵀv

+
1− αv
a+ᵀv

= 1

3.1. Convexity and differentiability over a single region. To show convexity
of g, we first prove that under the homogeneity assumption of Theorem 1, g is
convex in each region B ∈ B.

Lemma 1. Let B ∈ B and let g : B ⊂ Rn → R as defined in (1). If g is positively
homogeneous, then g is convex in B.

Proof. Let v, w ∈ B and let z = λv + (1 − λ)w for λ ∈ [0, 1]. By convexity of
the region, z ∈ B as well. To prove the convexity of g over B, we show that
g(z) ≤ λg(v) + (1− λ)g(w).

Recall that v+ and w+ belong to the same facet defining B, and v− and w− are
either 0 (if 0 ∈ P ) or belong to the same facet defining B (if 0 /∈ P ). Hence, there
exist γ, ε, δ ∈ [0, 1] such that:

z = γz− + (1− γ)z+

z− = εv− + (1− ε)w−
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Figure 2. Notation for Lemma 1

z+ = ρv+ + (1− ρ)w+

In Figure 2 we illustrate these vectors.
Since g(z) = γf(z−) + (1 − γ)f(z+) and f is convex on the facets containing

{v+, z+, w+} and {v−, z−, w−} (if 0 /∈ P ), we know that

g(z) = γf(z−) + (1− γ)f(z+)(4)

≤ γ(εf(v−) + (1− ε)f(w−)) + (1− γ)(ρf(v+) + (1− ρ)f(w+))(5)

= γεf(v−) + (1− γ)ρf(v+) + γ(1− ε)f(w−) + (1− γ)(1− ρ)f(w+)(6)

Let a+
ᵀ
~x = 1 be the out-hyperplane of B, i.e., the hyperplane that contains v+,

w+, and z+. By Remark 2, we know that

z+ =
1

a+ᵀz
z =

1

a+ᵀz
(λv + (1− λ)w) = λ

a+
ᵀ
v

a+ᵀz︸ ︷︷ ︸
ρ

v+ + (1− λ)
a+

ᵀ
w

a+ᵀz︸ ︷︷ ︸
1−ρ

w+

where we deduce ρ = λa
+ᵀ
v

a+ᵀz because a+
ᵀ
z = λa+

ᵀ
v + (1 − λ)a+

ᵀ
w. In a similar

way, when 0 /∈ P we can apply the same for z− we obtain

(7) ε = λ
a−

ᵀ
v

a−ᵀz
and 1− ε = (1− λ)

a−
ᵀ
w

a−ᵀz

where a−
ᵀ
~x = 1 is the in-hyperplane of B. If 0 ∈ P , then v− = w− = z− = 0 and

thus ε can take any value in [0, 1]. To simplify the proof, we abuse notation and

consider a−
ᵀ
v

a−ᵀz = a−
ᵀ
w

a−ᵀz = 1 for this case, so (7) still holds.
Replacing the values of ρ and ε in (6), we obtain

g(z) ≤ γεf(v−) + (1− γ)ρf(v+) + γ(1− ε)f(w−) + (1− γ)(1− ρ)f(w+)

= γλ
a−

ᵀ
v

a−ᵀz
f(v−) + (1− γ)λ

a+
ᵀ
v

a+ᵀz
f(v+)

+ γ(1− λ)
a−

ᵀ
w

a−ᵀz
f(w−) + (1− γ)(1− λ)

a+
ᵀ
w

a+ᵀz
f(w+)

= λ

(
γ
a−

ᵀ
v

a−ᵀz
f(v−) + (1− γ)

a+
ᵀ
v

a+ᵀz
f(v+)

)
+ (1− λ)

(
γ
a−

ᵀ
w

a−ᵀz
f(w−) + (1− γ)

a+
ᵀ
w

a+ᵀz
f(w+)

)
.

(8)
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What follows uses that g is positively homogeneous in order to rewrite the last
inequality. To do so, note that

γ
a−

ᵀ
v

a−ᵀz
· v− + (1− γ)

a+
ᵀ
v

a+ᵀz
· v+ = γ

1

a−ᵀz
v + (1− γ)

1

a+ᵀz
v = v(9)

because z = γz− + (1 − γ)z+ =
(
γ 1
a−ᵀz + (1− γ) 1

a+ᵀz

)
z. Let Ω = γ a

−ᵀ
v

a−ᵀz + (1 −
γ)a

+ᵀ
v

a+ᵀz —this is simply the sum of the weights in the leftmost linear combina-
tion of (9). By definition of g, and because we are assuming it to be positively
homogeneous, we have that

g(v) = g

(
γ
a−

ᵀ
v

a−ᵀz
· v− + (1− γ)

a+
ᵀ
v

a+ᵀz
· v+

)
(due to (9))

= Ω · g

(
γ a

−ᵀ
v

a−ᵀz

Ω
· v− +

(1− γ)a
+ᵀ
v

a+ᵀz

Ω
· v+

)
(pos. homog.)

= Ω ·

(
γ a

−ᵀ
v

a−ᵀz

Ω
· f(v−) +

(1− γ)a
+ᵀ
v

a+ᵀz

Ω
· f(v+)

)
(def. of g)

= γ
a−

ᵀ
v

a−ᵀz
· f(v−) + (1− γ)

a+
ᵀ
v

a+ᵀz
· f(v+)

A similar relation can be deduced for w obtaining

γ
a−

ᵀ
w

a−ᵀz
w− + (1− γ)

a+
ᵀ
w

a+ᵀz
w+ =

(
γ

1

a−ᵀz
+ (1− γ)

1

a+ᵀz

)
w = w

which implies

g(w) = g

(
γ
a−

ᵀ
w

a−ᵀz
w− + (1− γ)

a+
ᵀ
w

a+ᵀz
w+

)
= γ

a−
ᵀ
w

a−ᵀz
f(w−) + (1− γ)

a+
ᵀ
w

a+ᵀz
f(w+).

Using these expressions for g(v) and g(w) in (8) we obtain

g(z) = g (λv + (1− λ)w) ≤ λg(v) + (1− λ)g(w).

This shows that g is convex in B. �

The previous lemma shows that g is convex in each region B ∈ B. Before moving
to convexity toward P , we show differentiability of g in each region and compute
the corresponding gradient, which we rely on in the next section.

Lemma 2. Let B ∈ B and g : B ⊆ Rn+ → R as defined in (1). Let a±
ᵀ
x = 1 be

the in-hyperplane and out-hyperplane of B. Then, g is a differentiable function in
int(B). Moreover, the gradient is given by

(10) ∇g(v) =
αv
a−ᵀv

(
δ−a− +∇f(v−)

)
+

1− αv
a+ᵀv

(
δ+a+ +∇f(v+)

)
where

δ− =
(
∇f(v∗)−∇f(v−)

)ᵀ
v− ≤ 0

δ+ =
(
∇f(v∗)−∇f(v+)

)ᵀ
v+ ≥ 0

for a vector v∗ contained on the segment [v−, v+], and 1
a−ᵀv

:= 0 in the case 0 ∈ P .
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Proof. Consider v ∈ int(B) arbitrary. In this proof, to aid the reader, we empha-
size that v± and αv are functions of v by referring to them as v±(v) and αv(v),
respectively.

Since g(v) = αv(v)f(v−(v)) + (1 − αv(v))f(v+(v)) and f is differentiable, g is
also differentiable in the interior of B. The gradient of g is given by

∇g(v) = ∇αv(v) · f(v−(v)) + αv(v)∇f(v−(v))

+∇(1− αv(v)) · f(v+(v)) + (1− αv(v))∇f(v+(v))

= ∇αv(v) ·
(
f(v−(v))− f(v+(v))

)
+ αv(v)∇f(v−(v))

+ (1− αv(v))∇f(v+(v))(11)

where

(12) ∇f(v±(v)) = Dv±(v)
ᵀ∇f(v)|v=v±

and Dv±(v) is the Jacobian matrix of v±(v). Recall that we are assuming v±(v)
intersects a facet of P contained in an hyperplane of equation a±

ᵀ
~x = 1. Hence,

by Remark 2 and defining 1
a−ᵀv

:= 0 when 0 ∈ P ,

(13) v±(v) =
1

a±ᵀv
v, so ∇

(
1

a±ᵀv

)
=
−a±

(a±ᵀv)2

and

Dv±(v) = v∇
(

1

a±ᵀv

)ᵀ

+
1

a±ᵀv
In

=
−va±ᵀ

(a±ᵀv)2
+

1

a±ᵀv
In =

−1

a±ᵀv

(
v±(v)a±ᵀ − In

)
.

Replacing in (12) we obtain

∇f(v±(v)) =

(
−1

a±ᵀv

(
v±(v)a±

ᵀ − In
))ᵀ

∇f(v±(v))

=
−1

a±ᵀv

(
(∇f(v±(v))ᵀv±(v))a± −∇f(v±(v))

)
Note that∇v±(v)

ᵀ
v = 0 and∇f(v±(v))ᵀv = 0. This is expected because varying

v over its ray does not change the position of v±(v) nor the value of f(v±(v)). On
the other hand, applying the gradient to (3) we obtain

∇αv(v) =

(
1

a−ᵀv
− 1

a+ᵀv

)−1(
αv(v)

a−

(a−ᵀv)2
+ (1− αv(v))

a+

(a+ᵀv)2

)
(14)

Finally, the mean value theorem ensures there exist v∗ on the segment [v−(v), v+(v)]
such that
(15)

f(v−(v))− f(v+(v)) = ∇f(v∗)ᵀ(v−(v)− v+(v)) = ∇f(v∗)ᵀv

(
1

a−ᵀv
− 1

a+ᵀv

)
Grouping all the terms into (11), we obtain an explicit formula for the gradient of
g at v as

∇g(v) = ∇αv(v) ·
(
f(v−(v))− f(v+(v))

)
+ αv(v)∇f(v−(v)) + (1− αv(v))∇f(v+(v))

=

(
αv(v)

a−

(a−ᵀv)2
+ (1− αv(v))

a+

(a+ᵀv)2

)
∇f(v∗)ᵀv
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+ αv(v)

(
−1

a−ᵀv

((
∇f(v−(v))ᵀv−(v)

)
a− −∇f(v−(v))

))
+ (1− αv(v))

(
−1

a+ᵀv

((
∇f(v+(v))ᵀv+(v)

)
a+ −∇f(v+(v))

))
=
αv(v)

a−ᵀv

((
(∇f(v∗)ᵀv)

1

a−ᵀv
−
(
∇f(v−(v))ᵀv−(v)

))
a− +∇f(v−(v))

)
+

1− αv(v)

a+ᵀv

((
(∇f(v∗)ᵀv)

1

a+ᵀv
−
(
∇f(v+(v))ᵀv+(v)

))
a+ +∇f(v+(v))

)

=
αv(v)

a−ᵀv

((∇f(v∗)−∇f(v−(v))
)ᵀ
v−(v)

)︸ ︷︷ ︸
δ−

a− +∇f(v−(v))


+

1− αv(v)

a+ᵀv

((∇f(v∗)−∇f(v+(v))
)ᵀ
v+(v)

)︸ ︷︷ ︸
δ+

a+ +∇f(v+(v))


=
αv(v)

a−ᵀv

(
δ−a− +∇f(v−(v))

)
+

1− αv(v)

a+ᵀv

(
δ+a+ +∇f(v+(v))

)
Note that since f is ray-concave, then it is concave on the segment [v−(v), v+(v)],

so for any v′ on the segment(
∇f(v∗)−∇f(v−(v))

)ᵀ
v′ ≤ 0(

∇f(v∗)−∇f(v+(v))
)ᵀ
v′ ≥ 0

because ~0, v, v+(v) and v−(v) are colinear. Therefore, δ+ ≥ 0 and δ− ≤ 0. �

As a side note, in the last lemma we only used differentiability of f to show
the formula (10), therefore such formula is always valid for g defined as (1). Ray-
concavity of f was only used to show the signs of δ±, and facet-convexity of f was
not needed.

3.2. Convexity over the polytope. We know provide the last step which proves
that g is convex in P .

Lemma 3. Let g : P ⊂ Rn+ → R as defined in (1). If g is convex over each region
B ∈ B, then it is convex in P .

Proof. Our strategy to show convexity is to show mid-point local convexity, that is,
for each v ∈ P , we show there is a neighborhood of v where g is mid-point convex.
We remind the reader that mid-point convexity reads

g

(
1

2
(v1 + v2)

)
≤ 1

2
(g(v1) + g(v2)) ∀v1, v2 ∈ P.

Mid-point convexity does not always imply convexity, but in this case it suffices
as the function g is continuous. Therefore, establishing local mid-point convexity
implies local convexity [6]. And since local convexity implies convexity (see e.g.
[10]), we conclude that g is convex.

We now proceed to proving local mid-point convexity of g. Let us consider v ∈ P ,
d ∈ Rn and ε > 0. We would like to show that

(16) g(v) ≤ 1

2
(g(v − εd) + g(v + εd)).
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If v ± εd ∈ int(B) the inequality follows from convexity of g within a region.
Therefore, we may assume v ∈ Bs ∩ Bt, v − εd ∈ Bs and v + εd ∈ Bt for some
Bs, Bt ∈ B.

Let a+s
ᵀ
x = 1 be the out-hyperplane of Bs, and a−s

ᵀ
x = 1 be its in-hyperplane.

Similarly, we define a±t . Thus, v± = 1
a±s

ᵀ
v
v = 1

a±t
ᵀ
v
v. Let ∇gBs

and ∇gBt
be

the gradients of g in int(Bs) and int(Bt) respectively (see Lemma 2). Since these
gradients are continuous, we can extend their formula (10) to Bs and Bt. From
here, we obtain

∇(gBs(v)− gBt(v)) =
αv

a−s
ᵀ
v
δ−(a−s − a−t ) +

1− αv
a+s

ᵀ
v
δ+(a+s − a+t )(17)

Now we focus on showing that ∇gBs(v)ᵀd ≤ ∇gBt(v)ᵀd. Since v + εd ∈ Bt,

(v + εd)± =
v + εd

a±t
ᵀ
(v + εd)

.

We start exploring the facet contained in a+t
ᵀ
x = 1. By convexity of the polytope

P , we know that a+s
ᵀ
(v + εd)+ ≤ 1. Hence, a+s

ᵀ
(v + εd) ≤ a+t

ᵀ
(v + εd) and since

a+s
ᵀ
v = a+t

ᵀ
v we conclude that

(a+s − a+t )ᵀd ≤ 0.

In a similar way, for the facet contained in a−t
ᵀ
x = 1, by convexity of the polytope

we get that a−s
ᵀ
(v+εd)− ≥ 1. So, a−s

ᵀ
(v+εd) ≥ a−t

ᵀ
(v+εd) and we conclude that

(a−s − a−t )ᵀd ≥ 0.

As δ− ≤ 0 and δ+ ≥ 0 (Lemma 2), we obtain that

∇(gBs
(v)− gBt

(v))ᵀd =
αv

a−s
ᵀ
v
δ−(a−s − a−t )ᵀd︸ ︷︷ ︸

≤0

+
1− αv
a+s

ᵀ
v
δ+(a+s − a+t )ᵀd︸ ︷︷ ︸

≤0

≤ 0.

so we conclude that

∇gBs(v)ᵀd ≤ ∇gBt(v)ᵀd

Finally, we can use the first order characterization of convexity within each region
and obtain

g(v + εd) = gBt(v + εd) ≥ g(v) + ε∇gBt(v)ᵀd ≥ g(v) + ε∇gBs(v)ᵀd

g(v − εd) = gBs
(v − εd) ≥ g(v)− ε∇gBs

(v)ᵀd ≥ g(v)− ε∇gBt
(v)ᵀd

These two inequalities imply (16). This completes the proof of local mid-point
convexity of g which, as discussed at the beginning of this proof, implies convexity
of g in P . �

Note that, similarly to Lemma 2, the latter proof does not explicitly rely on
facet-convexity. The result mainly uses that g is convex on each region and that f
is ray-concave (in order to use the signs of δ± in the gradient formula).

Knowing that g defines a convex function over the domain, we can prove our
main theorem, showing that it corresponds to the convex envelope of f over the
polytope P .

Theorem 1. By previous lemma, we know that g is a convex function over the
domain P . We show that g is an underestimator of f , that is, g(v) ≤ f(v) for
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all v ∈ P . For v = 0 it clearly holds. If v 6= 0, v ∈ P implies that αv ∈ [0, 1].
Additionally, since f is concave over [v−, v+] we know that

f(v) = f(αvv
− + (1− αv)v+) ≥ αvf(v−) + (1− αv)f(v+) = g(v).

Finally, we argue why g is the largest convex function that underestimates f .
Let h another convex function that underestimates f and let v ∈ P such that
h(v) > g(v). Restricted to the segment [v−, v+], the function h is also convex.
But this is a contradiction, because f is concave on [v−, v+], so the largest convex
function underestimating f on this segment is the line interpolating f(v−) and
f(v+), which is exactly g. �

3.3. On the positively homogeneous condition. In this section we present
characterizations for when the function g constructed in (1) is positively homoge-
neous.

Lemma 4. If 0 ∈ P , then g is positively homogeneous if and only if f(0) = 0. In
this case,

g(v) = a+
ᵀ
v · f(v+),

where a+
ᵀ
x = 1 is the out-hyperplane of the region B 3 v (see Remark 2).

Proof. If 0 ∈ P then v = αv · 0 + (1− αv)v+ = 1−αv

a+ᵀv v, so

g(v) = (1− a+ᵀ
v)f(0) + a+

ᵀ
v · f(v+)

If g is positively homogeneous, then g(0) = 0 = f(0). To prove the other direction,
if f(0) = 0 then g(v) = a+

ᵀ
v · f(v+), which is homogeneous because for any λ > 0

such that λv ∈ P , (λv)+ = v+ so g(λv) = a+
ᵀ
(λv) · f(v+) = λg(v). �

As mentioned in Remark 1, the condition f(0) = 0 is not restrictive in the
construction of convex envelopes when 0 ∈ P . If f(0) 6= 0, it suffices to define

f̂ = f − f(0) and use our construction to derive f̂vex. The desired convex envelope

simply follows from noting that fvex = f̂vex + f(0). We illustrate the use of this
transformation in the upcoming examples section.

Lemma 5. If 0 /∈ P , then g is positively homogeneous iff, for every v ∈ P , a−
ᵀ
v ·

f(v−) = a+
ᵀ
v · f(v+), where a±

ᵀ
x = 1 are the in-hyperplane and out-hyperplane

of a region B 3 v (see Remark 2). In this case,

g(v) = a−
ᵀ
v · f(v−) = a+

ᵀ
v · f(v+).

Proof. Since v± = 1
a±ᵀvv, if g is homogeneous then

g(v) = g
(
(a±

ᵀ
v) · v±

)
= a±

ᵀ
v · g(v±) = a±

ᵀ
v · f(v±).

For the other direction, if a−
ᵀ
v · f(v−) = a+

ᵀ
v · f(v+), by (3) we obtain

g(v) = αvf(v−) + (1− αv)f(v+)

= αvf(v−) +
(

1− αv
a−ᵀv

)
(a+

ᵀ
v)f(v+)

= αvf(v−) +
(

1− αv
a−ᵀv

)
(a−

ᵀ
v)f(v−)

= αvf(v−) + (a−
ᵀ
v)f(v−)− αvf(v−)

= (a−
ᵀ
v)f(v−) = (a+

ᵀ
v)f(v+)
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So, g is homogeneous because for any λ > 0 such that λv ∈ P , g(λv) = a±
ᵀ
(λv) ·

f((λv)±) = λ(a±
ᵀ
v) · f(v±) = λg(v). �

We note that our results have an unexpected consequence: when f is a homo-
geneous function, convexity of f over the facets of P imply convexity of f over all
P .

Corollary 1. Let f : P → R is continuously differentiable and convex (concave)
over the facets of P . If f is positively homogeneous, then f is convex (concave)
over P .

Proof. We show the proof for f convex on the facets; the concave case is almost
identical. If f is positively homogeneous then in particular is ray-linear. Hence
f(v) = (a+

ᵀ
v) · f(v+) = g(v). In addition, since f is convex on the facets of P , by

Theorem 1 g = fvex, so f is convex over P . �

4. Examples of ray-concave functions and their envelopes

In this section, we provide the convex envelopes of various explicit functions.
Some of these are new, and some have been provided in the literature before. In
the latter case, our result provides new perspectives, and in some cases simpler
derivations.

Example 2. Consider the function f(x, y) = −x · y, whose convex envelope over
[lx, ux] × [ly, uy] is well-known. In order to construct its convex envelope using
Theorem 1, we first shift the domain by considering the function

f̂(x, y) = f(x+ lx, y + ly) + lx · ly = −(x+ lx) · (y + ly) + lx · ly

over the box [0, ux − lx]× [0, uy − ly]. It is easy to verify that f̂ is ray-concave and
linear on the facet of any box [0, ux − lx] × [0, uy − ly]. Theorem 1 implies that

f̂vex(v) = a+
ᵀ
v · f̂(v+) and thus

f̂vex(x, y) =

{
y

uy−ly · f̂
(
x · uy−ly

y , y · uy−ly
y

)
if y ≥ uy−ly

ux−lxx

x
ux−lx · f̂

(
x · ux−lx

x , y · ux−lx
x

)
if y ≤ uy−ly

ux−lxx

=

{
−uyx− lxy if y ≥ uy−ly

ux−lxx

−lyx− uxy if y ≤ uy−ly
ux−lxx

And since fvex(x, y) = f̂vex(x− lx, y − ly)− lx · ly, we obtain

fvex(x, y) =

{
−uyx− lxy + lxuy if y − ly ≥ uy−ly

ux−lx (x− lx)

−lyx− uxy + lyux if y − ly ≤ uy−ly
ux−lx (x− lx)

which corresponds to the McCormick envelopes for this function.

Example 3. Let us consider the following example from [16]. Let f(x, y) = y/x
and

P =
{

(x, y) ∈ R2 : −x+ 2y ≤ 2, 1 ≤ x ≤ 2, 0 ≤ y ≤ 2
}

We shift the domain by considering the function as f̂(x, y) = f(x + 1, y) and the

polytope P̂ = {(x, y) ∈ R2 : (x + 1, y) ∈ P}. Note that f̂(x, y) is ray-concave

because f̂(x, λx) = λ x
x+1 is concave for x ≥ 0 and λ ≥ 0. Convexity on the facets
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can be directly verified. Applying Theorem 1, since the outer facets of P̂ are x = 1
and − 1

3x+ 2
3y = 1, we obtain

f̂vex(x, y) =

(− 1
3x+ 2

3y)f̂

(
x

− 1
3x+

2
3y
, y

− 1
3x+

2
3y

)
if y ≥ 2x

xf̂
(
x
x ,

y
x

)
if y ≤ 2x

=

y
− 1

3x+
2
3y

x+
(
− 1

3x+
2
3y

) = y−x+2y
2x+2y if y ≥ 2x

1
2y if y ≤ 2x

Therefore, as fvex(x, y) = f̂vex(x− 1, y) we obtain

fvex(x, y) =

{
y 1−x+2y
2(x+y+1) if y ≥ 2(x− 1)

1
2y if y ≤ 2(x− 1)

Example 4. Let us consider the function

(18) f(x, y) =
xy

x+ y − xy
in a box [0, ux]× [0, uy] ⊆ [0, 1]2. This function appears naturally in the context of
network reliability optimization. In fact, if X,Y are independent Bernoulli random
variables indicating the current state of two serial component, with reliabilities
pX := P(X = 1) and pY := P(Y = 1) then

f(pX , pY ) = P (X · Y = 1|X + Y ≥ 1) .

corresponds to the resulting reliability of a degree-2 reduction [24].

We compute the concave envelope of (18) via the convex envelope of f̂ = −f .

The function f̂ can be directly verified to be convex on the facets of [0, ux]× [0, uy].
For instance

h(x) = f̂(x, uy) = − xuy
x+ uy − xuy

,

and a simple calculation shows

h′′(x) =
2(1− uy)u2y

(1− (1− uy)(1− x))3
≥ 0.

As for ray-concavity, we compute

f̂(x, λx) = − λx

1 + λ− λx
⇒ ∂2f̂

∂x2
(x, λx) = − 2λ2(1 + λ)

(1 + λ(1− x))3
,

therefore ∂2f
∂x2 (x, λx) ≥ 0 for x ≤ 1 and λ ≥ 0. By Theorem 1, the concave envelope

of f(x, y), denoted fave, is given by

fave(x, y) = −f̂vex(x, y) = −(a+
ᵀ
v)f̂(v+x , v

+
y )

=


y
uy

x
uy
y ·uy

x
uy
y +uy−x

uy
y ·uy

if y ≥ uy

ux
x

x
ux

ux·y ux
x

ux+y
ux
x −ux·y ux

x
if y ≤ uy

ux
x

=

{
x·y

x+y−x·uy
if y ≥ uy

ux
x

x·y
x+y−ux·y if y ≤ uy

ux
x
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Note that this procedure also computes, for free, the concave envelope of f on
the non-rectangular polytopes {(x, y) ∈ [0, ux] × [0, uy] : y ≤ uy

ux
x} and {(x, y) ∈

[0, ux]× [0, uy] : y ≥ uy

ux
x}.

Example 5. Let us consider the function

f(x, y) = −
y
(
x3y2 + 2x4y − 3x3y − x2y + x5 − 3x4 + 2x3 − 2xy2 − y3

)
x(x+ y)2

over the region P =
{

(x, y) ∈ R2
+ : 1 ≤ x+ y ≤ 2

}
.

Note that f(x, 0) = 0, limε→0 f(ε, y) is linear, f(x, 1 − x) = (x − 1)2/x and
f(x, 2− x) = (x− 2)2/x, so f is convex on the facets. On the other hand, over the
ray y = λx for λ ≥ 0 we obtain

∂2f

∂x2
(x, λx) = −6λ

(1 + λ)x− 1

1 + λ

If (x, λx) ∈ P then x ∈ [ 1
1+λ ,

2
1+λ ], so f is ray-concave for any λ ≥ 0. Applying

Theorem 1, we obtain:

fvex(x, y) = (2− x− y) · f
(

x

x+ y
,

y

x+ y

)
+ (x+ y − 1) · f

(
2x

x+ y
,

2y

x+ y

)
= (2− x− y) · y2

x(x+ y)
+ (x+ y − 1) · 2y2

x(x+ y)
=
y2

x

which corresponds to the convex envelope because y2/x is positively homogeneous.

The following example shows how Corollary 1 can be used to prove the convexity
of positively homogeneous functions.

Example 6. Let f be a 3-dimensional Cobb-Douglas function

f(x1, x2, x3) = Axα1
1 xα2

2 xα3
3

where A,α1, α2, α3 > 0, α1 + α2 + α3 = 1 and ~x ∈ R3
+.

It is known that the 2-dimensional Cobb-Douglas function is concave if αi+αj <
1, hence f is concave over the facets of the box P = [l1, u1]× [l2, u2]× [l3, u3] ⊂ R3

+.

Since
∑3
i=1 αi = 1, f is positively homogeneous, so by Corollary 1 we conclude

that f is concave over P .
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