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Convex Formulations and Algebraic Solutions for Linear Quadratic

Inverse Optimal Control Problems

Marcel Menner and Melanie N. Zeilinger

Abstract— This paper presents convex formulations for in-

verse optimal control problems for linear systems to infer

cost function matrices of a quadratic cost from both optimal

and non-optimal closed-loop gains. It introduces an optimality

measure which enables a formulation of the problem as a convex

semidefinite program for the general case and a linear program

for several special cases. We derive an explicit algebraic expres-

sion for general objective function matrices as well as conditions

under which the solution to the inverse optimal control problem

is unique. The result is derived by means of a vectorization and

parametrization of the algebraic Riccati equation. A simulation

example highlights the robust performance in the presence of

noise on the measured closed-loop gain and the computational

efficiency of the proposed problem formulations.

I. INTRODUCTION

Inverse optimal control (IOC) addresses the problem of
inferring the cost function matrices of a corresponding un-
constrained optimal control problem from a given control
law. It provides a promising approach for learning from ob-
served behavior, offering favorable generalization properties
by relating actions to an underlying objective function. While
observed data generally only provides sparse information
about the control law, the objective function allows for
generating a control law for the entire state space. One
application motivating this paper is personalized learning
with the goal of tailoring system operation to match user-
specific demands. The challenges in this context are the gen-
eralization of a user’s intention from observed behavior and
online processing of the collected data. The IOC techniques
proposed in this paper address both challenges by introducing
efficient solutions for recovering cost functions from both
optimal and non-optimal closed-loop gains based on convex
optimization problems. While the presented methods can be
applied in the context of imitation learning or identifying
preferences in user-operated systems, the techniques address
general IOC problems.

Optimal control is well-studied in the literature and, for
linear systems and quadratic cost functions, there exists an al-
gebraic solution to the unconstrained infinite-horizon control
problem via the algebraic Riccati equation (ARE), e.g. [1].
IOC distinguishes itself from other learning solutions such
as reinforcement learning, e.g. [2], inverse reinforcement
learning, e.g. [3]–[5], or apprenticeship learning, e.g. [6]–
[8], by means of its algebraic connection between the cost
function and the control law, i.e. the ARE.
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This algebraic connection is exploited in the IOC tech-
niques in [9], [10] and inverse model predictive control
(MPC) in [11]. In [9]–[11], a semidefinite program (SDP)
is proposed to infer the objective function from an optimal
closed-loop gain and a bilinear SDP is solved with a gradient
descent method for a non-optimal closed-loop gain. Non-
optimal closed-loop gains, however, are expected to be
commonly encountered in practice, since the gain will be
recovered from noisy input data. Other related work can be
found in [12]–[14]. In [12], it is shown that, for a linear
system, any feedback gain is optimal for some choice of cost
matrices if the cost structure includes terms with state-input
coupling. Related work in economic MPC [13] considers
the problem of computing positive definite cost matrices,
which yield the same feedback gain as an indefinite economic
cost. The method proposed in [13] also solves an IOC
problem with the techniques in [12], however, the objective
is to keep matrices well-conditioned, rather than reproduce
optimal behavior.

This paper makes the following contributions: It introduces
convex formulations for the IOC problem for linear systems
and a quadratic cost by means of an optimality measure
reflecting the infinite-horizon cost, which has the benefit of
offering a notion of closed-loop performance. More specif-
ically, we present an SDP formulation for inferring general
objective function matrices and a linear programming (LP)
formulation for both diagonal objective function matrices and
block-diagonal matrices with blocks of dimension two. Dif-
ferent from [9]–[11], this paper shows that the IOC problem
can be stated as a convex optimization problem for both
optimal and non-optimal closed-loop gains. The results offer
an alternative approach to [12] by making use of a standard
quadratic cost function without the requirement for introduc-
ing state-input coupling. In [12], noisy measurements neces-
sarily lead to a nonzero state-input coupling term in the cost,
whereas in the proposed approach an objective function with
only quadratic terms on states and inputs is inferred which
best explains the observed measurements. Furthermore, an
explicit algebraic expression for the inverse problem given
an optimal controller gain is derived and sufficient conditions
are stated under which the corresponding cost function can
be uniquely inferred for diagonal cost matrices. Finally, we
show feasibility of the convex formulations for general, i.e. in
particular non-optimal gains, for all cases. The performance
of the proposed solutions is analyzed in simulations, where
the cost function is inferred from noisy measurements of the
feedback gain with various standard deviations.

The paper is structured as follows. In Section II, the



problem is stated. Section III presents the notation and pre-
liminaries. Section IV introduces the optimality measure and
derives the convex optimization problems. Section V derives
the explicit algebraic solution to the inverse problem and
states its properties. A simulation is presented in Section VI
and the paper is concluded with Section VII.

II. PROBLEM STATEMENT

Consider a linear discrete-time system of the form

x(k + 1) = Ax(k) +Bu(k),

where x(k) and u(k) are the state and input at time instance
k, respectively, and A 2 Rn⇥n and B 2 Rn⇥m are the state
and input matrix, respectively.

We address the inverse optimal control problem, i.e.
inferring the generating optimal control problem from an
observed control law, for linear systems and quadratic cost
functions. Control actions are modeled as the solution of an
unconstrained infinite-horizon optimal control problem of the
following form:

x(k)>Px(k) =min
1X

i=0

�
x>
i Qxi + u>

i Rui

�

s.t. xi+1 = Axi +Bui

x0 = x(k),

(1)

where P � 0 describes the infinite-horizon cost, Q ⌫ 0 is the
state-penalty matrix, and R � 0 is the input-penalty matrix
[1]. The task is to infer the cost function matrices from an
observed control law u(k) = Kx(k). In contrast to [9]–
[12], we propose to optimize for Q and R, which minimize
violation of the optimality conditions for the actual measured
K. As we will show in the following sections, this enables
a convex formulation to the IOC problem. Further, we will
present an explicit algebraic solution to the inverse problem
of (1). The results are based on the following assumptions:

Assumption 1. The system matrix A and input matrix B are

given and the state x(k) and input u(k) can be measured.

Assumption 2. (A,B) is stabilizable and (Q1/2, A) is

detectable.

Assumption 3. B has full column rank.

Assumption 4. All eigenvalues of the closed-loop system

A+BK are nonzero, i.e. (A+BK)�1
exists.

Remark 1 (Existence of (A + BK)�1). For a physical

system, Assumption 4 is generally satisfied. If, however, one

encounters singular A+BK, e.g. due to noise, a subsystem

As = ⌅(A+BK)⌅T
can be considered to infer cost function

matrices Qs and R. The projection ⌅ 2 Rnp⇥n
is defined

such that ⌅(A+BK)⌅T
has full rank and ⌅vi = 0, where

vi with i, ..., n� nr are the eigenvectors of A+BK, which

correspond to zero eigenvalues. nr is the dimension of zero

eigenvalues. The state-penalty matrix is then obtained as

Q = ⌅TQs⌅.

Remark 2 (Derivation of controller gain). We will show how

to infer Q and R from a given controller gain K. The gain

can be obtained from input and output measurements with

standard approaches, such as least squares techniques [15].

III. NOTATION & PRELIMINARIES

A. Matrix notation

We denote with 1 a column vector of ones of appropriate
dimension and with In 2 Rn⇥n an identity matrix. Let I be
an index set. Then qI selects the entries of a vector q indexed
by I and M⇤I selects the columns of a matrix M indexed
by I. We denote with diag(M) a column vector consisting
of the diagonal elements of a matrix M and with diag(m)
a diagonal matrix consisting of the elements of a vector m.
Mij refers to the element of matrix M associated with row
i and column j.

B. Vectorized notation

Consider the matrix equation

XY Z = 0 (2)

where X 2 Rl⇥m, Y 2 Rm⇥n, and Z 2 Rn⇥p. The vec-
operator is defined as

y := vec(Y ) =

2

6664

Y⇤1
Y⇤2

...
Y⇤n

3

7775
,

where y 2 Rmn⇥1. It follows that (2) is equivalent to

vec (XY Z) = 0 ,
�
Z> ⌦X

�
vec(Y ) = 0

with the Kronecker product ⌦ [16]. In order to solve a system
of equations

XY Z + CY >D = 0

for Y >, we can therefore reformulate the condition in
vectorized form, i.e.

�
Z> ⌦X

�
vec(Y ) +

�
D> ⌦ C

�
vec(Y >) = 0

,
��
Z> ⌦X

�
+
�
D> ⌦ C

�
T
�
vec(Y ) = 0

with the permutation T 2 Rmn⇥mn such that

vec
�
Y >� = T vec (Y ) . (3)

C. Algebraic conditions for optimal control

The following well-known results from optimal control
exploiting the algebraic relationship between cost and con-
troller gain are used as a basis for the inverse optimal control
solutions derived in this paper. The optimal feedback gain K
is defined as

K = �
�
B>PB +R

��1
B>PA

, B>P (A+BK) = �RK,
(4)

where P as in (1) is the infinite-horizon cost and the solution
of the discrete-time algebraic Riccati equation, e.g. [1]:

P = Q+A>PA�A>PB
�
B>PB +R

��1
B>PA

= Q+A>P (A+BK).
(5)



IV. CONVEX FORMULATIONS OF THE INVERSE OPTIMAL
CONTROL PROBLEM

Based on the ARE in (5), the following introduces an
SDP formulation for the IOC problem with general objective
function matrices, two LP formulations for recovering block-
diagonal and diagonal objective function matrices, and an
explicit algebraic solution for recovering diagonal objective
function matrices from general feedback gains K, which may
be non-optimal. In general, gains are expected to be non-
optimal with respect to the optimal control problem (1), since
they are recovered from noisy input data. In this case, the
optimality condition (5) is infeasible and cannot be satisfied
for any Q, R, and P .

A. Cost function & Parametrization

The key for providing a convex IOC formulation is the
use of a particular objective, which will be introduced in
the following. The objective measures non-optimality as
violation of the optimality condition (5). Hence, we aim at
finding Q, R, and P that result in the smallest deviation
⇤ from the infinite-horizon cost P satisfying the optimality
condition:

(P + ⇤) = Q+A>(P + ⇤)(A+BK) ,
⇤�A>⇤(A+BK) = Q� P +A>P (A+BK).

(6)

By the interpretation of P as the optimal infinite horizon
cost, the deviation ⇤ also offers a notion of closed-loop
performance, i.e. the gain K is optimal if and only if
⇤ = 0. This intuitive optimality measure is different from
the literature, e.g. [9]–[11], generally minimizing the distance
between the measured and an optimal feedback gain. Note
that we neither enforce positive definiteness nor symmetry
of P in the following IOC problems. However, P will be
positive definite if ⇤ = 0 and symmetry is encouraged by
the objective.

We first introduce a parametrization that allows for the
algebraic solution and uniqueness statements in Section V.
Since there are no constraints on the structure of P , it is
possible to substitute P in (6) with an expression derived
from (4):

P = �B+RK (A+BK)�1 +B?>Y, (7)

where B+ := B
�
B>B

��1, Y 2 R(n�m)⇥n, and B? 2
R(n�m)⇥n with B?B = 0 is a basis for the orthogonal
complement of B. Assumption 3 ensures the existence of�
B>B

��1. Condition (6) can then be replaced by

⇤�A>⇤(A+BK) = Q+B+RK (A+BK)�1

�B?>Y �A>B+RK

+A>B?>Y (A+BK).

(8)

For consistency of notation in the paper we present all
results using the parametrization. For general cost function
matrices, however, one could directly use (6) and optimize
over P . Instead of solving (4) and (6) for Q, R, and P ,
the parametrization allows to solve (8) for Q, R, and Y .
While the formulations are equivalent, the parametrization in

Y has the advantage of reducing the number of optimization
variables and constraints both by nm.

In addition to measuring violation of optimality, the ob-
jective penalizes non-symmetry of the matrix P by means
of the measure ⇤p = P � P>, i.e.

⇤p = �B+RK (A+BK)�1 +B?>Y

+
⇣
K (A+BK)�1

⌘>
R
�
B+
�> � Y >B?.

(9)

Notice that ⇤p = 0, i.e. P is symmetric, if the measured
K is the optimal solution of the problem in (1). Eq. (9)
introduces a preference on R and Y that render P symmetric.

Remark 3. Without loss of generality, we can choose R11 =
1 as only the relative weighting between Q and R is relevant

for the optimal solution [1]. A diagonal element of R is used

to fix the scaling of the objective function as R � 0, whereas

Q ⌫ 0 and diagonal elements of Q may be zero.

Remark 4. The formulations presented in the following can

similarly be derived for continuous-time systems of the form

ẋ(t) = Acx(t) +Bcu(t).

B. SDP formulation for general cost matrices

First, an SDP formulation for inferring general objective
function matrices from general gains K is proposed. Given
K, the goal is to find Q, R, and Y , which minimize the
deviation to optimality ⇤ in (8) and to symmetry ⇤p in (9).

The SDP for a general linear quadratic IOC problem is

min k⇤k1 + cp · k⇤pk1
s.t. (8)

(9)
Q ⌫ 0
R ⌫ ✏ · Im
R11 = 1

(10)

with cp � 0 as remaining design parameter for trading-off
optimality against symmetry and ✏ > 0 to ensure R � 0.

C. LP formulation for diagonal cost matrices

The most common objective function in optimal control
problems makes use of diagonal cost matrices, e.g. [1].
This motivates the derivation of an LP formulation for
reconstructing diagonal cost matrices, which can be solved
efficiently with available solvers such as CPLEX [17].

The LP for inferring diagonal cost matrices is given by

min k⇤k1 + cp · k⇤pk1
s.t. (8)

(9)
diag (Q) � 0
diag (R) � ✏ · 1
R11 = 1,

(11)

where all non-diagonal elements of Q and R are set to zero.
Both conditions Q ⌫ 0 and R ⌫ ✏ · Im dissolve naturally in
linear inequality constraints for diagonal cost matrices.



Remark 5 (Extension to block-diagonal cost matrices). It is

similarly possible to formulate an LP for block-diagonal Q
and R if the blocks are of dimension two, i.e.

Q =

2

6664

Q1 0 · · · 0
0 Q2 0
.
.
.

. . .
.
.
.

0 0 · · · Qkq

3

7775
, R =

2

6664

R1 0 · · · 0
0 R2 0
.
.
.

. . .
.
.
.

0 0 · · · Rkr

3

7775

with Qi, Ri 2 R2⇥2
. Note that Qkq , Rkr can also be scalar

depending on the dimension of Q and R.

The additional constraints to impose Q ⌫ 0 and R � 0
are obtained by applying Silvester’s criterion for positive

definite matrices [18]: R is positive definite if Ri � 0 for

all i 2 {1, ..., kr}, i.e.

ri11 � ✏
ri22 � ✏

ri11 � ri12 + ✏
ri12 � �ri11 + ✏
ri22 � ri12 + ✏
ri12 � �ri22 + ✏

,

2

6666664

1 0 0 0
0 0 0 1
1 �1 0 0
1 1 0 0
0 �1 0 1
0 1 0 1

3

7777775

| {z }
=:SRi

2

664

ri11
ri12
ri21
ri22

3

775

| {z }
vec(Ri)

� ✏ · 1

for all i = 1, ..., kr. The condition R � 0 results in

2

66664

SR1

0 · · · 0

0 SR2

0
.
.
.

. . .
.
.
.

0 0 · · · SRkr

3

77775

| {z }
=:SR

2

6664

vec(R1)
vec(R2)

.

.

.

vec(Rkr )

3

7775
� ✏ · 1

(12)

and R = R>
. Note that SRkr

= 1 if Rkr is scalar. SQ
is

determined analogously, where ✏ = 0 in (12) is sufficient to

ensure that Q is positive semidefinite.

V. PROPERTIES OF INVERSE OPTIMAL CONTROL
SOLUTIONS

In this section, we present an explicit algebraic condi-
tion for inverse optimal control problems, which allows
for deriving and analyzing the solution properties, such as
uniqueness. First, we derive an algebraic solution for general
cost function matrices. This result is then used to show that
the inverse problem has a unique solution if the generating
cost function matrices are diagonal. The derivations utilize
the Kronecker product [16] to write (8) and (9) in vector
form, where we define the vector variables

r := vec(R), q := vec(Q), y := vec(Y )

with r 2 Rm2

, q 2 Rn2

, and y 2 Rn(n�m). Using the
reformulations in Section III-B, (8) and (9) are converted
into matrix and vector notation resulting in the following
system of equations

(In ⌦ In)vec (⇤)�

�
(A+BK)> ⌦A>� vec (⇤)
vec (⇤p)

�

=


MR MQ MY

NR 0 NY

�2

4
r
q
y

3

5
(13)

where MR, NR 2 Rn2⇥m2

, MQ 2 Rn2⇥n2

, and MY ,
NY 2 Rn2⇥n(n�m) depend on A, B, and K and are defined
in Appendix A.

A. Algebraic condition for general cost matrices

In general, the generating cost matrices Q and R are not
unique for a given control law solving the unconstrained
optimal control problem with linear system dynamics (1),
which is shown in the following by deriving the set of
all solutions of the inverse optimal control problem. Let
⇤ = ⇤p = 0 in (13), i.e. K is the solution of (1). Given
an optimal feedback gain K, constraints (8) and (9) restrict
the solutions Q, R, and Y to lie on a hyperplane, i.e.

2

4
r
q
y

3

5 2 ker

✓
MR MQ MY

NR 0 NY

�◆

with convex boundaries reflecting Q ⌫ 0 and R � 0. This
follows from the vectorized notation (13) and ⇤ = ⇤p = 0.

B. Explicit algebraic solution for diagonal cost matrices

Using (13), we state sufficient conditions under which
the cost function can be uniquely inferred from an optimal
controller gain K if the generating cost matrices Q and R
are diagonal. This result then directly leads to an explicit
algebraic solution of the inverse problem.

Let iQ ⇢ {1, ..., n2} be such that qiQ = diag(Q)
contains all diagonal elements of Q, i.e. iQ = {(k � 1)n+
k for k = 1, ..., n}, and let q{1,..., n2}\iQ = 0. The indices
iR ⇢ {1, ..., m2} are defined analogously. Then (13) with
⇤ = ⇤p = 0 and r1 = 1 becomes

"
MR

⇤iR\1 MQ
⇤iQ MY

NR
⇤iR\1 0 NY

#2

4
riR\1
qiQ
y

3

5 = �

MR

⇤1
NR

⇤1

�
, (14)

where riR\1 2 Rm�1, qiQ 2 Rn, and y 2 Rn(n�m). Define

M :=
h
MR

⇤iR\1 MQ
⇤iQ MY

i
, N :=

h
NR

⇤iR\1 0 NY
i
.

The number of variables in (14) is

m� 1 + n+ n(n�m) = n2 � (n� 1)(m� 1),

while M, N 2 Rn2⇥n2�(n�1)(m�1).

Proposition 1 (Uniqueness of diagonal cost matrices). Let

K be the solution of (1) generated by diagonal cost matrices

Q ⌫ 0 and R � 0. If

colrank

✓
M
N

�◆
= m� 1 + n+ n(n�m), (15)

then (14) with R11 = r1 = 1 has a unique solution and

thereby also (5) has a unique solution for Q, R and P .

If (15) holds, then

det

 
M
N

�> 
M
N

�!
6= 0



and the unique solution to the IOC problem is thus given by
2

4
r?iR\1
q?iQ
y?

3

5 = �
 

M
N

�> 
M
N

�!�1 
M
N

�> 
MR

⇤1
NR

⇤1

�
(16)

and r?1 = 1. Eq. (16) provides an explicit algebraic solution
for inverse optimal control problems if cost function matrices
are diagonal and the measured K is an optimal gain.

Remark 6. The solution of the LP in (11) and (16) are iden-

tical if the generating cost function matrices are diagonal

and the measured K is an optimal gain. For non-optimal

measured K, (16) can still be applied, however, different

from (11), the solution may not be optimal for the considered

cost in (11) and Q and R may not be positive (semi)-definite.

C. Feasibility of inverse optimal control problems

This section shows feasibility of the proposed inverse
optimal control problems for optimal and non-optimal gains
K. First, Theorem 1 proves feasibility of the LP formulation
with diagonal cost matrices in (11). Then, Theorem 2 shows
feasibility of the SDP in (10) using Theorem 1. Note that
the algebraic condition in (16) is feasible if (15) holds.

Theorem 1. The LP (11) is feasible for any K 2 Rm⇥n
.

Proof. The proof can be found in the Appendix.

Theorem 2. The SDP (10) is feasible for any K 2 Rm⇥n
.

Proof. Feasibility is implied by Theorem 1 as diagonal cost
matrices also provide an admissible solution for (10).

VI. SIMULATION EXAMPLE

We analyze the properties of the different IOC formula-
tions using the example system

x(k + 1) =

2

664

.6 �.1 .3 .2
1 1 0 0
.3 .1 .6 �.3
0 0 1 1

3

775x(k) +

2

664

1 .2
.5 .4
.2 1
.5 .5

3

775u(k).

The baseline optimal closed-loop gain Kbl 2 R2⇥4 is defined
as the solution of (1) with

Qbl = diag
�⇥
2 3 2 1

⇤�
, Rbl = diag

�⇥
2 3

⇤�
(17)

and is augmented with noise ⌫, such that the measured gain
matrix is defined by Kij = Kbl

ij (1+⌫ij) for all i, j, where ⌫ij
is normally distributed with zero mean and standard deviation
�(⌫ij) 2 {0, 0.01, ..., 0.1}. As performance measure for
the proposed techniques we use the normalized deviation of
the estimated from the optimal infinite-horizon cost, i.e.

E :=

����
kP ?k2 � kP clk2

kP clk2

���� , (18)

which offers a notion of closed-loop performance. We denote
by P ?, Q?, and R? the solution to the corresponding IOC
problem. P cl defines the infinite-horizon cost obtained from
(5), i.e. the ARE with the solutions Q? and R?. In addition,
we investigate the solver time to compute the objective
function matrices.

Figure 1 shows the deviation E in (18) for the four
proposed formulations, i.e. the SDP in Section IV-B, the LP
with block-diagonal cost matrices (LPb), cf. Remark 5, the
LP with diagonal cost matrices (LPd) in Section IV-C, and
the algebraic solution strategy (ALG) in (16) for varying
standard deviation �(⌫) and cp = 1 for all problems. The
markers indicate the median of 1000 samples for �(⌫) =
{0, 0.01, ..., 0.1}, while the error bars indicate the 16th and
84th percentiles. For noise-free measurements, i.e. �(⌫) =
⌫ = 0, all approaches recover the optimal cost function
matrices in (17) such that E = 0. The SDP is robust to
noise with median value E = 0 for �(⌫)  0.1. LPb is more
sensitive to noise but provides reliable solutions with median
E < 0.04 for �(⌫)  0.1. LPd and ALG are more prone to
noise with median values around E = 0.06 for �(⌫) = 0.1.

Table I provides the computation times to solve the IOC
problems, where the SDP is solved with MOSEK [19], LPb

and LPd are solved with CPLEX [17], and the algebraic solu-
tion is computed in MATLAB. The hardware configuration
is: 3.1 GHz Intel Core i7, 16 GB 1867 MHz DDR3, and
Intel Iris Graphics 6100 1536 MB. The online computation
capabilities of the convex IOC solutions are highlighted with
solver times less than 3 ms for all proposed methods.
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Fig. 1. Median and the 16th and 84th percentiles of the deviation E from
optimality for 1000 samples for SDP (red diamonds), LPb (black stars),
LPd (green rectangles), and ALG (blue triangles).

TABLE I
SOLVER TIMES OF CONVEX INVERSE OPTIMAL CONTROL SOLUTIONS

Approach Solver Solver time

SDP MOSEK 3.00 ms
LPb CPLEX 0.565 ms
LPd CPLEX 0.374 ms
ALG MATLAB < 0.1 ms

VII. CONCLUSION

This paper showed that the inverse optimal control prob-
lem for recovering cost matrices of a quadratic cost function
from a given feedback gain can be formulated as a con-
vex optimization problem for both optimal and non-optimal
closed-loop gains. Further, sufficient conditions were stated



under which this solution is unique providing an explicit
algebraic expression for inferring diagonal cost function
matrices. Simulation results have highlighted the robustness
properties of the different formulations with respect to mea-
sured noise on the gain matrices and have demonstrated that
the problems can be solved efficiently.

APPENDIX A: REFORMULATIONS

The matrices in (13) are defined as

MR =
⇣�

K(A+BK)�1
�> ⌦B+

⌘
�
�
K> ⌦A>B+

�

MQ = In ⌦ In = In2

MY =
�
(A+BK)> ⌦A>B?>��

�
In ⌦B?>�

and

NR = �
⇣�

K(A+BK)�1
�> ⌦B+

⌘

+
⇣
B+ ⌦

�
K(A+BK)�1

�>⌘

NY =
�
In ⌦B?>��

�
B?> ⌦ In

�
T

with the identity matrix In and the permutation T , cf. (3).

APPENDIX B: LP FEASIBILITY PROOF

Proof of Theorem 1. We define

C :=
��(In ⌦ In)�

�
(A+BK)> ⌦A>��� , (19)

cf. (13), where we define the absolute value of a matrix as
taking the absolute values of its elements: X = |Z| , Xij =
|Zij |. We introduce �, �p 2 Rn2⇥1 as vector slack variables
for ⇤, ⇤p in (13). With r1 = 1, the LP (11) is equivalent to

min k�k1 + cp · k�pk1

s.t.

������

"
MR

⇤iR\1 MQ
⇤iQ MY

NR
⇤iR\1 0 NY

#2

4
riR\1
qiQ
y

3

5+


MR

⇤1
NR

⇤1

�������


C�
�p

�

qiQ � 0
riR\1 � ✏ · 1,

which can be cast as an LP in standard form, i.e.

min k�k1 + cp · k�pk1
s.t. Fw  f

(20)

with

F =

2

66666664

MR
⇤iR\1 MQ

⇤iQ MY �C 0

�MR
⇤iR\1 �MQ

⇤iQ �MY �C 0

NR
⇤iR\1 0 NY 0 �In2

�NR
⇤iR\1 0 �NY 0 �In2

�Im�1 0 0 0 0
0 �In 0 0 0

3

77777775

w =

2

66664

riR\1
qiQ
y
�
�p

3

77775
, f =

2

6666664

�MR
⇤1

MR
⇤1

�NR
⇤1

NR
⇤1

�✏ · 1
0

3

7777775
.

Assume (20) is infeasible, i.e. {w | Fw  f} = ?.
Then, according to Farkas’ Lemma [20], there exists v =

[v>1 v>2 v>3 v>4 v>5 v>6 ]
>, where v1, v2, v3, v4 2 Rn2

, v5 2
Rm�1, and v6 2 Rn with

v>F = 0, v>f < 0, v> � 0. (21)

From v>F = 0, it follows that

(v>1 � v>2 )M
R
⇤iR\1 + (v>3 � v>4 )N

R
⇤iR\1 � v>5 = 0

(v>1 � v>2 )M
Q
⇤iQ � v>6 = 0

� v>1 C � v>2 C = 0

� v>3 � v>4 = 0.

It is immediate that v1 = v2 = v3 = v4 = 0 because v � 0
and C as in (19). It follows that v5 = v6 = 0. Thus the
only v fulfilling vTF = 0 is v = 0. If, however, v = 0,
then v>f = 0, which contradicts assumption (21). Hence
{w | Fw  f} 6= ?.
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