Convex formulations of radius-margin based
Support Vector Machines

Huyen Do

HUYEN.DOQUNIGE.CH

Computer Science Department, University of Geneva, Switzerland

Alexandros Kalousis

ALEXANDROS.KALOUSISQHESGE.CH

Business Informatics, University of Applied Sciences Western Switzerland

Abstract

We consider Support Vector Machines
(SVMs) learned together with linear trans-
formations of the feature spaces on which
they are applied. Under this scenario the
radius of the smallest data enclosing sphere
is no longer fixed. Therefore optimizing the
SVM error bound by considering both the
radius and the margin has the potential to
deliver a tighter error bound. In this pa-
per we present two novel algorithms: R-
S VMZ—a SVM radius-margin based feature
selection algorithm, and R-SVM*T— a met-
ric learning-based SVM. We derive our algo-
rithms by exploiting a new tighter approxi-
mation of the radius and a metric learning in-
terpretation of SVM. Both optimize directly
the radius-margin error bound using linear
transformations. Unlike almost all existing
radius-margin based SVM algorithms which
are either non-convex or combinatorial, our
algorithms are standard quadratic convex op-
timization problems with linear or quadratic
constraints. We perform a number of experi-
ments on benchmark datasets. R-SVM, ex-
hibits excellent feature selection performance
compared to the state-of-the-art feature se-
lection methods, such as L;-norm and elastic-
net based methods. R-SVMT achieves a
significantly better classification performance
compared to SVM and its other state-of-the-
art variants. From the results it is clear that
the incorporation of the radius, as a means to
control the data spread, in the cost function
has strong beneficial effects.
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1. Introduction

SVMs (Vapnik, 1998; Cristianini & Shawe-Taylor,
2000) are one of the most popular learning algorithms
in machine learning. They have strong theoretical
foundations and achieve excellent performance in var-
ious applications. They have been used extensively in
the context of classification and regression but also for
feature selection and weighting (Guyon et al., 2002;
Weston et al., 2000; Rakotomamonjy, 2003; Do et al.,
2009b) or Multiple Kernel Learning (Chapelle et al.,
2002; Do et al., 2009a). Their error bound is a func-
tion of the ratio of the radius of the smallest sphere
containing all data and the margin. However, the opti-
mization problems used in standard SVM algorithms
rely only on the margin because for a given feature
space the smallest sphere enclosing the data is fixed
and so is its radius which can thus be safely ignored.
Nevertheless, in the context of feature selection or fea-
ture weighting the feature space is transformed and
therefore the sphere and its radius are no longer fixed.
Thus if we optimize over both the margin and the
radius in an SVM-based feature selection or feature
weighting scenario we can expect to achieve a tighter
generalization error bound which can lead to a better
performance. There has been some work that consid-
ered this problem, (Weston et al., 2000; Rakotoma-
monjy, 2003; Do et al., 2009b). In this context sev-
eral radius-margin based SVMs —SVM variants that
consider both the margin and the radius of the SVM
radius-margin bound, have been proposed. However,
due to the challenge set forth by the non-convexity
of the radius-margin ratio and the combinatorial na-
ture of feature selection, the problem has only been
partially solved. Recently, Do et al. (2009b) proposed
R-SVM, an SVM variant based on a convex relaxation
of the radius-margin ratio. The main drawbacks of
R-SVM are that its radius approximation is not opti-
mal and that the relaxation on which it is based does
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not always result to a good approximation of the real
radius-margin ratio.

In this paper we address both limitations of R-SVM.
We first propose a new tight approximation of the ra-
dius which has better properties than the one used
in (Do et al., 2009b). Under a geometric interpreta-
tion of the radius-margin ratio based error bound, and
the recently unveiled metric learning interpretation of
SVM (Do et al., 2012), we propose to replace the ratio
by the sum of the radius and the inverse of the mar-
gin which reflects the same intuition as the original
error bound. Moreover, we show that the two formu-
lations, ratio-based and sum-based, are equivalent for
proper parameter choices. We derive two new convex
algorithms which we call R-SVM* and R-SVM,;. R-
SVMT is a Quadratically Constrained Quadratic Pro-
gramming optimization problem (QCQP), it is closer
to the original SVM formulation since it contains a
single set of variables, w. The second algorithm, R-
S VMZ, is a standard convex quadratic optimization
problem with linear constraints. In addition to w,
R-S VMZ contains an explicit feature scaling factor
given by p, on which a sparsity constraint is imposed.
The result of the sparsity constraint is that R-S VM:;
performs feature selection. Moreover, we also show
how to kernelize both R-SVM" and R-SVM,,. Our
new feature selection method, R-S VM:;, outperforms
the state-of-the-art feature selection algorithms, such
as SVMRFE, elastic-net SVM. The R-SVM™ achieves
state-of-the art classification results and outperforms
SVM as well as its variants which make use of data
spread measures in their cost function.

The rest of the paper is organized as follows: in the
next section we briefly review related work and the
original R-SVM. In Section 3 we describe a new, better
approximation of the radius than the one used in R-
SVM. In Section 4 we describe the optimization prob-
lems of R-SVM" and R-SVM,,, we show how to solve
them in Section 4.5, where we also give their kernel-
ized versions. Finally, we present experiments with
several benchmark datasets in Section 5 and conclude
in Section 6.

2. Related work

We consider binary classification problems in which we
are given a set of training samples S = {(x;,y;)|x; €
R y; € {+1,-1},i = 1..1}. We denote by ||w||2 the
{5 norm of w; by w o pu the pairwise product of the
two vectors w and p; and by ,/p the element wise
application of the square root over the elements of the
v vector.

There are several feature selection criteria based on
SVM. SVMRFE, (Guyon et al., 2002), recursively
eliminates features with the smallest weights w;. (We-
ston et al., 2000) used the SVM radius-margin ra-
tio as a criterion to select features, by minimizing
flo) = R72(0') over o where o € {0,1} which in-
dicates that the o; feature is selected or not. This
combinatorial optimization problem was relaxed to an
integer programming problem, however this relaxed
problem is still non-convex. (Rakotomamonjy, 2003)
proposed several SVM based criteria to rank features,
among them there are criteria based on the radius-
margin SVM error bound, which results again in dif-
ferent non-convex optimization problems. (Do et al.,
2009b) proposed R-SVM, which directly optimized the
radius-margin bound with an additional scaling factor.
R-SVM does feature selection and ranking. Similar to
that paper, we are interested in a convex relaxation of
the radius-margin bound in order to do feature selec-
tion; we will describe in more detail R-SVM at the end
of this section.

In addition to the feature selection work described
above, there have been efforts that try to improve
the performance of standard SVM by optimizing the
margin and some measure of the data spread, (Shiv-
aswamy & Jebara, 2010), (Do et al., 2012); note here
that the radius is a natural measure of the data spread.
However none of the measures proposed there can be
seen as a replacement of a radius-margin-based mea-
sure since they are not equivalent (for more on that
see in the Appendix). While there is no reason to be-
lieve that there is an a-priori ideal measure of the data
spread (this would probably depend on the specifici-
ties of any given learning problem, and can only be
seen on a case by case basis) using the radius has the
advantage of the theoretical support it enjoys through
its direct reliance on the SVM theoretical error bound.
In section 4.2 we will show how to directly control the
radius-margin ratio without using the scaling factor
that is used in the feature selection scenarios.

R-SVM: We now briefly review the R-SVM algorithm
(Do et al., 2009b). R-SVM uses a feature weighting
schema under which the feature space is first scaled by
a y/p vector, and then SVM is applied on the resulting
feature space. This feature scaling can be expressed by
a diagonal linear transformation matrix D 5 whose
diagonal elements are given by /u; the image of an
instance x is given by D zx. Under this transfor-
mation the feature space is no longer fixed, and the
radius of the smallest sphere containing all instances
is a function of p. We denote the radius of the scaled
feature space by R,,.
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The motivation of R-SVM was two-fold: first to per-
form feature selection in the SVM context, and sec-
ond to optimize directly the margin-radius SVM error
bound in a 'weighted’ feature space aiming at a better
generalization error compared to that achieved by op-
timizing only the margin. To do so, the authors opti-
mize the radius-margin ratio based SVM error bound,
which leads to the following optimization problem !:

. 1 2 p2
w i S Iwll2 Ry (1)

s.t. yi((W, v/ ox;) +b) > 1,Vi

d
> gk =1,k >0,k

k=1

where Ry, is computed as (Vapnik, 1998):

min R, st |VEoxi—/moxo|® < RLVi (2)
»X0

Ry

This optimization problem performs smooth feature
selection, since the {; norm constraint on p leads to a
sparse p solution. However its main limitation is that
it is not convex. Therefore the authors proposed to
use an upper bound of the objective function by using
a linear approximation that upper bounds the radius
as maxy Ry < R, < ZZ i R3, where Ry, is the ra-
dius of the projected instances on dimension k. Using
this radius approximation, the authors were able to de-
rive a convex upper bound of the objective function of
(1) and finally the approximate optimization problem
was:

1< (Wi, i) C !

. k> Wk 2

min = E + E &; 3
w,b.E,p 244 S ue R 4 )

d

s.t. yi(Z(wk, @k(:cz» + b) 2 1-—- fz

k

d
Zuk =1,k > 0,Vk
k=1

However, this optimization problem has two limita-
tions. First, it uses two levels of approximation, one
for the radius and one for the objective function (i.e
using the upper bound of the real objective function).
Second, it cannot be kernelized due to the use of the
radius approximation, thus limiting the application of
R-SVM only to the original feature space. The same
radius approximation has also been used by (Do et al.,
2009a) in the context of multiple kernel learning. In
the next section we will derive a new approximation
of the radius with better properties than the one pro-
posed in (Do et al., 2009b). Later we will also show
how to address the kernelization problem.

'Note that viox =D ;gx and depending on our needs
we will use interchangingly one or the other.

Figure 1. Demonstrating the radius relations.

3. A better approximation of the radius

The main disadvantage of the upper bounding linear
approximation of the radius used in (Do et al., 2009b),
ie. RZ < Zi prRE, is that we cannot quantitatively
estimate its approximation error, which, depending on
the dataset, can be very large. Here we propose a bet-
ter radius approximation, the error of which we can
estimate quantitatively. The main idea is to approx-
imate the radius of the smallest sphere enclosing the
data, R, by the maximum pairwise distance over all
pairs of instances. Our new radius approximation, i.e
the half value of the maximum pairwise distances, Rp,
is tighter than the approximation used in (Do et al.,
2009b) and can be estimated quantitatively, where

Ro < R< R, ~1.366Ro.

Let R be the radius of the smallest sphere C' containing
all instances. Let x4,xp, be the two instances which
have the maximum distance d. We denote by xo the
point given by xp = %, i.e. the middle point on
the line segment defined by x4 and xp. Cp is the
sphere with center xg and radius Rg = d, C4 is the
sphere with center x4 and radius Ry = d, and Cp is
the sphere with center xo and radius Rp = d/2. This
configuration for the two dimensional space is given in
Figure 1. All instances lie within the intersection of
the C4 and Cp spheres since ||x; — x4l < d,Vi and
Ix; — xgl| < d,Vi. Therefore the Co sphere encloses
most instances except the ones that are inside the in-
tersection of the Cg and C'4 but outside Cp, hence we
have Ro < R. We prove the following inequality (see
details in Appendix).

Lemma 1: The inequality Ro < R < #RO holds
for any two or higher dimensional space.

From now on we denote by r the quantity (2Rp)? = d?,
which corresponds to the squared diameter of the
Co sphere and the maximum squared distance be-
tween any two instances. The new algorithms that
we present use this quantity instead of the traditional
radius. Thus instead of controlling directly the R ra-
dius of the smallest sphere enclosing the instances we
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Figure 2. Demonstrating the squared radius and its two
approximations. The red line is the real value of the ra-
dius. The range between black and green lines, which cor-
responds to the approximation by sum squared radius com-
ponents, are much larger than that between blue and yel-
low lines, which corresponds to the approximation by the
squared half of maximum pairwise distance.

control the square of the maximum distance between
any pair of instances. As a result we eventually replace
the optimization problem used to compute the radius,
given in (2), by the following simple one:

mrin rost. |[VBoxi —Vmox,|®<rVi,j  (4)

Note that (4) is simply a formal way to formulate
the maximum distance between instances, formula-
tion which will be useful in the upcoming sections.
We should note that our radius approximation reflects
closely the true radius. If for example the latter might
be distorted by outliers so will be our approximation.
This raises the interesting problem of extending the
margin-radius SVM theory to capture the soft radius
in which outlier instances will be addressed through
slack variables.

3.1. Comparison to existing radius
approximations and the real radius value

Do et al. (2009b) proved that the inequality:

d
m]?x,ukRi < RZ < zk:ukRi < max R? (5)

holds; this inequality provides a range within which
the radius value will vary. However they could not
show how close this approximation is, i.e. the linear
sum Zi prR2 to the real radius value, RZ. Therefore
the only criterion for evaluating the accuracy of this
approximation is via the range between maxy iRy

and Y, ppR7. We will show theoretically and demon-
strate empirically that our new approximation range
Ro < R, <1.366Ro is more accurate than the one of
(Do et al., 2009b).

In (5), the squared radius is bounded by maxy puyR3
and maxy RZ.  We see that the range between
maxg /,LkRi and maxy Ri can be very large, from
é * 100% to 100% of maxy uR7, since the possible
minimum value of maxy, Rs is maxy pupR2/d when p
is uniform and Ry are all equal. Even if Ry are dif-

k
ferent, when g is uniform, the ratio % will be

- k .
maxe B° which can be also very small espe-

> ueR3
cially for high dimensional data (where d is large).

Unlike this as we have shown our new approximation
Ro can be estimated quantitatively and is quite tight,
Ro < R, <1.366R0.

equal to

Moreover, since miny Rz <> ,ukRﬁ < maxy Rz, R-
SVM will not work if the component radii Ry are
roughly equal. In that case )", pr R is almost a con-
stant for any p, Y pr = 1, ur > 0. However this does
not mean that the real value of the radius is also a
constant when p is varied.

Empirical comparison: We generate randomly
1000 data points using gaussian distributions with dif-
ferent number of features (from 20 to 120) and keep p
equal to 1. Figure 2 shows the value of the squared ra-
dius, its two approximations and their ranges. We see
that our radius approximation has an even stronger
advantage over the one used in (Do et al., 2009b) as
the number of features increases.

4. Two new variants of radius-margin
based SVM

The SVM error bound implies that the larger the mar-
gin and the smaller the radius are, the better the gener-
alization error will be. We can transform—scale—the
original feature space and subsequently find a sepa-
rating hyperplane in the transformed feature space so
that the radius is minimized and the margin is maxi-
mized, as it was done in the original R-SVM. Through
the radius we control the spread of the instances. Re-
cently, Do et al.(Do et al., 2012) have given a new
interpretation of SVM from a metric learning perspec-
tive. Under this view the SVM algorithm can be de-
scribed as follows. Given instances in the feature space
‘H, we linearly transform H with the help of the di-
agonal linear transformation W, diag(W) = w, and
then translate by a value b, so that the linearly trans-
formed instances are placed optimally and symmetri-
cally around the fized hyperplane H; : 17x +0 = 0.
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Under this view the radius can be seen as a measure
of the total data spread, and the margin as a measure
of the between class distances. So the SVM radius-
margin bound conforms with one of the basic biases
of metric learning: maximizing the between class dis-
tances while minimizing the within class distances.
Exploiting this new insight of SVM, we can explicitly
control the margin and the data spread by not only
using the radius-margin ratio but other functions such
as the sum of the radius and the inverse of the mar-
gin. Later we will show that the two cost functions,
the sum and the ratio, are in fact equivalent under
proper parameter choices.

We will now present two new algorithms, R-S VM;‘; and
R-SVM*; both of them optimize the radius-margin
sum cost function. R-S VMI is an adaptation of the
original R-SVM optimization problem. It uses the sum
in its cost function as well as the new radius approx-
imation. It relies on two sets of variables, w which
corresponds to the SVM linear classifier, and p which
is a sparse feature weighting, that corresponds to the
diagonal transformation D, under which the SVM
gives the best results. Thus in addition to the radius-
margin optimization, R-S VM,“;, due to the sparsity im-
posed on p, performs also feature selection. R-SVM*
also makes use of the sum cost function and the new ra-
dius approximation. Unlike R-S VM:;, it uses a single
set of variables to learn the best diagonal linear trans-
formation that optimizes the ratio and margin bound;
w = diag(W) describes both the hyperplane and the
scaling of the feature space. R-SVM™ only optimizes
the radius-margin sum cost function, it does not do
feature selection since there is no sparsity constraint
on the features.

4.1. R-SVM;;

As we already mentioned R-S VM;‘; is an adaptation

of the optimization problem of the original R-SVM in
which the ratio is replaced by the sum; its exact form
is:

l
. 1
min 5||w|\§+ARi +CZ& (6)

w,&, 1,0, Ry, X0

s.t. yl(<W,D\/ﬁXZ> +b) 2 1-— Ez,V’L

d
Zuk:17“7£20

k=1

ID zx: — D zxo|® < R, Vi

This optimization problem is non-convex and diffi-
cult to solve because of the constraints related to the
radius (2). Fortunately we can reformulate it as a con-
vex problem by replacing the original radius R, by its
tight approximations given by (4). The relaxed convex

optimization problem is 2:

w,b,&,p,7

d 2 l
. 1 Wk
min — L 4+ Xr+C B 7
2 PO "
d

d
s.t. yi(z<wk7xik>+b) > 1—§i7V’i; Z/Lk =1
k=1

k

1 o
3D yaxi =D ymx;|* <, ¥i, g p,§ >0

2

We have &

Mkd

D /ux;l1? = 3o ik (X3, + %5, — 2xikX;1,), the last con-

straint of (7) is linear with respect to g and r. Hence
(7) is a convex optimization problem.

Similar to SVM, R—SVMI can also be seen under a
metric learning view. It first learns a diagonal lin-
ear transformation D, and then a linear transfor-
mation W and a translation b so that the transformed
instances are placed optimally around the fixed hy-
perplane H;, while keeping the radius of the smallest
sphere containing the transformed instances small.

is convex; and since |[D gzx; —

4.2. R-SVM+

In this section, we propose an algorithm to improve
the standard SVM by directly controlling the radius-
margin error bound without making use of the scaling
factor p. Note that in the standard view of SVM, the
only way to explicitly control the radius is to use a
second set of variable u, as it is done in R-SVM and
R-S VMZ. The D /z variable linearly transforms the

‘H feature space and controls the radius of the enclos-
ing sphere, without it the radius is a fixed predefined
value. However, under the metric learning view we no
longer need D /5 to control the radius. We can con-

trol both the radius and the margin via W. Dropping
the D,z variable and controlling the radius and the

margin via W results in the R-SVM™ optimization
problem which is:

1
. 1 2 2
wolmin o SlwWlE AR, +C Y6 8)

[Wxi — Wxo|*> < RZ,,Vi

Unlike R-S VM:; this formulation does not perform
feature selection, since it no longer uses the p variable
together with the [; constraint that played that role.
The advantage of this formulation is that it directly
controls the radius and margin error bound which can
lead to better predictive performance. This formula-
tion is also in accordance with several metric learn-
ing algorithms, in which the data spread is kept small

while the between class distance is maximized. In our

2We rewrite w := /[t o W, so we have wy = VI, Wk
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formulation the radius corresponds to the data spread
and the margin corresponds to the between class dis-
tance.

Nevertheless, this optimization problem is not convex
either. We derive a new relaxed formulation of R-
SVM™T by replacing in (8) the radius Ry computed by
(2) with the r approximation (4) and get the following
optimization problem:

l
. 1
min - Slwl3+Ar+ O 06 )

s.t. yi((w,xi> —|—b) >1- 51,& >0
1
§\|Wxi - Wx||* < r,Vij

We have |[Wx; — Wx;||? = Zi wi (x5, + X3, —
2x;1X;;) = W Pw, where P is a diagonal matrix with
elements (x; ijk)z. Therefore P is positive semidefi-
nite and the last constraint of (9) is convex. Hence the
optimization problem (9) is a QCQP problem. We can
solve the optimization problem (9) in the primal form.
However, due to the limitations of the existing QCQP
solvers which can deal with only a small number of
constraints and variables, we can have computational
problems because (9) has n x (n+1)/2 constraints; we
thus propose to solve it in its dual form (Section 4.5).

4.3. Two transformations vs one

From a metric learning perspective, both R-S VM:;
and R-SVM' learn diagonal linear transformations
and a translation b which maximize the margin w.r.t
the fixed hyperplane H; and minimize the radius, i.e
the data spread. R-S VMZ learns two linear transfor-
mations, W and D sz, diag(D z) = /& or WD s
; R-SVMT learns only one linear transformation W.
Dz controls the sparsity of the feature selection (since
> uk =1, > 0). Learning WDz will first transform
the feature space to a more sparse (lower rank) space,
on which a non regularized diagonal W is then learned.
In R-S VMZ the radius is only considered by the D
transformation but not by the W. In R-SVM™ the ra-
dius is considered in the full transformed space given
by W.

4.4. Equivalence of the sum and the ratio
forms

We will show that optimizing the radius-margin ratio,
|lw|?R2, e.g in problem (1), is equivalent to optimizing
the radius-margin sum |w|*> + AR?, e.g in problems
(6,8), under some proper choice of A\. Without loss of
generality we consider the following two optimization

problems:

mi}r%l lwl’R® st w,ReF (10)
min w|® +AR® st w,REF (11)
where F' is some feasible set. The following lemma
indicates that those are equivalent with some proper
choice of parameter A (see proof in Appendix)?.

Lemma 2. For each optimal solution of the ratio form
(10), there exists a value of X for which, the sum form
(11) has the same optimal solution.

4.5. Solving the convex optimization problems
of R-SVM, and R-SVM*

The details of how to solve the R-SVM:; and R-
SVM?T optimization problems can be found in Ap-
pendix. Since both are convex, a general interior point
method can work well, however, the number of con-
straints may be problematic on large problems. There-
fore, we propose to use an efficient two-step approach
with gradient descent to solve them. In short, our
method can deal with the constraints of the radius
efficiently, since we have to compute the pairwise in-
stance distances only once, and at each iteration, we
just have to compute the inner product of two vectors
to handle all the constraints on the radius.

4.6. Kernelization

Given a kernel function K corresponding to a fea-
ture mapping x € R? —— ®(x) € H, we show
how R-SVM* and R-SVM, can be applied in the
feature space H. The kernelization of R-SVM' and
R-S VMZ is based on the idea of a proximity space
representation in which learning instances are repre-
sented by their similarities or distances with respect
to a set of instances (Pekalska & Duin, 2005). In
R-SVM?T we parametrize the diagonal scaling ma-
trix W using the same trick as in metric learning
(Torresani & Lee, 2006; Goldberger et al., 2005), i.e
W = W®(X) where ®(X) is the matrix the ¢ row
of which is ®(x;). R-SVM, can be kernelized in the
same way as R-SVM", where instead of parametriz-
ing matrix W, we parametrize D ; = D z®(X). In
fact this kernelized form corresponds to the application
of the R-SVM™* or R-SVM}, in the proximity space
in which an instance x; is represented by the vector
K; = (K(xi,X1),... K(xi,x,))T, i.e. the i column of
the kernel matrix, we can thus solve it by simply ap-

3See complimentary document for detailed proofs re-
lated to our new radius approximation, the lemmas, how
to solve our optimization problems, another way of kernel-
izing R-SVM™, and other additional arguments.
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Table 1. First line per dataset: Classification error(%) and McNemar score in parentheses. Second line: average number of
selected features and percentage of selected features in parentheses. N is the number of instances and D the dimensionality
of each dataset. (+) means our methods significantly better than the previous methods, (=) means they are equal.

Datasets ‘ SVM l-norm SVM  elastic-SVM SVMRFE R-SVM  R-SVM}, (our method)
Bladder cancer | 40.00 (2) 37.50 (2.5)  37.50 (2) 30.0 (2.5) 325 (2.5)  25.00 (3.5) t=t==
N=40, D=5311 | 5257.7 (98.6) 2675.4 (50.2) 2673.4 (50.1) 186.0 (3.5) 107.9 (2.0) 281.8 (5.3)
Breast cancer 1 | 17.24 (2.5)  13.79 (2.5) 1035 (2.5)  13.79 (2.5) 14.00 (2.5)  6.90 (2.5) =====
N=58, D=3389 3168.6 (93.5) 361.0 (10.7) 597.4 (17.6) 318.1 (9.4) 103.9 (3.1) 33.3 (1.0)
Breast cancer 2 36.73 (2.5) 34.70 (2.5) 40.82 (2.5) 40.82 (2.5) 36.73 (2.5) 30.61 (2.5) =====
N=49, D=7129 4202.2 (58.9) 743.7 (10.4) 1694.3 (23.8)  341.7 (4.8)  554.9 (7.8) 34.2 (0.5)
Ovarian 135 (2) 135 (1.5) 3.9 (2) 5.14 (1.5) LOS (4.5)  2.37 (3.5) =t =1=
N=253, D=385 152.0 (39.5) 53.2 (13.8) 226.5 (58.8) 121.3 (31.5) 83.4 (21.7) 63.7 (16.5)

alt 25.23 (0) 1532 (45) 2057 (2) 21.07 (1) 18.16 (3)  16.18 (45) T=+++
N=4157, D=2112 | 1003.0 (47.5) 85.8 (4.1) 130.3 (6.2)  352.1 (16.7) 189.3 (9.0) 88.2 (4.2)
discase 197 3) 19.59 (3) 19.67 (3) 2021 (0)  19.62 (3) 19.62 (3) =——=1=
N=3237, D=2376 | 1258.0 (52.9) 2062.2 (86.8) 664.1 (27.9)  340.1 (14.3) 211.0 (8.9) 486.1 (20.5)
subcell 1804 (25)  19.02 (2) 19.02(2) 1880 (25) 18.01 (2.5)  18.77 (3.5) =++—=
N=5896, D=3258 | 1136.4 (34.9) 1862.2 (57.2) 985.2 (30.2)  401.7 (12.3) 18.0 (0.6) 652.1 (20.0)
Total score ‘ 14.5 18.5 16 12.5 20.5 23

plying R-SVM™ or R-SVM, in this proximity space.

5. Experiments

We performed two sets of experiments. In the first we
focused on the feature selection task of our new feature
selection algorithm R-S VM;*;; and in the second on the
classification task of our new rank-one metric learning
algorithm R-SVMT as well as the kernelized versions
of R-SVM*, R-SVM}, and R-SVM.

Feature selection: We did the feature selection ex-
periments on high dimensional biological datasets and
text datasets (Kalousis et al., 2007). Attributes are
standardized to zero mean and unit variance. We com-
pare our methodﬁ-SVMZ, with l-norm SVM (Zhu
et al., 2003), elastic-net SVM (Wang et al., 2006; Zou
& Hastie, 2005; Ye et al., 2011) (both I-norm SVM
and elastic-net SVM use the L; norm constraint on
w) and SVMRFE (Guyon et al., 2002), one of the
most popular feature selection methods. We also com-
pare with R-SVM (Do et al., 2009b), the recent radius-
margin SVM based feature selection algorithm. In ad-
dition to comparing with the popular feature selection
algorithms, we also use a linear SVM to have an in-
dication of the baseline performance with no feature
selection. For SVMRFE we chose k, the number of
selected features, from [1%,2%, ...,100%)] of the total
number of features by inner cross validation, which
clearly incurs a high additional computational cost.
For biological datasets, since the number of samples is
small, we estimate the error using 10-fold Cross Vali-
dation. For text datasets we randomly split the data
30 times, with 300 instances for training and the rest

for testing. To estimate the statistical significance of
the error results we used McNemar’s test for 10-fold
CV and used t-test for the random-split estimation,
both with a significance level of 0.05. To compare all
algorithms over several datasets, we used the following
scoring schema: if algorithm A is significantly better
than algorithm B, then A gets one point and B zero,
if there is no significant difference both get 0.5 points.
For a given dataset, the score of each algorithm is the
sum of its score in all pairwise comparisons. We se-
lect the C and A hyperparameters of the algorithms by
inner 10-fold CV from the set {0.1, 1, 10, 100, 1000}.

In Table 1 we give the error of the six algorithms, as
well as the results of the McNemar’s and t-test based
scoring. R-S VM: is significantly better in two of the
seven datasets compared to 1-norm SVM and never
significantly worse; it is three times significantly bet-
ter than elastic-net SVM and never significantly worse,
and finally it is also three time significantly better than
SVMRFE and never worse. In terms of the total rank-
ing score over all the datasets R-S VMZ is ranked on
the top with 23 points, followed by R-SVM, 20.5, 1-
norm SVM, 18.5, elastic-net SVM, 16, and SVM-RFE,
12.5. What is more impressive is that this systemati-
cally better or equivalent classification performance is
achieved with a significantly less number of selected
features. The number of selected features of R-S VM:;
is often more than an order of magnitude less than
the number of features selected by the other feature
selection algorithms, especially compared to 1-norm
SVM and elastic-net SVM. Note that for some cases,
l-norm SVM and elastic-net SVM fail to select fea-
tures, their optimal value is achieved when all features
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Table 2. Average classification error (%) and standard deviation of SVM, RMM, R-SVM™' and R-SVMI in the kernel
spaces. Numbers in parentheses are t-test scores. (4) means our method R-SVM™ significantly better than the previous

three methods (SVM, RMM or R-SVM,;), (=) means they are equal.

| Data | SVM RMM R-SVM; R-SVM™T (ours)
L 29.75 £4.24 (1)  29.74x4.41 (1) 28.99+4.47 (1.5)  28.4+4.44 (25) ++=
P2 | breastC 26.51 & 4.52 (1.5)  26.61 + 4.45 (1.5)  27.27 £4.45 (1.5) 27 + 4.33 (1.5) ===
P3 | N=263 27.86 £4.07 (1) 2712+ 4.11 (1.5)  26.61+4.56 (2)  27.05 £ 4.85 (1.5) ===
G | D=9 29.49 £4.19 (1.5) 29.44 + 4.3 (1.5)  29.83 +4.11 (1.5)  29.03 + 4.22 (1.5) ===
L 16.07 £3.05 (1.5) 16.36 3.1 (1.5)  16.44 £ 3.13 (1.5)  16.13 £ 3.33 (1.5) ===
P2 | heart 19.63 £ 3.48 (1.5)  20.04 & 4.03 (1) 20.39 £4.03 (1)  18.94 + 3.74 (2.5) =++
P3 | N=270 17.93 £3.63 (1.5) 17.91 +3.66 (1.5)  18.18+ 4.61 (1)  17.10 £ 3.63 (2) ==+
G | D=13 30.01 +5.37 (1)  29.95+5.24 (1)  30.85 + 7.29 (1) 26.87+4.73(3) +++
L 8.6 £253(2) 8.79 + 2.53 (2) 9.95£26(0) 8.19 £ 247 (2) ==+
P2 | thyroid 4.69 +2.11 (1.5)  4.64 + 2.1 (1.5) 449 £ 216 (1.5)  4.29 £2.12 (1.5) ===
P3 | N=215 56 +245(0.5)  6.04 £ 2.7 (0.5) 4.3242.04 (2.5)  4.44 1.92 (2.5) ++=
G | D=140 5.03 & 2.08 (1) 5.45 £ 2.34 (1) 5.09+ 2.24 (1) 4.28 +2.13 (3)
L 2271 £ 151 (1.5) 22.76 +£2.56 (1.5) 22.7 & 151 (1.5) 2291 + 2.02 (1.5) ===
P2 | titanic 23.21 £ 1.29 (1.5) 23.06 + 1.58 (1.5) 23.04 & 1.22 (1.5) 22.93 £ 1.22 (1.5) ===
P3 | N=2201 2277 £0.92 (1) 22.66 £ 0.82 (1.5) 2274 £ 1.23 (1.5)  22.42 £ 1.24 (2) +==
G | D=3 2276 £ 1.37 (1)  22.624+0.92 (1)  2284£091 (1)  22.32£0.79 (3) +++

| Total score | 20.5 21 21.5 33

have equally a zero coefficient, and only the bias plays
a role in the separating hyperplane.

Classification: Here we examine the predictive per-
formance of SVM when we incorporate the SVM ob-
jective function with some measure of the data spread,
namely the radius. We evaluate the performance of our
two SVM variants, R-SVM" and R-SVM],, and com-
pare them to standard SVM and RMM (Shivaswamy
& Jebara, 2010). The latter is an SVM variant that,
in addition to the margin, controls also a measure of
the data spread. We do the comparison on the same
benchmark datasets used in (Shivaswamy & Jebara,
2010) and (Ratsch et al., 2001).

We used the same 100 random splits as in these two
papers, and tested the statistical significance by t-test
at 5% significance level. The scoring schema is the
same as in the feature selection experiments. We ex-
perimented with three types of kernel: linear (L), poly-
nomial with degree two (P2), polynomial with degree
three (P3) and the gaussian with o = 1 (G). We nor-
malized the kernels to have a trace of one. The B
parameter of RMM is chosen by inner cross valida-
tion from {0.1, 1, 10, 100, 1000}. We report the error
results and the t-test’s scores in Table 2. R-SVMT is
the best with 33 points compared to 21.5 of R-S’VM;‘;
21 of RMM and 20.5 of SVM. The better predictive
performance of R-SVM™ over SVM can be explained
by the fact that we directly optimize both the radius
and the margin in the SVM error bound in a linearly
transformed space. Therefore from a metric learn-
ing view R-SVMT is more flexible than SVM, i.e it
controls both the within- and between-class distances

while SVM controls only the between class distances
(the margin).

6. Conclusion

We introduced two new convex formulations of the
radius-margin based SVM, R-SVM}, and R-SVM'.
Both are based on a new tight radius approximation,
the approximation error of which we estimate quanti-
tatively. R-S VMZ uses an explicit feature weighting
factor which together with a sparsity constraint re-
sults to an inherent mechanism for feature selection It
has a better or equivalent a classification performance
compared to the state-of-the-art feature selection algo-
rithms, namely 1-norm SVM, elastic-net SVM, SVM-
RFE. Even more it achieves this performance with a
surprisingly high sparsity level. It selects considerably
less features, often an order of magnitude less, than
the other feature selection algorithms. R-SVM' can
be considered as a new rank-one metric learning al-
gorithm, which directly optimizes the radius-margin
SVM error bound. Unlike SVM which optimize only
the margin, i.e the between-class distance, R-SVM™
optimizes also some within-class distance, which re-
sults in a better classifier. Experiments on a number
of benchmark datasets shows that R-SVM™ achieves
a significantly better classification performance than
that of SVM and RMM. The latter, RMM, is an SVM
variant which also uses a data spread measure. Finally,
we also derived kernelized versions for both R-SVM*
and R- SVM:;, something that has not been done be-
fore for the existing radius-margin based SVM vari-
ants.
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