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Abstract. We introduce a generic convex energy functional that is suitable for

both grayscale and vector-valued images. Our functional is based on the eigenval-

ues of the structure tensor, therefore it penalizes image variation at every point by

taking into account the information from its neighborhood. It generalizes several

existing variational penalties, such as the Total Variation and vectorial extensions

of it. By introducing the concept of patch-based Jacobian operator, we derive an

equivalent formulation of the proposed regularizer that is based on the Schatten

norm of this operator. Using this new formulation, we prove convexity and de-

velop a dual definition for the proposed energy, which gives rise to an efficient

and parallelizable minimization algorithm. Moreover, we establish a connection

between the minimization of the proposed convex regularizer and a generic type

of nonlinear anisotropic diffusion that is driven by a spatially regularized and

adaptive diffusion tensor. Finally, we perform extensive experiments with image

denoising and deblurring for grayscale and color images. The results show the

effectiveness of the proposed approach as well as its improved performance com-

pared to Total Variation and existing vectorial extensions of it.

1 Introduction

This work deals with image reconstruction problems such as denoising and deblur-

ring. We adopt their classical formulation as linear inverse problems: Let u (x) =
[u1 (x) . . .uM (x)] : Ω → R

M be a generic vector-valued image with M channels

that we seek to estimate. We consider that the observed image v is a degraded ver-

sion of u according to the model: z = Au + ε, where A is a linear operator and ε is

the measurement noise. Following the common variational approach, we estimate u by

minimizing a cost functional. This functional is typically the sum of a data term and a

regularization term. The former measures the consistency between the estimate and the

measurements, while the latter promotes certain solutions. A regularization parameter

τ ≥ 0 balances the contributions of the two terms.
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A widely used choice for the regularizer is the Total Variation (TV) [1], which is

applied on grayscale images u (M=1) and is defined as:

TV(u) =

∫

Ω

‖∇u‖2 dx. (1)

TV owes its popularity to its ability to reconstruct images with well-preserved and sharp

edges. This is due to the fact that it involves the gradient magnitude ‖∇u‖2 and it

thus undergoes an L1-type of behavior that does not over-penalize high variations of u.

Its downside, however, is that it oversmooths homogeneous regions and creates strong

staircase artifacts [2]. This behavior stems from its tendency to favor piecewise-constant

solutions. Another drawback of TV is that the gradient magnitude, employed to penalize

the image variation at every point x, is too simple as an image descriptor; it relies only

on x without taking into account the information from its neighborhood.

TV has been extended to general vector-valued image data in several ways, see

e.g. [3–7]. Another related regularizer is the Beltrami functional [8], which has been

recently generalized and unified with the Mumford-Shah functional [9]. In [10], TV

is extended in an anisotropic way by incorporating the structure tensor of the image.

But as in the image-driven anisotropic regularization of [5], this tensor is considered

fixed and computed by the observed image. In all the above cases, the regularizers in-

tegrate a penalty of image variation that, as in TV, is completely local. On the contrary,

in [11] a non-local version of TV is proposed, while in [12] an extension of the Beltrami

framework that uses image patches is introduced. In [13] the authors propose a generic

regularizer for vector-valued images that is based on the eigenvalues of the structure

tensor, therefore it also takes into account the vicinity of each point. They show that its

minimization is connected to tensor-based anisotropic diffusions.

In this work, to overcome the limitations of TV we adopt more sophisticated descrip-

tors of image variations that generalize the gradient magnitude. We build upon the work

of [13] and propose a generic convex energy functional that is based on the eigenvalues of

the structure tensor. However, the current work departs from [13] in several ways. First,

we provide more intuition about why the usage of the structure tensor’s eigenvalues leads

to effective generalizations of Total Variation. Also, the focus of [13] was in gradient de-

scent flows of solely the regularizers, whereas in this work we combine the regularizers

with data terms and we focus on the minimum rather than the flow towards the minimiza-

tion. Further, we prove convexity of the proposed regularizers and we design an efficient

algorithm for their minimization, which copes with their non-differentiability.Finally, in

[13] the regularizers were applied only on image denoising, whereas our regularization

framework is applied on more general linear inverse problems.

To the best of our knowledge, this is the first work that establishes a connection

between 1) generic anisotropic diffusion that is based on a spatially regularized and

adaptive diffusion tensor (in the sense that this tensor contains convolutions with a

kernel and is steered by the structure tensor field of the evolving image, as e.g. in [6, 14])

and 2) minimization of convex regularizers that can be incorporated in an optimization

framework and implemented efficiently using convex optimization algorithms.
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2 Structure Tensor-Based Regularization

2.1 Directional Variation and Structure Tensor Revisited

In this section, we revisit and reformulate the well-established theory behind the struc-

ture tensor [14, 15], in a way that better motivates the regularizers that we will propose.

The vectorial directional derivative of the vector-valued image u in an arbitrary 2D

direction n (‖n‖2=1) is: ∂u/∂n = (Ju)n, where Ju is the Jacobian matrix of u:

Ju =
[

∇u1 . . . ∇uM

]T
. (2)

The magnitude of the directional derivative ‖∂u/∂n‖2 yields a measure of the amount

of change of the image u at the direction n for any specific point x. This measure

is typically unreliable since it is computed by concentrating completely at the point

x. In order to be more robust and capture also the behavior of the image u in the

neighborhood of x, we consider the weighted root mean square (RMS) of ‖∂u/∂n‖2,

which we call (local) directional variation:

RMSK {‖∂u/∂n‖2} =
√

K ∗ ‖∂u/∂n‖
2
2 =

√

nT (SKu)n . (3)

In the above equation K(x) is a non-negative, rotationally symmetric convolution ker-

nel (e.g., a 2D Gaussian) that performs the weighted averaging and SKu is the so-called

structure tensor of the image u defined as:

SKu = K ∗
(

JuTJu
)

. (4)

Similarly to [6, 13], in the above definition we do not consider any pre-smoothing of the

image before computing its Jacobian, since the single convolution with K seems suffi-

cient for the needs of image regularization. Let λ+≥λ− be the eigenvalues of SK(u)
and θ+, θ− be the corresponding unit eigenvectors. Also, let ω ∈ (−π, π] be the angle

between the direction vector n and the eigenvector θ+. Using the eigendecomposition

of SK(u), we can express the directional variation (3) as a function of the angle ω:

V (ω) � RMSK {‖∂u/∂n‖2} =
√

λ+ cos2 ω + λ− sin2 ω . (5)

If we consider the parametric equation X(ω)=(
√
λ+ cosω,

√
λ− sinω) of an ellipse

with semi-major axis
√
λ+ and semi-minor axis

√
λ−, V (ω) can be interpreted as the

distance of any point X(ω) from the center of the ellipse. Therefore,
√
λ+ corresponds

to the maximum of the directional variation V (ω) (which is achieved for ω=0,π),

whereas
√
λ− to the minimum of V (ω) (which is achieved for ω=±π/2).

2.2 Proposed Class of Regularizers

Based on the above analysis, we conclude that the vector
√
λ � (

√
λ+,

√
λ−) is a synop-

sis of the function of local directional variation V (ω): it consists of the upper and lower

bounds of this function. Therefore, we propose to generalize the Total Variation (1)
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via replacing the gradient magnitude ‖∇u‖2 by ℓp norms of
√
λ. More precisely, we

propose the following type of regularizers, with p≥1:

Ep(u) =

∫

Ω

∥

∥

√
λ
∥

∥

p
dx =

∫

Ω

∥

∥(
√

λ+,
√

λ−)
∥

∥

p
dx . (6)

These norms measure the local variation of the image at each point more robustly than

the gradient magnitude used in TV, as they take into account the variations in its neigh-

borhood. At the same time, they incorporate richer information, since they depend not

only on the maximum but also on the minimum of the directional variation. For in-

stance, the response of these measures behaves differently at image edges than image

corners.

We note that all the regularizers of the type (6) generalize TV. The reason is that for

M=1 (grayscale images), if K(x) is chosen to be the Dirac delta δ(x) (degenerated

case where no convolution takes place at the computation of the structure tensor), then

λ+=‖∇u‖22 and λ− is always 0. Therefore
∥

∥

√
λ
∥

∥

p
=‖∇u‖2 for any p≥1.

Next, we describe some interesting cases of the proposed regularizers (6). For the

following three cases of Ep(u), the corresponding norms describe specific measures of

the directional variation V (ω):

– p=1:
∥

∥

√
λ
∥

∥

1
=

√
λ++

√
λ− corresponds (up to the scale factor 1/2) to the mid-range

of V (ω), i.e. the average of minimum and maximum values of V (ω).
– p=2:

∥

∥

√
λ
∥

∥

2
=

√

λ+ + λ− corresponds (up to the scale factor 1/
√
2) to the RMS

value of V (ω), as it can be easily verified using Eq. (5).

– p=∞:
∥

∥

√
λ
∥

∥

∞
=

√
λ+ corresponds to the maximum of V (ω).

Invariance Properties. Since our regularizers are generalizations of TV, one should ex-

pect that they also share the same invariance properties. Two of the most favorable ones

are the rotation invariance and contrast covariance (1-homogeneity), which according

to Proposition 1 are indeed preserved (see Supplementary Material for the proof).

Proposition 1. The energy functional (6) is rotation invariant and contrast covariant.

2.3 Connections to Tensor-Based Anisotropic Diffusion and Previous Work

The proposed class of regularizers Ep(u) (6) is a special case of the more generic form

proposed in [13]: E (u) =
∫

Ω
ψ (λ+, λ−) dx. This special case corresponds to cost

functions of the form ψ (λ+, λ−) = ‖(
√
λ+,

√
λ−)‖p.

In order to make the cost function in the proposed regularizers differentiable, let us

consider the relaxation Ep,ǫ(u) that arises by setting ψ (λ+, λ−) = ϕp,ǫ(λ+, λ−) �
∥

∥(
√
ǫ + λ+,

√
ǫ+ λ−)

∥

∥

p
, where ǫ>0 is a small constant. Note that we need this relax-

ation only to establish connections to anisotropic diffusion and not for the actual opti-

mization, since our optimization algorithm, described in Section 4, can cope with the

non-differentiability of the functionals. By applying [13, Theorem 1], we find the rela-

tion of minimizing the proposed regularizers with anisotropic diffusion:

Corollary 1. The functional gradient of Ep,ǫ w.r.t. each image component ui is:

δEp,ǫ

δui

= −div (D∇ui) , D = K ∗

(

2
∂ϕp,ǫ

∂λ+
θ+ ⊗ θ+ + 2

∂ϕp,ǫ

∂λ−

θ− ⊗ θ−

)

. (7)
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This gradient is a nonlinear anisotropic diffusion term, where the diffusion tensor D
contains convolutions with the kernel K and depends on the structure tensor of the

image. For the following characteristic choices of p, the diffusion tensor is given as:

– p=1: D = K∗
(

1√
ǫ+λ+

θ+⊗θ++ 1√
ǫ+λ

−

θ−⊗θ−

)

. This tensor is adapting on the image

structures in a conceptually similar way to tensor-based anisotropic diffusion methods,

such as [6, 14]: 1) in the homogeneous regions (small λ+,λ−) it is strong and isotropic,

2) near the edges (large λ+, small λ−) it is weaker and mainly oriented by the edges,

whereas 3) near the corners (large λ+,λ−) it is even weaker.

– p=2: D =
(

K ∗ 1√
2ǫ+K∗

∑
i‖∇ui‖

2
2

)

I2×2. This tensor is always isotropic, it thus cor-

responds to a diffusion coefficient. Similarly to nonlinear diffusion methods, such as

[16, 17], this coefficient is strong in the homogeneous regions, whereas weaker near

edges.

– p=∞: D = K ∗
(

1√
ǫ+λ+

θ+ ⊗ θ+

)

. This tensor is always highly anisotropic and

oriented perpendicular to image edges.

Further Relations to Previous Work. As already stated, the proposed regularizers are

special cases of the more generic functional of [13]. Furthermore, the special subcase

of p = 1 corresponds to the so-called Tensor Total Variation of [13]. In addition,

several other variational methods emerge as special cases of the proposed regularizers.

The kernel K that corresponds to all these cases is the Dirac delta δ(x), which means

that the regularization does not exploit information from the neighborhood of each point

and is thus less coherent. As already described in Section 2.2, if we set K(x)=δ(x) and

M=1 (grayscale images) then for all choices of p≥1 we recover the Total Variation

[1]. The case of K(x)=δ(x), M>1 and p=2 corresponds to the usually called Vectorial

TV (TV-F) [3, 4], which is the most common extension of TV to vector-valued images.

Finally, the case K(x)=δ(x), M>1 and p=∞ corresponds to the method of [7], which

the authors call Natural Vectorial TV (TVJ).

3 Patch-Based Jacobian and the Discrete Structure Tensor

In this section, we introduce a generalization of the Jacobian of an image, based on

local weighted patches (see e.g. [12, 13]). This new operator, which we call patch-based

Jacobian, contains weighted shifted versions of the Jacobian of u, whose weights are

determined by the convolution kernel K . Then, we employ it to express the structure

tensor in a novel way, which finally leads us to derive an equivalent definition of the

proposed regularizers. This alternative definition provides more intuition, facilitates the

proof of convexity and opens the way for an efficient optimization strategy.

Hereafter, we will focus on the discrete formulation of the image reconstruction

problem. We consider that the discretized vector-valued image u is defined on a rectan-

gular grid with unary steps and that the corresponding intensities of each channel m of

u (m=1, ..,M ) are rasterized in the vector um of size N . By combining all the image

channels, we have that u ∈ R
NM . We use the index n=1, .., N to refer to a specific pixel

of the grid and we denote by xn the coordinates of that pixel. Furthermore, we consider
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that the convolution kernel K (see Eq. (4)) has been discretized and truncated in order

to have compact support S={−LK , .., LK}
2
, where LK is a non-negative integer.

We define the patch-based Jacobian of an image u as the linear mapping JK :
R

NM �→ X , where X � R
N×(LM)×2 and L = (2LK + 1)2. For each pixel n we

denote by [JKu]n the element of JKu that corresponds to that pixel and we construct

it by: 1) taking the discrete versions of the M × 2 Jacobian matrices (2) of u for all

the pixels {xn − y : y ∈ S} in the S-neighborhood of pixel xn, 2) weighting these

matrices with the window function w[y] �
√

K[y] and 3) stacking all these matrices

vertically in the matrix [JKu]n, whose dimension is (LM) × 2. Formally, the patch-

based Jacobian can be defined as:

[JKu]T
n
=

[

[Py1
◦Dhu1]n· · · [PyL

◦Dhu1]n· · · [Py1
◦DhuM ]

n
· · · [PyL

◦DhuM ]
n

[Py1
◦Dvu1]n· · · [PyL

◦Dvu1]n· · · [Py1
◦DvuM ]n· · · [PyL

◦DvuM ]
n

]

, (8)

where Dh, Dv are the two components of the discrete gradient, the shift vectors yl

(l=1, . . . , L) are the elements of the lattice S, and Pyl
are weighted shift operators. The

latter are designed to properly handle the image boundaries according to the assumed

extension (e.g., mirroring) and are defined as:

[Pyl
◦Dhum]

n
= w [yl]Dh {um} [xn − yl] . (9)

Next, we equip the space X (which is the target space of JK ) with the inner product

〈· , ·〉
X

and norm ‖·‖
X

. To define them, let X,Y ∈ X , with Xn,Yn ∈ R
(LM)×2 ∀ n =

1, . . . , N . Then we have:

〈X , Y 〉
X

=
∑N

n=1 tr
(

Y T
n Xn

)

(10) and ‖X‖
X

=
√

〈X , X〉
X
, (11)

where tr (·) is the trace operator. For the Euclidean space R
NM we use the standard

inner product 〈· , ·〉2 and norm ‖·‖2.

The adjoint of JK is the discrete linear operator J∗
K : X �→ R

NM , defined by:

〈Y , JKu〉
X

= 〈J∗
KY , u〉2 . (12)

The following Proposition expresses J∗
K in a form that facilitates its computation (see

Supplementary Material for the proof).

Proposition 2. The adjoint operator J∗
K of the patch-based Jacobian is given by:

[J∗
KY ](n,m) =

∑L

l=1 −div
[

P∗
yl

◦ Y ((m−1)L+l,:)
]

n
, (13)

where div is the discrete divergence,P∗ is the adjoint of the shift operatorP , andY
(k,:)
n

corresponds to the k-th row of the n-th matrix component, Yn ∈ R
(LM)×2, of Y .

Having introduced the necessary tools, we can now express the structure tensor in a

novel way. This is done in Proposition 3 (see Supplementary Material for a proof).

Proposition 3. Let [SKu]n be the discretized structure tensor at pixel n, which is de-

fined by adopting discrete derivatives and discrete convolution in (2) and (4), respec-

tively. Then, it can be written in terms of the patch-based Jacobian as:

[SKu]n = [JKu]
T

n [JKu]n . (14)
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Since λ+, λ− are the eigenvalues of [SKu]n, the singular values of [JKu]n are√
λ+,

√
λ−. This connection permits us to use Schatten norms [18] and the patch-based

Jacobian so as to write the proposed regularizers (6) (after discretization) as:

Ep(u) =
∑N

n=1 ‖[JKu]n‖Sp
, with p ≥ 1. (15)

Note that for a matrix Z, its Schatten norm of order p (Sp norm) denoted by ‖Z‖
Sp

, is

defined as ‖σ (Z)‖p, with σ (Z) the vector of the singular values of Z. This equivalent

formulation of Ep(u) provides more intuition about the fact that the proposed regular-

izers are effective generalizations of TV. More precisely, [JKu]n encodes the vectorial

variation of the image u in the vicinity of the pixel n. Therefore, the Schatten norms

of this matrix provide different measures of the local variation of u, by taking into ac-

count its neighborhood in a weighted manner. In addition, an important contribution of

the above result is that the expression (6), which involves the eigenvalues of the non-

linear structure tensor, has been transformed to the expression (15) that is much easier

to handle, since it depends on a norm of a linear operator acting on u. We refer to the

proposed regularizers as STV-[k] (Structure tensor Total Variation) where the character

[k] denotes the order of the Schatten norm. For example, for the cases of p=1,2 and

∞ we use the notations STV-N (Nuclear norm), STV-F (Frobenius norm) and STV-S

(Spectral norm) respectively.

It has now become straight-forward to show the following important result:

Proposition 4. The regularizer Ep (u) is convex w.r.t u ∀p ≥ 1.

Proof. The regularizer of Eq. (15) is clearly convex since it results as the composition

of a norm (mixed ℓ1-Sp norm; see (17) for its definition) and the linear operator JK .

4 Energy Minimization Strategy

4.1 Proximal Map Evaluation

In this section we propose an efficient algorithm that provides a numerical solution to

the following problem, for any p ≥ 1:

argmin
u∈RNM

1
2 ‖u− z‖

2
2 + ψ (u) , with ψ (u) � τEp (u) + ιC (u) , (16)

where C is a convex set that represents additional constraints on the solution and ιC
is its indicator function: ιC (u) takes the value 0 for u ∈ C and ∞ otherwise. Note

that the case of no constraints is simply the special case C=RNM . The solution of (16)

corresponds to evaluating the proximal map [19] of the function ψ at z and arises in

most linear inverse imaging problems, including the ones considered by this work.

To proceed with our minimization approach, we write the energy Ep in the compact

form Ep (u) = ‖JKu‖1,p, where ‖·‖1,p corresponds to the mixed ℓ1-Sp norm, which

for an argument X =
[

XT
1 , . . . ,X

T
N

]T
∈ X is defined as

‖X‖1,p =
∑N

n=1 ‖Xn‖Sp
. (17)

Next, we rely on the following lemma to derive a dual formulation of our problem.
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Lemma 1 ([20]). Let p ≥ 1, and let q be the conjugate exponent of p, i.e., 1
p
+ 1

q
= 1.

Then, the mixed norm ‖·‖
∞,q is dual to the mixed norm ‖·‖1,p.

Using Lemma 1 and the fact that the dual of the dual norm is the original norm [21], we

write (17) in the equivalent form:

‖X‖1,p = max
Ω∈B∞,q

〈Ω , X〉
X

, (18)

where B∞,q denotes the ℓ∞-Sq unit-norm ball, defined as the set

B∞,q �
{

Ω =
[

ΩT
1 , . . . ,Ω

T
N

]T
∈ X : ‖Ωn‖Sq

≤ 1, ∀n = 1, . . . , N
}

. (19)

Note that from (19), it is clear that the orthogonal projection onto B∞,q can be obtained

by projecting separately each submatrix Ωn onto a unit-norm Sq ball (BSq
).

Combining (12) and (18) we re-write (16) as

û = argmin
u∈C

1
2 ‖u− z‖

2
2 + τ max

Ω∈B∞,q

〈J∗
KΩ , u〉2 . (20)

This formulation naturally leads us to the following minimax problem:

min
u∈C

max
Ω∈B∞,q

L (u,Ω) , (21)

where L (u,Ω) = 1
2 ‖u− z‖22 + τ 〈J∗

KΩ , u〉2 . The function L is strictly convex

in u and concave in Ω, and thus, we have the guarantee that a saddle-value of L is

attained [21]. Therefore, the order of the minimum and the maximum in (21) does not

affect the solution and û can be equivalently obtained by solving the problem:

max
Ω∈B∞,q

min
u∈C

(

1
2 ‖u− (z − τJ∗

KΩ)‖
2
2 +

1
2 ‖z‖

2
2 −

1
2 ‖(z − τJ∗

KΩ)‖
2
2

)

. (22)

The inner minimization in (22) has an exact solution:

û = ΠC

(

z − τJ∗
KΩ̂

)

, (23)

where ΠC denotes the orthogonal projection onto the convex set C, while Ω̂ is the

maximizer of the dual problem:

max
Ω∈B∞,q

(

φ (Ω) � 1
2 ‖ΠC (c)− c‖

2
2 +

1
2 ‖z‖

2
2 −

1
2 ‖c‖

2
2

)

, (24)

where c = z − τJ∗
KΩ. Contrary to the primal problem (16), where the function

to be minimized is not continuously differentiable, the dual one in (24) involves the

function φ which is smooth and has a well defined gradient. To compute it, we use

the result in [22, Lemma 4.1], according to which the gradient of a function h (x) =

‖x−ΠC (x)‖
2
2 is equal to: ∇h (x) = 2 (x−ΠC (x)). Based on that, we get:

∇φ (Ω) = τJKΠC (z − τJ∗
KΩ) . (25)
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Algorithm 1: Evaluation of the proximal map of ψ (u).

Input: z, τ > 0, p ≥ 1, ΠC .

Initialization: Ψ1 = Ω0 = 0 ∈ X , t1 = 1.

while stopping criterion is not satisfied do

v = ΠC (z − τJ∗
KΨn);

Ωn ← ΠSq

(

Ψn + 1

8τ
JKv

)

;

tn+1 ← 1+
√

1+4t2n
2

;

Ψn+1 ← Ωn +
(

tn−1

tn+1

)

(Ωn −Ωn−1);

n ← n+ 1;

end

return û = ΠC (z − τJ∗
KΩn−1);

Then, we use (25) to design a gradient-based algorithm that solves (24). The solution of

our primal problem (16) is obtained in two steps: 1) we find the maximizer of the dual

objective function (24), and 2) we obtain the solution using (23).

Since (24) does not have a closed-form solution (JK has not a stable inverse), we

employ Nesterov’s iterative method [23] for smooth functions. This is a gradient-based

scheme that exhibits state-of-the art convergence rates of one order higher than the stan-

dard gradient-ascent method. A detailed description of the overall algorithm is provided

in Algorithm 1. Note that for the implementation of Algorithm 1, we need to perform a

projection of a matrix onto a Schatten norm ball. This is discussed in the next section.

4.2 Efficient Projection of Rectangular Matrices

Let X ∈ R
n1×n2 with an SVD decomposition X = UΣV T and Σ =

diag (σ1, . . . , σn) with n = min (n1, n2). According to [20, Proposition 1], the pro-

jection of X onto the unit-norm Sq ball is computed as:

ΠSq
(X) = UΣqV

T , (26)

where Σq = diag (σq) and σq is the projection of the singular values of Σ onto the

ℓq unit-norm ball Bq =
{

σ ∈ R
n
+ : ‖σ‖q ≤ 1

}

. The projection in (26) requires the

singular vectors and singular values of X . In our case n2 = 2 < n1, and we compute

the projection in an efficient way as described next. First, we note that the matrix XTX

is n2×n2 symmetric with an eigenvalue decomposition V Σ2V T . Therefore, for n2 =
2 both V and Σ can be computed in closed form. Now, if Σ+ is the pseudoinverse

matrix of Σ, defined as: Σ+ = diag
(

σ−1
1 , . . . , σ−1

k , 0, . . . , 0
)

, with σk the smallest

nonzero singular value, then U = XV Σ+. Using this result we write (26) as:

ΠSq
(X) = XV Σ+ΣqV

T , (27)

and we avoid the computation of U . We note that the same idea was explored in [7] for

efficiently computing the projection step that arises in the minimization of TVJ.
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Fig. 1. Performance measures for different regularization methods

4.3 General Linear Inverse Problems

Algorithm 1 applies only in cases where no linear operator is involved in the data term.

For general inverse problems, under the proposed regularization framework, one needs

to solve a minimization problem of the form:

argmin
u∈RNM

1
2 ‖Au− z‖

2
2 + τEp (u) + ιC (u) , ∀p ≥ 1, (28)

where A is a linear degradation operator, which for most practical cases is ill-

conditioned. To solve this type of problems we employ the MFISTA algorithm [22],

which exhibits state-of-the-art convergence rates. Nevertheless, our algorithm is still a

critical part, since the main step of MFISTA requires the evaluation of the proximal map

that we investigated in Section 4.1. For a detailed description of the MFISTA approach

we refer the readers to the Supplementary Material accompanying this paper.

5 Experimental Results

To evaluate the effectiveness of the proposed generic regularization framework, we re-

port results for the problems of gray/color image denoising and deblurring. For both

linear inverse problems we use the set of images shown in Fig. 1(a), taken from the

Berkeley BSDS500 dataset. In the image denoising setting we consider four differ-

ent standard deviations of Gaussian noise, σw={0.15, 0.2, 0.25, 0.3}. In the image de-

blurring setting we consider a Gaussian blur kernel, which has a support of 9× 9
pixel and a standard deviation σb=6 pixels, and four noise levels corresponding to

BSNR={15, 20, 25, 30} dB respectively, where BSNR is the Blurred Signal to Noise

Ratio, defined as BSNR = var (Au) /σ2
w.

In Figs. 1(b)-1(e) we report the average performance, in terms of Peak Signal to

Noise Ratio (PSNR), over all tested images. For the grayscale experiments, we com-

pare TV against three variants of our functional (STV-S, STV-F, STV-N). For the color

case, we compare the results we obtained with our STV-N regularizer against those ob-

tained using TVJ [7] and TV-F [3]. In these comparisons, we also include the variant of

STV-N where no smoothing is involved in the computation of the structure tensor (TV-

N), which is also a novel regularizer. For the sake of consistency among comparisons,
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Input (PSNR=13.98, SSIM=0.290) TV [1] (PSNR=24.45, SSIM=0.715) STV-F (PSNR=24.65, SSIM=0.731) STV-N (PSNR=24.89, SSIM=0.740)

Input (PSNR=12.04, SSIM=0.283) TVJ [7] (PSNR=23.76, SSIM=0.823) TV-N (PSNR=24.69, SSIM=0.839) STV-N (PSNR=24.82, SSIM=0.850)

Fig. 2. Grayscale (first row) and Color (second row) image denoising examples. The PSNR and

the Structural Similarity index (SSIM) are also reported.

Input (PSNR=20.18, SSIM=0.530) TV [1] (PSNR=24.26, SSIM=0.746) STV-F (PSNR=24.47, SSIM=0.750) STV-N (PSNR=24.83, SSIM=0.760)

Input (PSNR=21.88, SSIM=0.543) TVJ [7](PSNR=25.19, SSIM=0.761) TV-F [3] (PSNR=25.48, SSIM=0.766) STV-N (PSNR=25.61, SSIM=0.770)

Fig. 3. Grayscale (first row) and Color (second row) image deblurring examples. The PSNR and

SSIM measures are also reported.

the reported results for each regularizer were obtained using the individualized regular-

ization parameter that gives the best PSNR performance. Moreover, all reconstructions

are performed under box constraints, meaning that the restored intensities must lie in

the convex set C =
{

u ∈ R
N |un ∈ [0 , 1]∀n = 1, . . . , N

}

. Finally, in all the STV reg-

ularizers, we choose the structure tensor’s convolution kernel to be a Gaussian with a

support of 3×3 pixels.

From the reported results, we observe that in the grayscale case the best performance

for both image denoising and deblurring is achieved by STV-N. On the other hand, TV

has the worst performance, especially in deblurring, since in denoising its performance

is very close to STV-S. In the color denoising experiments, TV-N performs slightly

better than STV-N, and both are superior than the competitive regularizers. However,

when we consider the image deblurring problem, STV-N behaves better than TV-N and

provides the best results. This can be attributed to the fact that deblurring is a more

ill-conditioned problem and, thus, the use of a convolution kernel K is more critical.
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Finally, apart from the quantitative comparisons, conclusions for the effectiveness of

the proposed approach can be drawn by a visual inspection of the results provided

in Figs. 2-3. From these examples we can verify that the proposed STV regularizers

perform better in reducing the staircase effects of other Total Variation methods and

better reconstruct the edges and the other image structures.

6 Conclusions

In this work we introduced a family of regularizers that is based on the eigenvalues of

the structure tensor. In image denoising and deblurring problems these regularizers can

more accurately restore image edges than TV and its vectorial extensions, and, thus,

lead to improved results. Furthermore, based on a novel formulation of the structure

tensor, we proved convexity for the regularizers and designed an efficient primal-dual

algorithm for their minimization. Since TV-based reconstructions are used in a host

of imaging applications, an interesting research direction is to investigate whether our

regularizers can also lead to an improved performance in other inverse problems, as

well. This will be the subject of future work.
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5. Weickert, J., Schnörr, C.: A theoretical framework for convex regularizers in PDE-based

computation of image motion. Int. Journ. of Computer Vision 45(3), 245–264 (2001)
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