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Abstract It is shown that max-stable random vectors in [0, ∞)d with unit
Fréchet marginals are in one to one correspondence with convex sets K in
[0, ∞)d called max-zonoids. The max-zonoids can be characterised as sets
obtained as limits of Minkowski sums of cross-polytopes or, alternatively, as
the selection expectation of a random cross-polytope whose distribution is con-
trolled by the spectral measure of the max-stable random vector. Furthermore,
the cumulative distribution function P{ξ ≤ x} of a max-stable random vector
ξ with unit Fréchet marginals is determined by the norm of the inverse to x,
where all possible norms are given by the support functions of (normalised)
max-zonoids. As an application, geometrical interpretations of a number of
well-known concepts from the theory of multivariate extreme values and
copulas are provided.
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1 Introduction

A random vector ξ in R
d is said to have a max-stable distribution if, for

every n ≥ 2, the coordinatewise maximum of n i.i.d. copies of ξ coincides in
distribution with an affine transform of ξ , i.e.

ξ (1) ∨ · · · ∨ ξ (n) d∼ anξ + bn (1)

for an > 0 and bn ∈ R
d. If Eq. 1 holds with bn = 0 for all n, then ξ is called

strictly max-stable, see, e.g., Beirlant et al. (2004), Kotz and Nadarajah (2000),
Resnick (1987).

Since every max-stable random vector ξ is infinitely divisible with respect to
coordinatewise maximum, its cumulative distribution function satisfies

F(x) = P{ξ ≤ x} =
{

exp{−μ([−∞, x]c)} , x ≥ a ,

0 , otherwise ,
x ∈ R

d , (2)

where a ∈ [−∞, ∞)d, the superscript c denotes the complement and μ is a
measure on [a, ∞] \ {a} called the exponent measure of ξ , see Resnick (1987,
Proposition 5.8). Note that all inequalities and segments (intervals) for vectors
are understood coordinatewise.

Representation Eq. 2 shows that the cumulative distribution function of ξ

can be represented as the exponential F(x) = e−ν(x) of another function ν. If
ξ is strictly max-stable and a = 0, then ν is homogeneous, i.e. ν(sx) = s−αν(x)

for all s > 0 and some α > 0. This fact can be also derived from general results
concerning semigroup-valued random elements (Davydov et al. 2005). If α=1,
an example of such function ν(x) is provided by ν(x) = ‖x∗‖, i.e. a norm of
x∗ = (x−1

1 , . . . , x−1
d ) for x = (x1, . . . , xd) ∈ [0, ∞)d. One of the main aims of this

paper is to show that this is the only possibility and to characterise all norms
that give rise to strictly max-stable distributions with α = 1.

Every norm is homogeneous and sublinear. It is known (Schneider 1993,
Th. 1.7.1) that each bounded homogeneous and sublinear function g on R

d can
be described as the support function of a certain convex compact set K, i.e.

g(x) = h(K, x) = sup{〈x, y〉 : y ∈ K} ,

where 〈x, y〉 is the scalar product of x and y. In Section 2 we show that
every standardised strictly max-stable distribution with α = 1 is associated with
the unique compact convex set K ⊂ [0, ∞)d called the dependency set. The
dependency sets are suitably rescaled sets from the family of sets called max-
zonoids. While classical zonoids appear as limits for the sums of segments
(Schneider 1993, Section 3.5), max-zonoids are limits of the sums of cross-
polytopes. The contributions of particular cross-polytopes to this sum are
controlled by the spectral measure of the max-stable random vector. It is
shown that not every convex compact set for d ≥ 3 corresponds to a strictly
max-stable distribution, while if d = 2, then the family of dependency sets
is the family of all “standardised” convex sets, see also Falk (2006) for
the treatment of the bivariate case. This, in particular, shows a substantial
difference between possible dependency structures for bivariate extremes on
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one hand and multivariate extremes in dimensions three and more on the
other hand.

The geometrical interpretation of max-stable distributions opens a possi-
bility to use tools from convex geometry in the framework of the theory of
extreme values. For instance, the polar sets to the dependency set K appear as
multivariate quantiles of the corresponding max-stable random vector, i.e. the
level sets of its cumulative distribution function. In the other direction, some
useful families of extreme values distributions may be used to construct new
norms in R

d which acquire an explicit probabilistic interpretation. The norms
corresponding to max-stable distributions are considered in Section 3.

Section 4 deals with relationships between spectral measures of max-
stable laws and geometric properties of the corresponding dependency set. In
Section 5 it is shown that a number of dependency concepts for max-stable ran-
dom vectors can be expressed using geometric functionals of the dependency
set and its polar. Here also relationships to copulas are considered. It is shown
that max-zonoids are only those convex sets whose support functions generate
multivariate extreme value copulas.

It is well known that Z is (classical) zonoid if and only if e−h(Z ,x) is positive
definite, see Schneider (1993, p. 194). In Section 6 we establish a similar
result for the positive definiteness of the exponential with respect to the
coordinatewise maximum operation in case Z is a max-zonoid.

Section 7 describes some relationships between operations with convex
sets and operations with max-stable random vectors. Finally, Section 8 briefly
mentions an infinite-dimensional extension for max-stable sample continuous
random functions.

2 Dependency Sets and Max-zonoids

Let ξ be a max-stable random vector with non-degenerate marginals. By an
affine transformation it is possible to standardise the marginals of ξ , so that ξ

has �α (Fréchet distributed) marginals, where

�α(x) =
{

0, x < 0 ,

e−x−α

, x ≥ 0 ,
α > 0 ,

or �α (Weibull or negative exponential distributed) marginals, i.e.

�α(x) =
{

e−(−x)α , x < 0 ,

1, x ≥ 0 ,
α > 0 ,

or � (Gumbel or double exponentially distributed) marginals, i.e.

�(x) = exp{−e−x} , x ∈ R .

By using (possibly non-linear) monotonic transformations applied to the
individual coordinates it is possible to assume that all marginals are �1, see
Resnick (1987, Proposition 5.10) and Beirlant et al. (2004, Section 8.2.2).
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In this case we say that ξ has unit Fréchet marginals or has a simple max-
stable distribution, see also Einmahl et al. (1997). Sometimes we say that
ξ = (ξ1, . . . , ξd) has a semi-simple max-stable distribution if its rescaled version
(c1ξ1, . . . , cdξd) has a simple max-stable distribution for some c1, . . . , cd > 0.

If ξ has a simple max-stable distribution, then Resnick (1987, Proposi-
tion 5.11) implies that the exponent in Eq. 2 has the following representation

ν(x) = μ([0, x]c) =
∫

S+
max
1≤i≤d

(
ai

xi

)
σ(da) , x ∈ [0, ∞]d \ {0} , (3)

where

[0, x] = ×d
i=1[0, xi] , x = (x1, . . . , xd) ,

S+ = {x ∈ E : ‖x‖ = 1} is a sphere in E = [0, ∞)d with respect to any chosen
norm (from now on called the reference sphere and the reference norm) and σ

is a finite measure on S+ (called the spectral measure of ξ) such that∫
S+

aiσ(da) = 1 , i = 1, . . . , d . (4)

A similar representation is described in Falk et al. (2004, Theorem 4.3.1) for
the special case of S+ being the unit simplex.

We now aim to relate the function ν(x) from Eq. 3 to the support function of
a certain compact convex set. Recall that the support function of a set M ⊂ R

d

is defined as

h(M, x) = sup{〈z, x〉 : z ∈ M} ,

where 〈z, x〉 is the scalar product in R
d. Let e1, . . . , ed be the standard ortho-

normal basis in R
d. For every a = (a1, . . . , ad) ∈ R

d consider the cross-polytope

Δa = conv({0, a1e1, . . . , aded}) ,

where conv(·) denotes the convex hull of the corresponding set. Note that
conv({a1e1, . . . , aded}) is a simplex. Then

h(Δa, x) = h(Δx, a) = max
1≤i≤d

(aixi)

for every a ∈ S+ and x ∈ E. For x = (x1, . . . , xd) ∈ E write x∗ = (x−1
1 , . . . , x−1

d ).
Then Eq. 3 can be expressed as

ν(x∗) =
∫

S+
h(Δa, x)σ (da) , x ∈ E . (5)

The function l(x) = ν(x∗) is called the stable tail dependence function, see
Beirlant et al. (2004, p. 257).

It is well known that the arithmetic sum of support functions of two convex
compact sets K and L is the support function of their Minkowski sum

K + L = {x + y : x ∈ K, y ∈ L} ,

i.e. h(K + L, x) equals h(K, x) + h(L, x). Extending this idea to integrals of
support functions leads to the expectation concept for random compact sets,
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see Artstein and Vitale (1975) and Molchanov (2005, Section 2.1). If X is a
random compact set (Molchanov 2005) such that ‖X‖ = sup{‖x‖ : x ∈ X} is
integrable, then the selection expectation (also called the Aumann expectation)
of X is the set of expectations of E ξ for all random vectors ξ such that ξ ∈ X
a.s. If the underlying probability space is non-atomic, or X is a.s. convex, then
E X is the unique compact convex set that satisfies

E h(X, x) = h(E X, x)

for all x, see Molchanov (2005, Theorem II.1.22).
Let σ1 be the spectral measure σ normalised to have the total mass 1. If η

is distributed on S+ according to σ1, then Δη is a random convex compact set
whose selection expectation satisfies

h(E Δη, x) = 1

σ(S+)

∫
S+

h(Δa, x)σ (da) . (6)

Condition Eq. 4 further implies that

σ(S+)h(E Δη, ei) = 1 , i = 1, . . . , d . (7)

Since h(E Δη, ei) = E h(Δη, ei) = E ηi, we have σ(S+) E ηi = 1 for i = 1, . . . , d.
Together with Eqs. 3 and 2 these reasons lead to the following result.

Theorem 1 A random vector ξ is max-stable with unit Fréchet marginals if and
only if its cumulative distribution function F(x) = P{ξ ≤ x} satisfies

F(x) = exp{−ch(E Δη, x∗)} , x ∈ E ,

for a constant c > 0 and a random vector η ∈ S+ such that c E η = (1, . . . , 1).

If K = c E Δη, then

F(x) = e−h(K,x∗) , x ∈ E . (8)

Furthermore, note that K = E Δcη with E(cη) = (1, . . . , 1).

Definition 1 The set K = c E Δη where c > 0 and η is a random vector on S+
is said to be a max-zonoid. If σ1 is the distribution of η, then σ = cσ1 is the
spectral measure of K. If c E η = (1, . . . , 1), then the max-zonoid K is called
the dependency set associated with the spectral measure σ (or associated with
the corresponding simple max-stable random vector).

Proposition 1 A convex set K is a max-zonoid if and only if there exists a
semi-simple max-stable vector ξ with cumulative distribution function F(x) =
e−h(K,x∗) for all x ∈ E.
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Proof Sufficiency. A semi-simple max-stable ξ can be obtained as ξ = aξ ′ =
(a1ξ

′
1, . . . , adξ

′
d) for simple max-stable vector ξ ′ and a = (a1, . . . , ad) ∈ (0, ∞)d.

Let K′ be the dependency set of ξ ′. By Theorem 1,

P{ξ ≤ x} = P{aξ ′ ≤ x} = e−h(K′,ax∗) = e−h(K,x∗) , x ∈ E ,

for K = aK′ = {(a1x1, . . . , adxd) : (x1, . . . , xd) ∈ K}.
Necessity. If K is a max-zonoid, then K′ = aK is a dependency set for some

a ∈ (0, ∞)d. If ξ ′ is max-stable with dependency set K′, then it is easily seen
that aξ ′ has the cumulative distribution function e−h(K,x∗). ��

Proposition 1 means that each max-zonoid can be rescaled to become a
dependency set.

Proposition 2 A max-zonoid K always satisfies

Δz ⊂ K ⊂ [0, z] (9)

for some z ∈ E.

Proof The result follows from the following bound on the support function
of E Δη

h(Δy, x) = max
1≤i≤d

E(ηixi) ≤ E h(Δη, x) ≤ E
d∑

i=1

ηixi = h([0, y], x)

where y = E η, so that Eq. 9 holds with z = cy. ��

The normalisation condition (7) and (9) imply that the dependency set of a
simple max-stable distribution satisfies

Δ(1,...,1) = conv{0, e1, . . . , ed} ⊂ K ⊂ [0, 1]d , (10)

where Δ(1,...,1) is called the unit cross-polytope.
The selection expectation of Δη has the support function given by

h(E Δη, x) =
∫

S+
‖(a1x1, . . . , adxd)‖∞σ(da) , (11)

where ‖ · ‖∞ is the �∞-norm in R
d. If the �∞-norm in Eq. 11 is replaced by the

�1-norm, i.e. the absolute value of the sum of the coordinates and integration
is carried over the whole sphere, then Eq. 11 yields the support function of a
zonoid, see Schneider (1993, Section 3.5). This provides one of the reasons for
calling E Δη a max-zonoid. Note that max-zonoids form a sub-family of sets
called d-zonoids in Ricker (1982).
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It is possible to define a max-zonoid as the selection expectation of Δζ ,
where ζ is any random vector in E (not necessarily on S+). The corresponding
spectral measure σ on S+ can be found from∫

S+
g(a)σ (da) = E

[
‖ζ‖g

(
ζ

‖ζ‖
)]

(12)

for all integrable functions g on S+. Indeed,∫
S+

h(Δu, x)σ (du) = E[‖ζ‖h(Δζ/‖ζ‖, x)] = E h(Δζ , x) .

If all coordinates of ζ have the unit mean, then the selection expectation of Δζ

becomes a dependency set.
An alternative representation of max-stable laws (Resnick 1987, Proposi-

tion 5.11) yields that

F(x) = exp

{
−

∫ 1

0
max

(
f1(s)
x1

, . . . ,
fd(s)
xd

)
ds

}
(13)

for non-negative integrable functions f1, . . . , fd satisfying∫ 1

0
fi(s)ds = 1 , i = 1, . . . , d .

Thus

h(K, x) =
∫ 1

0
max( f1(s)x1, . . . , fd(s)xd) ds ,

i.e. the dependency set K is given by the selection expectation of the cross-
polytope Δ f (η), where f (η) = ( f1(η), . . . , fd(η)) and η is uniformly distributed
on [0, 1]. The corresponding spectral measure can be found from Eq. 12 for
ζ = f (η).

Theorem 2 If d = 2, then each convex set K satisfying Eq. 10 is the dependency
set of a simple max-stable distribution. If d ≥ 3, then only those K that satisfy
Eq. 10 and are max-zonoids correspond to simple max-stable distributions.

Proof Consider a planar convex polygon K satisfying Eq. 10, so that its vertices
are a0 = e1, a1, . . . , am = e2 in the anticlockwise order. Then K equals the sum
of triangles with vertices (0, 0), (ai−1

1 − ai
1, 0), (0, ai

2 − ai−1
2 ) for i = 1, . . . , m,

where ai = (ai
1, ai

2). Thus Eq. 5 holds with σ having atoms at ui/‖ui‖ with mass
‖ui‖ where ui = (ai−1

1 − ai
1, ai

2 − ai−1
2 ) for i = 1, . . . , m. The approximation by

polytopes yields that a general convex K satisfying Eq. 10 can be represented
as the expectation of a random cross-polytope and so corresponds to a simple
max-stable distribution.

Theorem 1 implies that all max-zonoids satisfying Eq. 10 correspond to
simple max-stable distributions. It remains to show that not every convex set
K satisfying Eq. 10 is a dependency set in dimension d ≥ 3. For instance,
consider set L in R

3 which is the convex hull of 0, e1, e2, e3 and (2/3, 2/3, 2/3).
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All its 2-dimensional faces are triangles, so that this set is indecomposable
by Grünbaum (1967, Theorem 15.3). Since L is a polytope, but not a cross-
polytope, it cannot be represented as a sum of cross-polytopes and so is not a
max-zonoid. ��

The support function of the dependency set K equals the tail dependence
function Eq. 5. If an estimate l̂(·) of the tail dependence function is given
for a finite set of directions u1, . . . , um, it is possible to estimate K, e.g. as
the intersection of half-spaces {x ∈ E : 〈x, ai〉 ≤ l̂(ai)}. However, this estimate
should be used very cautiously, since the obtained polytope K is not necessarily
a max-zonoid in dimensions three and more. While this approach is justified in
the bivariate case (see also Hall and Tajvidi 2004), in general, it is better to use
an estimate σ̂ of the spectral measure σ in order to come up with an estimator
of K as

h(K̂, x) =
∫

S+
h(Δa, x)σ̂ (da) .

Being the expectation of a cross-polytope, the obtained set is necessarily a
max-zonoid.

The set

Ko = {x ∈ E : h(K, x) ≤ 1}
is called the polar (or dual) set to K in E, see Schneider (1993, Section 1.6)
for the conventional definition where E is replaced by R

d. If K is convex and
satisfies Eq. 10, then its polar Ko is also convex and satisfies the same condition.
Furthermore,

{x ∈ E : F(x) ≥ α} = {x ∈ E : e−h(K,x∗) ≥ α}
= {x∗ : x ∈ E, h(K, x) ≤ − log α}
= (− log α){x∗ : x ∈ Ko} ,

i.e. multivariate quantiles of the cumulative distribution function of a simple
max-stable random vector are inverted rescaled variants of the polar set to the
dependency set K. The level sets of multivariate extreme values distributions
have been studied in de Haan and de Ronde (1998). Note that the dimension
effect described in Theorem 2 restricts the family of sets that might appear as
multivariate quantiles in dimensions d ≥ 3.

The ordering of dependency sets by inclusion corresponds to the stochastic
ordering of simple max-stable random vectors, i.e. if ξ ′ and ξ ′′ have dependency
sets K′ and K′′ with K′ ⊂ K′′, then P{ξ ′ ≤ x} ≥ P{ξ ′′ ≤ x} for all x ∈ E.

A metric on the family of dependency sets may be used to measure the
distance between random vectors ξ ′ and ξ ′ with simple max-stable distribu-
tions. Such distance can be defined as the Hausdorff distance between the
dependency sets of ξ and ξ ′ or any other metric for convex sets (e.g. the
Lebesgue measure of the symmetric difference or the Lp-distance between
the support functions). In the spirit of the Banach-Mazur metric for convex
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sets (or linear spaces), a distance between two dependency sets K′ and K′′ can
be defined as

m(K′, K′′) = log inf

{
d∏

i=1

λi : K′ ⊂ λK′′, K′′ ⊂ λK′, λ ∈ (0, ∞)d

}
,

where λK = {(λ1x1, . . . , λdxd) : (x1, . . . , xd) ∈ K} with λ = (λ1, . . . , λd). If ξ ′
and ξ ′′ have dependency sets K′ and K′′ respectively, then m(K′, K′′) is the
logarithm of the smallest value of (λ1 · · · λd) such that ξ ′ is stochastically
smaller than λξ ′′ and ξ ′′ is stochastically smaller than λξ ′. For instance, the
distance between the unit cross-polytope and the unit square (for d = 2) is
log 4, which is the largest possible distance between two simple bivariate max-
stable laws.

3 Norms Associated with Max-stable Distributions

Note that the support function of a compact set L is sublinear, i.e. it is
homogeneous and subadditive. If L is convex symmetric and contains the
origin in its interior, then its support function h(L, x) defines a norm in R

d.
Conversely, every norm defines a symmetric convex compact set in R

d with
the origin in its interior, see Rockafellar (1970, Theorem 15.2).

Let K be a convex set satisfying Eq. 9. The corresponding norm ‖ · ‖K can
be defined as the support function of the set L obtained as the union of all
symmetries of K with respect to coordinate planes, i.e.

‖x‖K = h(L, x) = h(K, |x|) , x ∈ R
d ,

where |x| = (|x1|, . . . , |xd|). The norm ‖x‖K is said to be generated by the max-
zonoid K. Note that the origin belongs to the interior of L and ‖x‖K = h(K, x)

for x ∈ E. The following result shows that distributions of max-stable vectors
correspond to norms generated by max-zonoids.

Theorem 3 Let ‖ · ‖ be a norm on R
d. The function

F(x) = exp{−‖x∗‖} , x ∈ E , (14)

is the cumulative distribution function of a random vector ξ in E if and only
if ‖x‖ = h(K, |x|) is the norm generated by a max-zonoid K. In this case the
random vector ξ is necessarily semi-simple max-stable.

Proof Sufficiency. If K is a max-zonoid, Proposition 1 implies that there
exists a semi-simple max-stable vector ξ with cumulative distribution function
e−h(K,x∗) = e−‖x∗‖.

Necessity. If Eq. 14 is the cumulative distribution function of a random
vector ξ , then

P
{
ξ (1) ∨ · · · ∨ ξ (n) ≤ x

} = e−n‖x∗‖ = e−‖(n−1x)∗‖ = P
{
ξ ≤ n−1x

}
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for all x ∈ E and i.i.d. copies ξ (1), . . . , ξ (n) of ξ . Thus, ξ is necessarily semi-
simple max-stable. Proposition 1 implies that Eq. 14 holds with the norm
generated by a max-zonoid K. ��

The space R
d with the norm ‖ · ‖K becomes a finite-dimensional normed

linear space, also called the Minkowski space, see Thompson (1988). If this is
an inner product space, then the norm is necessarily Euclidean. Indeed, if K
is the intersection of a centred ellipsoid with E and satisfies Eq. 10, then this
ellipsoid is necessarily the unit ball.

Another common way to standardise the marginals of a multivariate ex-
treme value distribution is to bring them to the reverse exponential distribution
(or unit Weibull distribution), see Falk et al. (2004, Section 4.1). In this case,
the cumulative distribution function turns out to be

F(x) = e−‖x‖K x ∈ (−∞, 0]d .

The fact that every max-stable distribution with reverse exponential marginals
gives rise to a norm has been noticed in Falk et al. (2004, p. 127), however
without giving a characterisation of these norms.

Note that the norm of ‖x‖K can be expressed as

‖x‖K = ‖x‖ ‖ux‖K ,

where ux = x/‖x‖ belongs to the reference sphere S+. If the reference norm is
�1, then S+ is the unit simplex and the norm ‖ux‖K of u = (t1, . . . , td−1, 1 −
t1 − · · · − td−1) ∈ S+ can be represented as a function A(t1, . . . , td−1) of
t1, . . . , td−1 ≥ 0 such that t1 + · · · + td−1 ≤ 1. If d = 2, then A(t), 0 ≤ t ≤ 1, is
called the Pickands function, see Kotz and Nadarajah (2000) and for the
multivariate case also Falk and Reiss (2005), Kotz and Nadarajah (2000). In
general, the norm ‖u‖, u ∈ S+, is an analogue of the Pickands function.

Example 1 The dependency set K being the unit cube [0, 1]d (so that ‖x‖K

is the �1-norm) corresponds to the independence case, i.e. independent coor-
dinates of ξ = (ξ1, . . . , ξd). The corresponding spectral measure allocates unit
atoms to the points from the coordinate axes.

Furthermore, K being the unit cross-polytope (so that ‖x‖K is the �∞-norm)
gives rise to the random vector ξ = (ξ1, . . . , ξ1) with all identical �1-distributed
coordinates, i.e. the completely dependent random vector. The corresponding
spectral measure has its only atom at the point from S+ having all equal
coordinates. Note that the unit cube is dual (or polar) set to the unit cross-
polytope.

Example 2 The �p-norm ‖x‖p with p ≥ 1 generates the symmetric logistic
distribution (Beirlant et al. 2004, (9.11)) with parameter α = 1/p. The strength
of dependency increases with p.

Example 3 A useful family of simple max-stable bivariate distribution appears
if the functions f1, f2 in Eq. 13 are chosen to be the density functions of normal
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distributions, see Kotz and Nadarajah (2000, Section 3.4.5) and Beirlant et al.
(2004, p. 309). It is shown in Hüsler and Reiss (1989) that these distributions
appear as limiting distributions for maxima of bivariate i.i.d. Gaussian random
vectors. The corresponding norm (which we call the Hüsler-Reiss norm) is
given by

‖x‖K = x1�

(
λ + 1

2λ
log

x1

x2

)
+ x2�

(
λ − 1

2λ
log

x1

x2

)
,

where λ ∈ [0, ∞]. The cases λ = 0 and λ = ∞ correspond to complete depen-
dence and independence, respectively.

Example 4 The bivariate symmetric negative logistic distribution (Beirlant
et al. 2004, p. 307) corresponds to the norm given by

‖x‖K = ‖x‖1 − λ‖x‖p ,

where λ ∈ [0, 1] and p ∈ [−∞, 0].

4 Spectral Measures

Since the dependency set determines uniquely the distribution of a simple max-
stable random vector, there is one to one correspondence between dependency
sets and normalised spectral measures. It is possible to extend this corre-
spondence to max-zonoids on one side and all finite measures on S+ on the
other one, since both uniquely identify semi-simple max-stable distributions.
While the spectral measure depends on the choice of the reference norm, the
dependency set remains the same whatever the reference norm is.

It is shown in Coles and Tawn (1991) that the densities of the spectral
measure on the reference simplex S+ = conv{e1, . . . , ed} can be obtained by
differentiating the function ν(x) = μ([0, x]c) for the exponent measure μ. This
is possible if the spectral measure is absolutely continuous with respect to the
surface area measures on relative interiors of all faces of the simplex and,
possibly, has atoms at the vertices of S+. Following the proof of this fact in
Beirlant et al. (2004, Section 8.6.1), we see that

lim
zj→0, j/∈A

DAν(z) = (−1)|A|−1 DAμ({x ∈ E : xj > z j, j ∈ A; xj = 0, j /∈ A}) ,

where A ⊂ {1, . . . , d}, |A| is the cardinality of A, and DA denotes the mixed
partial derivative with respect to the coordinates with numbers from A.

The derivatives of ν can be expressed by means of the derivatives of the
stable tail dependence function l(z) = ν(z∗) = ‖z‖K. Indeed,

DAν(z) = DAl(z∗)(−1)|A| ∏
j∈A

z−2
j .
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Thus, the densities of the exponent measure can be found from

DAμ({x ∈ E : xj ≤ zj, j ∈ A; xj = 0, j /∈ A})
= (−1)|A|−1 lim

zj→0, j/∈A
DAl(z∗)

∏
j∈A

z−2
j .

In particular, the density of μ in the interior of E can be found from the dth
mixed partial derivative of the norm as

f (z) = (−1)d−1 ∂dl
∂z1 · · · ∂zd

(z∗)
d∏

i=1

z−2
i , z ∈ (0, ∞)d .

After decomposing these densities into the radial and directional parts, it is
possible to obtain the spectral measure by

σ(G) = μ({tu : u ∈ G, t ≥ 1}) =
∫

{tu: u∈G, t≥1}
f (z)dz

for every measurable G from the relative interior of S+. The relationship
between spectral measures on two different reference spheres is given in
Beirlant et al. (2004, p. 264).

Proposition 3 A d-times continuously differentiable function l(x), x ∈ E, is the
tail dependency function of a simple max-stable distribution if and only if l is
sublinear, takes value 1 on all basis vectors, and all its mixed derivatives of even
orders are non-positive and of odd orders are non-negative.

Proof The necessity follows from Theorem 1 and the non-negativity condition
on the exponent measure μ. In the other direction, the sublinearity property
implies that l is the support function of a certain convex set K, see Schneider
(1993, Theorem 1.7.1). The condition on the sign of mixed derivatives yields
that the corresponding densities of μ are non-negative, i.e. K is the max-zonoid
corresponding to a certain spectral measure. ��

In the planar case, Schneider (1993, Theorem 1.7.2) implies that the second
mixed derivative of the (smooth) support function is always non-positive.
Accordingly, all smooth planar convex sets satisfying Eq. 10 are dependency
sets.

A number of interesting measures on the unit sphere appear as curvature
measures of convex sets (Schneider 1993, Section 4.2). A complete interpre-
tation of these curvature measures is possible in the planar case, where the
curvature measure becomes the length measure. The length measure S1(L, A)

generated by a smooth set L associates with every measurable A ⊂ S
1 the 1-

dimensional Hausdorff measure of the boundary of L with unit normals from
A. The length measure for a general L is defined by approximation. Recall
that S

1+ is the part of the unit circle lying in the first quadrant.
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Theorem 4 A measure σ on S
1+ is the spectral measure of a simple max-stable

random vector ξ with dependency set K if and only if σ is the restriction on S
1+of

the length measure generated by Ǩ = {(x1, x2) : (x2, x1) ∈ K} with K satisfying
Eq. 10.

Proof Sufficiency. Consider a planar convex set K satisfying Eq. 10. Let
σ(da) be the length measure of L = Ǩ, i.e. the first-order curvature measure
S1(L, da). Then∫

S1
h(Δa, x)σ (da) =

∫
S1

h(Δx, a)S1(L, da) = 2V(Δx, L) ,

where V(Δx, L) denotes the mixed volume (the mixed area in the planar case)
of the sets Δx and L, i.e.

2V(Δx, L) = V2(L + Δx) − V2(L) − V2(Δx) ,

see Schneider (1993, Section 5.1). Because of Eq. 10, the integral over the full
circle S

1 with respect to σ coincides with the integral over S
1 ∩ [0, ∞)2 = S

1+.
It remains to show that 2V(Δx, L) equals h(K, x). If z = (z1, z2) ∈ L is any
support point of L in direction x = (x1, x2), i.e. h(L, x) = 〈z, x〉, then

2V(Δx, L) = z1x2 + z2x1 = h(K, x) .

An alternative proof follows the construction from Theorem 2. Indeed, a
polygonal K can be obtained as the sum of triangles. A triangle Δ(t,s) with
vertices (0, 0), (t, 0) and (0, s) corresponds to the spectral measure having the
atom at (t, s)c−1 with mass c = √

t2 + s2 and therefore coincides with the length
measure of Δ(s,t) = �̌(t,s) restricted onto S

1+. Since the spectral measure of
K is the sum of spectral measures of these triangles, it can be alternatively
represented as the sum of the length measures. A general K can be then
approximated by polygons.

Necessity. Assume that a measure σ on S
1+ is the spectral measure of a

simple max-stable law with dependency set K. If now σ ′ is chosen to be the
length measure of Ǩ restricted onto S

1+, then σ ′ generates the max-zonoid K.
Finally, σ = σ ′ by the uniqueness of the spectral measure. ��

Theorem 4 implies that the length of the boundary of K inside (0, ∞)2

equals the total mass of the spectral measure on S
1+. Given Eq. 10, an obvious

bound on this boundary length implies that this total mass lies between
√

2
and 2.

The total mass of the spectral measure on the reference simplex has a simple
geometric interpretation. Assume that the reference norm is �1, i.e. ‖x‖ = x1 +
· · · + xd for x ∈ E. If η ∈ S+, then E η1 + · · · + E ηd = 1, so that the �1-norm of
E η is 1. Since c E η = (1, . . . , 1) in Theorem 1, we have c = d, i.e. the spectral
measure has the total mass d.

The weak convergence of simple max-stable random vectors can be inter-
preted as convergence of the corresponding max-zonoids.
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Theorem 5 Let ξ, ξ1, ξ2, . . . be a sequence of simple max-stable random vectors
with spectral measures σ, σ1, σ2, . . . and dependency sets K, K1, K2, . . .. Then
the following statements are equivalent.

(i) ξn converges in distribution to ξ ;
(ii) σn converges weakly to σ ;

(iii) Kn converges in the Hausdorff metric to K.

Proof The equivalence of (i) and (ii) is well known, see de Haan and Ferreira
(2006, Corollary 6.1.15).

The weak convergence of σn, the continuity of h(Δa, x) for a ∈ S+ and Eq. 6
imply that the support function of Kn converges pointwisely to the support
function of K. Because dependency sets are contained inside the unit cube
and so are uniformly bounded, their convergence in the Hausdorff metric is
equivalent to the pointwise convergence of their support functions.

The Hausdorff convergence of Kn to K implies the pointwise convergence
of their support functions and so the pointwise convergence of the cumulative
distribution functions given by Eq. 8. The latter entails that ξn converges in
distribution to ξ . ��

A random vector ζ ∈ E belongs to the domain of attraction of a simple max-
stable distribution if and only if the measure

σs(A) = sP{ ζ

‖ζ‖ ∈ A , ‖ζ‖ ≥ s} , A ⊂ S+ , (15)

converges weakly as s → ∞ to a finite measure on S+, which then becomes
the spectral measure of the limiting random vector, see Beirlant et al. (2004,
(8.95)). The equivalence of (ii) and (iii) in Theorem 5 implies the following
result.

Proposition 4 A random vector ζ ∈ E belongs to the domain of attraction of a
simple max-stable random vector ξ with spectral measure σ if and only if the
max-zonoids generated by σs from Eq. 15 converge in the Hausdorff metric as
s → ∞ to the max-zonoid generated by σ .

5 Copulas and Association

The dependency structure of a distribution with fixed marginals can be ex-
plored using the copula function C defined on I

d = [0, 1]d by the following
equation

F(x) = F(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) ,

where F1, . . . , Fd are the marginals of F, see Nelsen (2006). In case of a simple
max-stable distribution, we obtain

C(u1, . . . , ud) = exp{−‖(− log u1, . . . , − log ud)‖K} . (16)



Convex geometry of max-stable distributions 249

Theorem 6 The function (16) is a copula function if and only if K is a
max-zonoid.

Proof The sufficiency is trivial, since the right-hand side of Eq. 16 can be
used to construct a max-stable distribution. In the other direction, we can
substitute into C the �1-distribution functions, i.e. ui = e−1/xi . This yields a
multivariate cumulative distribution function given by F(x) = e−‖x∗‖K . The
result then follows from Theorem 3. ��

Note that Eq. 16 in the bivariate case appears in Falk (2006). A rich
family of copulas consists of the Archimedean copulas that in the bivariate
case satisfy ϕ(C(x1, x2)) = ϕ(x1) + ϕ(x2) for a strictly decreasing continuous
function ϕ and all x1, x2 ∈ [0, 1], see Nelsen (1999, Ch. 4). Using Eq. 16, it is
easy to see that in this case ψ(‖(x1, x2)‖K) = ψ(x1) + ψ(x2) for a monotone
increasing continuous function ψ and all x1, x2 ≥ 0. It is known (see Nelsen
2006, Theorem 4.5.2; Genest and Rivest 1989) that all Archimedean copulas
that correspond to max-stable distributions are so-called Gumbel copulas,
where ψ(t) = tp. Thus, Eq. 16 is an Archimedean copula if and only if K is
�p-ball with p ∈ [1, ∞], see Example 2.

The bivariate copulas are closely related to several association concepts
between random variables, see Nelsen (1991). The Spearman correlation co-
efficient is expressed as ρS = 12J − 3, where

J =
∫ 1

0

∫ 1

0
C(u1, u2)du1du2 =

∫ 1

0

∫ 1

0
e−‖(− log u1,− log u2)‖K du1du2

=
∫ ∞

0

∫ ∞

0
e−‖(x1,x2)‖K e−x1−x2 dx1dx2

= 1

4

∫
(0,∞)2

e−‖x‖L dx ,

and

L = 1

2

(
K + I

2
)

.

It is possible to calculate J by changing variables x = r(t, 1 − t) with r ≥ 0 and
t ∈ [0, 1], which leads to the following known expression

J = 1

4

∫ 1

0

1

‖(t, 1 − t)‖2
L

dt =
∫ 1

0

1

(1 + ‖(t, 1 − t)‖K)2
dt ,

see Hürlimann (2003). The following proposition is useful to provide another
geometric interpretation of ρS and also an alternative way to compute J.

Proposition 5 If L is a convex set in R
d, then∫

[0,∞)d
e−h(L,x)dx = �(d + 1)Vd(Lo) ,
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where Vd(·) is the d-dimensional Lebesgue measure, Lo is the polar set to L and
� is the Gamma function.

Proof The proof follows the argument mentioned in Vitale (1996, p. 2173). Let
ζ be the exponentially distributed random variable of mean 1. Then∫

[0,∞)d
e−h(L,x)dx = E

∫
[0,∞)d

1Iζ≥h(L,x) dx

= E Vd({x ∈ E : h(L, x) ≤ ζ })
= E Vd(ζ Lo) = Vd(Lo) E ζ d .

It remains to note that E ζ d = �(d + 1). ��

Thus, in the planar case

ρS = 3(2V2(Lo) − 1) .

As a multivariate extension, an affine function ρS = c(Vd(Lo) − a) of the
d-dimensional volume of Lo may be used to define the Spearman correlation
coefficient for a d-dimensional max-stable random vector with unit Fréchet
marginals. By considering the independent case L = K = I

d with ρS = 0
and using the fact that the volume of the unit cross-polytope Lo is (d!)−1,
we see that ρS = c(d!Vd(Lo) − 1) for some constant c > 0. The choice c =
(d + 1)/(2d − d − 1) ensures that ρS = 1 in the totally dependent case, where
Vd(Lo) = 2d/(d + 1)!.

The Kendall correlation coefficient of a bivariate copula C is given by

τ = 4
∫ 1

0

∫ 1

0
C(z1, z2)dC(z1, z2) − 1

= 1 − 4
∫ 1

0

∫ 1

0

∂

∂z1
C(z1, z2)

∂

∂z2
C(z1, z2)dz1dz2 ,

see Nelsen (1991, (2.3)). By Eq. 16, the partial derivatives of C can be ex-
pressed using partial derivatives of the support function of K. The directional
derivative of the support function h(K, x) at point x in direction u is given by
h(F(K, x), u), where

F(K, x) = {y ∈ K : 〈y, x〉 = h(K, x)}
is the support set of K in direction x, see Schneider (1993, Theorem 1.7.2). Thus
the partial derivatives of h(K, x) are given by

∂h(K, x)

∂xi
= h(F(K, x), (1, 0)) = yi(K, x) , i = 1, 2 ,

where y1(K, x) and y2(K, x) are respectively the maximum first and second
coordinates of the points from F(K, x). If the dependency set K is strictly
convex in (0, ∞)2, i.e. the boundary of K inside (0, ∞)2 does not contain any
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segment, then F(K, x) = {(y1(K, x), y2(K, x))} is a singleton for all x ∈ E. In
this case denote

y(K, x) = y1(K, x)y2(K, x) .

By using Eq. 16 and changing variables we arrive at

τ = 1 − 4
∫

[0,∞)2
e−2‖x‖K y(K, x)dx .

The fact that y(K, tx) = y(K, x) and a similar argument to Proposition 5
yield that

τ = 1 − 2
∫

Ko
y(K, x)dx . (17)

For instance, τ = 1/2 if ξ has the logistic distribution with parameter 1/2, i.e.
‖ · ‖K is the Euclidean norm. By changing variables x = (t, 1 − t)r, we arrive at

τ = 1 −
∫ 1

0

y1(K, (t, 1 − t))y2(K, (t, 1 − t))

‖(t, 1 − t)‖2
K

dt ,

which also corresponds to Hürlimann (2003, Theorem 3.1).
The Pearson correlation coefficient for the components of a bivariate simple

max-stable random vector is not defined, since the unit Fréchet marginals
are not integrable. However it is possible to compute it for the inverted
coordinates of ξ .

Proposition 6 If ξ is a simple max-stable bivariate random vector, then
E(ξ−1

1 ξ−1
2 ) = 2V2(Ko), and the covariance between ξ−1

1 and ξ−1
2 is 2V2(Ko) − 1.

Proof Integrating by parts, it is easy to see that

E
(
ξ−1

1 ξ−1
2

) =
∫ ∞

0

∫ ∞

0
F(x∗)dx1dx2 =

∫
E

e−h(K,x)dx .

The result follows from Proposition 5 and the fact that E(ξ−1
1 ) = E(ξ−1

2 ) = 1.
��

Proposition 6 corresponds to the formula

ρ =
∫ 1

0

1

‖(t, 1 − t)‖2
K

dt − 1 .

for the covariance obtained in Tawn (1988) for the exponential marginals.
Extending this concept for the higher-dimensional case, we see that the

covariance matrix of ξ ∗ is determined by the areas of polar sets to the
2-dimensional projections of K and

ρ = d!Vd(Ko) − 1

d! − 1
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can be used to characterise the multivariate dependency of a simple
d-dimensional max-stable random vector ξ , so that ρ varies between zero
(complete independence) and 1 (complete dependence).

Example 5 Assume that ‖x‖K = ‖x‖p is the �p-norm with p ≥ 1, i.e. the
corresponding ξ has the logistic distribution with parameter α = 1/p, see
Example 2. The volume of the �p-ball {x ∈ R

d : ‖x‖p ≤ 1} equals

vd(p) = (2�(1 + 1/p))d

�(1 + d/p)
,

see Pisier (1989, p. 11). Thus, the volume of Ko is 2−dvd(p) and the multivariate
dependency of ξ can be described by

ρ = 1

d! − 1

(
d! (�(1 + 1/p))d

�(1 + d/p)
− 1

)
.

If d = 2, then ρ = αB(α, α) − 1 with B being the Beta-function.

The tail dependency index for ξ = (ξ1, ξ2) with identical marginal distribu-
tions supported by the whole positive half-line is defined as

χ = lim
t→∞ P{ξ2 > t|ξ1 > t} .

An easy argument shows that χ = 2 − ‖(1, 1)‖K if ξ has a simple max-stable
distribution with dependency set K, cf Coles et al. (1999).

It is easy to see that ξ has all independent coordinates if and only if
‖(1, . . . , 1)‖K = d and the completely dependent coordinates if and only if
‖(1, . . . , 1)‖K = 1, cf Takahashi (1994) and Beirlant et al. (2004, p. 266). It is
well known (Beirlant et al. 2004, p. 266) that the pairwise independence of the
coordinates of ξ implies the joint independence. Indeed, the spectral measure
of the set u ∈ S+ such that at least two coordinates of u are positive is less than
the sum of σ {u ∈ S+ : ui > 0, uj > 0} over all i �= j. Each of these summands
vanishes, since

xi + xj −
∫

S+
max

1≤k≤d
(ukxk)σ (du) =

∫
S+

((uixi + u jxj) − (uixi ∨ ujxj))σ (du) = 0

by the pairwise independence, where x has all vanishing coordinates apart from
xi and xj. This leads to the following property of max-zonoids.

Proposition 7 If K is a max-zonoid with all its two-dimensional projections
being unit squares, then K is necessarily the unit cube.
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6 Complete Alternation and Extremal Coefficients

Consider a numerical function f defined on a semigroup S with a commutative
binary operation +. For n ≥ 1 and x1, . . . , xn ∈ S define the following succes-
sive differences

�x1 f (x) = f (x) − f (x + x1) ,

· · ·
�xn · · · �x1 f (x) = �xn−1 · · · �x1 f (x) − �xn−1 · · · �x1 f (x + xn) .

The function f is said to be completely alternating (resp. monotone) if all
these successive difference are non-positive (resp. non-negative), see Berg et
al. (1984, Section 4.6) and Molchanov (2005, Section I.1.2). We will use these
definitions in the following cases: S is the family of closed subsets of R

d with the
union operation, S is R

d or E with coordinatewise minimum or coordinatewise
maximum operation. Then we say shortly that the function is max-completely
alternating or monotone (resp. min-completely or union-completely).

Every cumulative distribution function F is min-completely monotone.
This is easily seen by considering the random set X = {ξ} where ξ has the
distribution F, then noticing that F(x) = P{X ∩ Lx = ∅} = Q(Lx) with Lx

being the complement to x + (−∞, 0)d is the avoiding functional of X, and
finally using the fact that

F(min(x, y)) = P{X ∩ (Lx ∪ Ly) = ∅} = Q(Lx ∪ Ly)

together with the union-complete monotonicity of Q, see Molchanov (2005,
Section 1.6).

Theorem 7 A convex set K ⊂ E is a max-zonoid if and only if h(K, x) is a max-
completely alternating function of x.

Proof It follows from Berg et al. (1984, Proposition 4.6.10) that a function f (x)

on a general semigroup is completely alternating if and only if F(x) = e−t f (x) is
completely monotone for all t > 0. Since (min(x, y))∗ = max(x∗, y∗) for x, y ∈
E, the function x �→ f (x∗) is max-completely alternating on E if and only if
x �→ f (x) is min-completely alternating.

If K is the max-zonoid corresponding to a simple max-stable random vector
with distribution function F(x) = e−h(K,x∗), then Ft is also a cumulative distri-
bution function (and so is min-completely monotone) for each t > 0. Thus,
h(K, x∗) is min-completely alternating, whence h(K, x) is max-completely
alternating.

In the other direction, if h is max-completely alternating, then F(x) =
e−h(K,x∗) is min-completely monotone, whence it is a cumulative distribution
function. The corresponding law is necessarily semi-simple max-stable, so that
K is indeed a max-zonoid. ��
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Theorem 7 can be compared with a similar characterisation of classi-
cal zonoids, where the complete alternation of h(K, x) and monotonicity
of e−h(K,x) are understood with respect to the vector addition on R

d, see
Schneider (1993, p. 194).

The remainder of this section concerns extensions for the support function
defined on a finite subset of E.

Theorem 8 Let M be a finite set in E, which is closed with respect to coordinate-
wise maxima, i.e. u ∨ v ∈ M for all u, v ∈ M. Assume that for each u, v ∈ M, we
have tu ≤ v if and only if u ≤ v and t ≤ 1. Then a non-negative function h on
M can be extended to the support function of a max-zonoid if and only if h is
max-completely alternating on M.

Proof The necessity trivially follows from Theorem 7. To prove the sufficiency
we explicitly construct (following the ideas of Schlather and Tawn (2002)) a
max-stable random vector ξ such that the corresponding norm coincides with
the values of h on the points from M.

For any set A ⊂ M, let ∨A denote the coordinatewise maximum of A. Fur-
thermore, define T(A) = h(∨A)/h(∨M). Since h is max-completely alternat-
ing, T is union-completely alternating on subsets of M. The Choquet theorem
(Molchanov 2005, Theorem I.1.13) implies that a union-completely alternating
function on a discrete set is the capacity functional T(A) = P{X ∩ A �= ∅} of a
random closed set X ⊂ M. Define cu = h(∨M)P{∨X = u} for u ∈ M.

Let ζu, u ∈ M, be the family of i.i.d. unit Fréchet random variables which are
also chosen to be independent of X and let ξ be the coordinatewise maximum
of cuuζu over all u ∈ M. It remains to show that ξ has the required distribution.
Consider an arbitrary point v ∈ M. By the condition on M, tu ≤ v is possible
for some t > 0 if and only if u ≤ v and t ≤ 1. Thus,

P{ξ ≤ v} =
∏
u∈M

P{cuζuu ≤ v} =
∏

u∈M, u≤v

P{cuζu ≤ 1} = exp

⎧⎨
⎩−

∑
u∈M, u≤v

cu

⎫⎬
⎭

= exp {−h(∨M)P{X ∩ {u : u ≤ v} �= ∅}}

= exp {−h(∨M)T({u : u ≤ v})} = exp {−h(v)} . ��

A simple example of set M from Theorem 8 is the smallest set which
contains all basis vectors in R

d and is closed with respect to coordinatewise
maxima. Then M consists of the vertices of the unit cube I

d without the origin
and the values of h on M become the extremal coefficients. The extremal
coefficients θA of a simple max-stable random vector ξ = (ξ1, . . . , ξd) are
defined from the equations

P
{

max
j∈A

ξ j ≤ z
} = (P{ξ1 ≤ z})θA , z > 0 , A ⊂ {1, . . . , d} , (18)
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see Schlather and Tawn (2002, 2003). Since the marginals are unit Fréchet, it
suffices to use Eq. 18 for z = 1 only. If eA = ∑

i∈A ei, then Eq. 14 implies

θA = h(K, eA) = ‖eA‖K .

Every nonempty set A ⊂ {1, . . . , d} can be associated with the unique vertex of
the unit cube I

d \ {0}. The consistency condition for the extremal coefficients
follows directly from Theorem 8 and can be formulated as follows.

Corollary 1 A family of non-negative numbers θA, A ⊂ {1, . . . , d}, is a set of
extremal coefficients for a simple max-stable distribution if and only if θ∅ = 0
and θA is a union-completely alternating function of A.

This consistency result for the extremal coefficients has been formulated
in Schlather and Tawn (2002) as a set of inequalities that, in fact, mean the
complete alternation property of θA.

7 Operations with Dependency Sets

Rescaling For a dependency set K and λ1, . . . , λd > 0 define

λK = {(λ1x1, . . . , λdxd) : x = (x1, . . . , xd) ∈ K} . (19)

Then e−h(λK,x∗) is the cumulative distribution function of λ∗ξ = (ξ1/λ1, . . . ,

ξd/λd).

Projection If ξ ′ denotes the vector composed from the first k-coordinates of
d-dimensional vector ξ with the dependency set K, then

P{ξ ′ ≤ (x1, . . . , xk)} = exp{−‖(x1, . . . , xk, ∞, . . . , ∞)∗‖K}
= exp{−‖(x1, . . . , xk)

∗‖K′ } ,

where K′ is the projection of K onto the subspace spanned by the first k
coordinates in R

d. Thus, taking a sub-vector of ξ corresponds to projecting of
K onto the corresponding coordinate subset. Recall Proposition 7 which says
that if all two-dimensional projections of K are squares, then K is necessarily
the cube.

Proposition 8 If L is the subspace spanned by some coordinate axes in R
d, the

projection of K onto L coincides with K ∩ L.

Proof By definition, K = c E Δη. Then it suffices to note that the projection
of Δη on L equals Δη ∩ L. Indeed every selection of Δη ∩ L can be associated
with the projection of a selection of Δη. ��
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An interesting open question concerns a reconstruction of K from its lower-
dimensional projections. In various forms this question was discussed in Kotz
and Nadarajah (2000, Section 3.5.6) and Joe (1997, Section 4.7).

Cartesian product If K′ and K′′ are two dependency sets of simple max-stable
random vectors ξ ′ and ξ ′′ with dimensions d′ and d′′ respectively, then the
Cartesian product K′ × K′′ is the dependency set corresponding to the max-
stable random vector ξ obtained by concatenating of independent copies of ξ ′
and ξ ′′. Indeed, if x = (x′, x′′), then

P{ξ ≤ x} = exp
{−h

(
K′ × K′′, x

)} = exp
{−h

(
K′, x′) − h

(
K′′, x′′)}

= P
{
ξ ′ ≤ x′} P

{
ξ ′′ ≤ x′′} .

Minkowski sum If K′ and K′′ are dependency sets of two independent max-
stable random vectors ξ ′ and ξ ′′ of dimension d, then the weighted Minkowski
sum K = λK′ + (1 − λ)K′′ with λ ∈ [0, 1] is the dependency set of the max-
stable random vector

ξ = (
λξ ′) ∨ (

(1 − λ)ξ ′′) . (20)

The cumulative distribution functions of ξ ′, ξ ′′ and ξ are related as

Fξ (x) = Fξ ′(x)λFξ ′′(x)(1−λ) .

It is possible to generalise the Minkowski summation scheme for multi-
variate weights. Consider K = λK′ + (1 − λ)K′′ for some λ ∈ [0, 1]d, where
the products of vectors and sets are defined in Eq. 19. Then ‖x‖K =
‖λ∗x‖K′ + ‖(1 − λ)∗x‖K′′ , so that Eq. 20 also holds with the products defined
coordinatewisely.

Example 6 If ξ1 and ξ2 are independent with unit Fréchet distributions and
α1, α2 ∈ [0, 1], then setting λ = (α1, 1 − α2) we obtain the max-stable random
vector

ξ = (α1ξ1 ∨ (1 − α1)ξ2, (1 − α2)ξ1 ∨ α2ξ2)

with the dependency set K = conv{(0, 0), (0, 1), (1, 0), (α1, 1), (1, α2)}. If α1 =
α2 = α, then ξ has the Marshall-Olkin distribution, cf Falk et al. (2004,
Example 4.1.1).

Example 7 (Matrix weights) Let aij, i = 1, . . . , m, j = 1, . . . , d, be a matrix of
positive numbers such that

∑m
i=1 aij = 1 for all j. Furthermore, let ζ1, . . . , ζm be

i.i.d. random variables with �1-distribution. Define ξ = (ξ1, . . . , ξd) by

ξ j = max
1≤i≤m

ζiaij , j = 1, . . . , d ,
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cf Falk et al. (2004, Lemma 4.1.2). Then ξ is simple max-stable with the
corresponding norm

‖x‖K =
m∑

i=1

max
1≤ j≤d

aijxj ,

i.e. its dependency set is K = Δ(a11,...,a1d) + · · · + Δ(am1,...,amd) .

Power sums A power-mean of two convex compact sets K′ and K′′ containing
the origin in their interior is defined to be a convex set K such that

h(K, x)p = λh(K′, x)p + (1 − λ)h(K, x)p , (21)

where λ ∈ [0, 1] and p ≥ 1, see Firey (1967). The power-mean definition is
applicable also if K′ and K′′ satisfy Eq. 10, despite the fact that the origin is
not their interior point. In the plane, the power sum is a dependency set if
K′ and K′′ satisfy Eq. 10. Therefore, the power sum of dependency sets leads
to a new operation with distributions of bivariate max-stable random vectors.
For instance, if K′ is the unit cross-polytope and K′′ is the unit square, then,
for p = 2,

‖x‖K = ((x1 + x2)
2 + (max(x1, x2))

2)1/2 .

Minkowski difference Let K′ and K′′ be two dependency sets. For any λ > 0
define

L = K′ − λK′′ = {x : x + λK′′ ⊂ K′} .

If the spectral measures σ ′ and σ ′′ of K′ and K′′ are such that σ = σ ′ − λσ ′′ is
a non-negative measure, then L is a max-zonoid regardless of the dimension
of the space. The negative logistic distribution from Example 4 illustrates this
construction.

Convex hull and intersection In the space of a dimension d ≥ 3 the convex hull
or intersection of dependency sets do not necessarily remain dependency sets.
However, on the plane this is always the case.

Let K′ and K′′ be the dependency sets of bivariate simple max-stable
random vectors ξ ′ and ξ ′′. Since h(conv(K′ ∪ K′′), x) = h(K′, x) ∨ h(K′′, x),
the dependency set K = conv(K′ ∪ K′′) corresponds to a max-stable random
vector ξ such that

P{ξ ≤ x} = min(P{ξ ′ ≤ x}, P{ξ ′′ ≤ x}) , x ∈ [0, ∞)2 .

The intersection of two planar dependency sets also remains the depen-
dency set and so yields another new operation with distributions of simple
max-stable bivariate random vectors.

Duality If the polar to the dependency set K of ξ is a max-zonoid, then the
corresponding simple max-stable random vector ξo is said to be the dual to ξ .
In the plane, the polar to a max-zonoid is max-zonoid; it is not known when
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it holds in higher dimensions. This duality operation is a new operation with
distributions of bivariate max-stable random vectors, see also Example 1.

8 Infinite Dimensional Case

It is possible to define the dependency set for max-stable stochastic processes
studied in de Haan (1984), Falk et al. (2004), Giné et al. (1990). The spectral
representation (Giné et al. 1990, Proposition 3.2) of a sample continuous
max-stable process ξ(t), t ∈ S, on a compact metric space S with unit Fréchet
marginals yields that

− log P{ξ < f } =
∫

S+
‖g/ f‖∞dσ(g) ,

where S+ is the family of non-negative continuous functions g on S that their
maximum value ‖g‖∞ equals 1, and σ is a finite Borel measure on S+ such that∫

S+ gdσ(g) is the function identically equal to 1.
The corresponding dependency set is the set in the space of finite measures

with the total variation distance, which is the dual space to the family of non-
negative continuous functions. For a continuous function g, define Δg to be the
closed convex hull of the family of atomic measures g(x)δx for x ∈ S. Then the
dependency set is the expectation of cΔη, where c = σ(S+) and η is distributed
according to the normalised σ .
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