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ABSTRACT. The closed convex hull and extreme points are obtained for the starlike
functions of order a and for the convex functions of order a. More generally, this is
determined for functions which are also Mold symmetric. Integral representations are
given for the hulls of these and other families in terms of probability measures on suitable
sets. These results are used to solve extremal problems. For example, the upper bounds are
determined for the coefficients of a function subordinate to or majorized by some function
which is starlike of order a. Also, the lower bound on Re(/(z)/z} is found for each
z (\z\ < 1) where/varies over the convex functions of order a and a > 0.

Introduction. In this paper we determine the closed convex hulls and extreme
points of families of functions which are generalizations of the starlike and
convex mappings. These results allow us to solve a number of extremal problems
over related families of analytic functions.

Let A denote the unit disk {z G C: \z\ < 1) and let A denote the set of
functions analytic in A. Then A is a locally convex linear topological space with
respect to the topology given by uniform convergence on compact subsets of A.
Let S be the subset of A consisting of the functions/ that are univalent in A and
satisfy /(0) = 0 and f'(0) = 1. Let K and Si denote the subfamilies of S of
convex and starlike mappings; that is,/ e K if /(A) is convex, and/ e St if/(A)
is starlike with respect to 0.

The problem of studying the convex hulls and the extreme points of various
families of univalent functions was initiated by three of the authors in [2]. We
shall take advantage of some of the basic results obtained there and generally use
the same notation with the exception that !$F shall now denote the closed convex
hull of a family of functions F. @[$F] shall denote the set of extreme points of
§F. Theorems 2 and 3 in [2] completely determined the sets §K, <£[§#], §S/ and
©[§5/]. The present paper contains generalizations of these results.

We consider the family, denoted St(a), of starlike functions of order a
introduced in [11] by M. S. Robertson. A function/analytic in A belongs to St(a)
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414 L. BRICKMAN ET AL.

if /(O) = O, /'(O) = 1 and Re{z/'(z)//(z)} > a for \z\ < 1 (a < 1). We note
that 5/(0) = St and that if 0 < a < 1 then St(a) C S. Our interest in St(a) is
for all values of a (a < 1).

We find that §[S/(a)] consists of the functions represented as

/(2) = il- (1-Zxz)2-2"MX)
where ¡i varies over the probability measures on the unit circle. Also (£§[S/(a)] is
exactly the set of functions/(z) = z/(l - xz)2'2", \x\ = 1. A similar result is
given for the class K(a) of convex functions of order a, also introduced by
Robertson in [11], We recall that / G K(a) if / is analytic in A, /(0) = 0,
/'(0) = 1 and Re{z/"(z)//'(z) + 1} > a for |z| < 1 (a < 1). The results about
St(a) are contained in a more general theorem we deduce concerning fc-fold
symmetric, starlike functions of order a, Stk(a). A function / analytic in A is
called ¿-fold symmetric (A: = 1,2,3,...) if its power series has the form
m = 2Z-oamk+xz"**x.

A critical step in our presentation is the proof of Theorem 1. This generalizes
Theorem 5 in [2] from positive integers to positive real numbers. This result was
recently obtained independently by D. A. Brannan, J. G. Clunie and W. E.
Kirwan in [1] by a different method. Consequently, they also obtained $[S/(a)]
and e$[S/(a)].

A further consideration in this paper concerns the class K(a,ß) of close-to-
convex functions of order a and type ß introduced by R. J. Libera in [5]. A
function / analytic and normalized in A belongs to K(a, ß) if there exists a
function g in St(ß) so that Re{z/'(z)/g(z)} > a (z E A) (a < 1,0 < 1). We
determine ¡Q[K(a,ß)] in the form of an integral over the product of two unit
circles of a suitable kernel function. In the special case a = \ this further
simplifies and we then can precisely find the set <S§[K(\,ß)].

We apply these initial results to the solution of a number of extremal problems.
For example, we find coefficient estimates for the power series of a function that
is either majorized by a subordinate to a function from St(a).

If / and g are analytic in A then / is majorized by g if |/(z)| < |g(z)| for
|z| < 1. This relation implies the existence of an analytic function (p so that
|<|>(z)| < 1 and/(z) = <p(z)g(z) for |z| < 1. This concept has been studied by
several authors. In particular, we point out the following result: If f(z)
= 2^=1 anz" is majorized by some function in St, then \an\ < n (n = 1,2,...)
[7]. We obtain the analogous result for St(d) for each a < 1.

We recall the definition of subordination between two functions / and g
analytic in A. Namely,/is subordinate to g if/(0) = g(0) and if there exists an
analytic function <i>(z) so that <f>(0) = 0, |<i>(z)| < 1 and f(z) = g(<p(z)) for
|z| < 1. In the case g is univalent in A then/is subordinate to g is equivalent to
/(0) = g(0) and /(A) C g(A). This relation is denoted / < g. A result of W.
Rogosinski [13, p. 72] asserts that if f(z) = 2ü°-i anz" ,s subordinate to some
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CONVEX HULLS AND EXTREME POINTS 415

function in St then \a„ \ < « (n = 1,2,... ). We generalize this result to St (a) for
a > £ and o < 0. Other coefficient estimates are obtained for functions majo-
rized or subordinate to a &-fold symmetric function in St.

Our last consideration is the question of determining the set {f(z)/z} where z
is fixed in A and / varies in K(a). We completely find this variability region if
o > i. Also we determine min/eX(<r)min|2|=,.Re{/(z)/z} for each r (0 < r < 1)
and a > 0. As a consequence it follows that Re{f(z)/z} >(1 - 22a_1)/(l - 2a)
(z G A), if / G K(a) and a > 0. This generalizes the result corresponding to the
case a = 0 proved by A. Marx [9] and E. Strohhäker [14]; namely, that iffGK
then Rt{ f(z)/z} > j (z G A). Some of the problems discussed in this paper were
considered earlier by the second author in his doctoral thesis. His thesis contains
special cases of some of the results presented here.

1. A product theorem and a geometric mean theorem for the family Dp.

Lemma 1. Let \u\ < 1, |v| < l,p > 0, q > 0. Then

(1 - u)-"(l - vT"

- §5jfi$f ""'(1 - ,)?"[1 -{tu + (1 - t)r"dt-
Proof. The identity

(2)     <• - *>-* - m$h>)£ '"<' - **'<' - ">"*
where c > b > 0 and zi[l, +oo), is well known in the theory of the hyper-
geometric function [10, page 206]. From \u\ < 1, \v\ < 1, it follows that
(u - v)/(l -v)<$. [l,+oo). Indeed 1 - (u - v)t/(l - v) = 0 =* tu + (1 - t)v
= 1 => r £ [0,1]. Hence letting z = (u - v)/(l — v), b — p, c = p + q, we
obtain

V      l-v) T(p)T(q)Jo'     U     "     V     l-v1)      M'

U-»/      r(p)r(9)Jo'   *'   v[       i-v       J    dt
The required result now follows upon multiplication by (1 - v)~p~q. We remark
that a self-contained proof can be obtained by expanding both sides of (1) in a
power series in u and v and comparing coefficients.

Theorem 1. Let X be the unit circle, <P the set of probability measures on X, and
% (p > 0) the class of functions f on A given by

<3) '<->-/,Ä <>s^
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416 L. BRICKMAN ET AL.

Then

(4) VV^   (p>0,<7>0).

Proof. As explained in [2], it is sufficient to show that if | x\ — 1, [ v| = 1, then
the function (1 - xz)~'(\ - yz)'1 belongs to 9^. By Lemma 1 we have the
equation

(1 - «Hi -yz)'" = f^rfjo ""'(I - O'-'Il - ciDzY^dt,
where z G A and c(t) = tx + (1 - t)y. Since (T(p + q)/T(p)T(q))^-x (1 - f)'"1 dt
is a probability measure on [0,1], we now need only prove that [1 - c(t)zYp~9
belongs to 9p+a for each / in [0,1]. For t — 0 or t = 1 this is obvious while for
0 < r < 1 Poisson's integral formula gives

[i - cwtf" = ¿X2' *[£r|>]0 - Ar",<"-

Corollary l.IfO<p<q, then 9P C 9,.

Proof. The above theorem together with the identity

1   ri*        dBf2'        dV ,        ..
Jo   (l-^z)^ = 1    (ZEA)2wJo   (l-e'«z)'

implies the result.
Remarks. The identity (2) used to prove Lemma 1 leads one to define an

operator Tcb : A -» A by

T*f{z)-m\V-b)£tb~i{]-****&>* <<> » >°><
In terms of power series

0 I   c(c + 1)' • -(c + « — 1)

It is not difficult to show that Tcb is a linear homeomorphism of A onto itself and
that 7^,(9,.) = 94. Specializing b = 1, c = p > 1, we obtain a neat characteri-
zation of the class Dp :

TpXf(z) = (p - l)/0' (1 - O^/C*)«*   (p > 1).

Hence/ G 9, (p > 1) »/(0) = 1 and Re{(p - l)/0' (1 - /)'~7(te)<*} > \.
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CONVEX HULLS AND EXTREME POINTS 417

Theorem 2. Let X be the unit circle, <P the set of probability measures on X, and
p > 0. Then given u S £P 3 v G <P such that

(5) exp{£ -p log(l - xz)dpb)} -¿0 - x*)-"«*(*).

Proof. The integral fx -p log(l - xz)</p(.x) can be approximated locally
uniformly in A by sums 2« ""WjogO - x„z) where ft« > 0, 2» /*„ = •» an^
|jcw| = 1. (See Theorem 1 of [2].) Consequently exp{fx —p log(l - xz)d¡i(x)} is
approximated by the products IL 0 - x„z)~m. By Theorem 1, such a product
belongs to 9p. Since 9p is closed in A our theorem follows.

2. The convex hulls and extreme points of Stk(a) and K(a).

Theorem 3. Let X be the unit circle {z: \z\ = 1}, ÍP the set of probability measures
on X, a < 1, A; any positive integer, and 9 the set of functions f on A defined by

(6) fp(z) = fx {x _ J^^duix)   (p6iP).
77re« 9 = ¡çStk(a), the map u -> / ¿s one-to-one, and the extreme points ofÍQStk(a)
are precisely the functions z -» z/(l — x2*)(2-2a)/*, |jc| = 1.

Proof. Suppose that / G Stk(a) and f(z) = z + ö*+i2*+' + a2*+i22*+' + • • •.
We let

g(z) = z(l + aMz + att+1r2 + ••■)*•

Then g(zk) = /*(*) and zf'(z)/f(z) = ***'(**)/«?(**)• Hence Re{zg'(2)/g(z)}
> a, and this, by a familiar calculation involving Herglotz's formula, is equiva-
lent to

g(z) = z exp|JY -(2 - 2a)log(l - xz)d?ix)j

for some u e £P. Therefore

/*(*) = r*cxp|¿ -(2 - 2a)log(l - «*)dW*)},

f(z) - 2 expj^ -(2 - 2a)/* log(l - «*)«W}.

By means of Theorem 2 we conclude that/ e 9. Thus !§Stk (a) C 9. Conversely,
since  each   kernel   function   z -* z/(l - Xzky2-2a)/k   belongs   to   Stk(a),   9
C §Stk(a).

If Jt, - 4 for u, G <P, P2 G <P, then

/•        rf<i,(x)        = (        dfr(x)
Jx(l- xzY2-^"      Jx(\- xzfi-**'*
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418 L. BRICKMAN ET AL.

It follows that JV x"dfix(x) — Sx xnd¡í2(x) (n = 0,1,2,...), so ft, = j^. Hence
the map (t -> j£ is one-to-one, and the assertion about extreme points follows
from Theorem 1 of [2].

Remarks. (1) We shall emphasize the special case of Theorem 3 corresponding
to k = 1. In particular, we mention that ©§[Si(a)] consists of the functions
f(x) = z/(l - xz)2-2°, |jc| = 1. The case of Theorem 3 corresponding to a = 0
shows that ©$[&*] consists of the functions/(z) = z/(l - xzk)2lk, \x\ — I.

(2) It is a known result that each function in K is starlike of order £ (see [9] and
[14]). Also, a slight modification of an argument of R. M. Robinson (see [12, p.
32]) shows that if/is starlike of order \ then Re{/(z)/z} > \ (z G A). If we let
R denote the set of functions / analytic in A so that /(0) = 0, /'(0) = 1 and
Re{/(z)/z} > j, then these relations may be expressed K C St(\) C R, the
inequalities being easy to show and generally known. From this point of view it
is interesting to note that, with k = 1 and a = i, Theorem 3 asserts that
§K = §{St(\/2)] = £.

Theorem 4. Let X be the unit circle, <P the set of probability measures on X,
a < 1, and 9 the set of functions jf, on A defined by

W        *« = L W=Wx [(T^pr - i] 4W (m e cP)

if a ^ j, and

O') flí(z)=¡x-\\og(\-xz)dpix)   OtGSP)

if a = \. Then 9 = §K(a), the map fi -* jf is one-to-one, and the extreme points
of¡QK(a) are precisely the kernel functions in (7) if a ¥^ |, and in (T) if a = $.

Proof. Let A0 = {/ G A:f(0) = 0}. Then the operator T defined by Tf(z)
= fo f(w)/wdw is a linear homeomorphism of /40 onto itself with TSt(a)
= K(a). All the assertions of Theorem 4 follow from this and Theorem 3 with
*- 1.

Theorems. Let X2 be the torus {(x,y):\x\ = l,|v| = 1}, £P the set ofprobability
measures on X2, a < 1, ß < 1, awd 9 f«t? c/ass o/ functions /, o» A defined by

(8) 1 + (1 - 2a)xz
*fr)"¿(l-»)(l-S^*^   ÛieSP)-

£«£« 9 = &K'(a,ß), where K'(a,ß) is the set of derivatives of functions belonging
toK(a,ß).

Proof.   Let / G K(a,ß).   Then,   by   definition,   3 g G St(ß)   such   that
Re zf'(z)/g(z) > a for z G A. It follows that
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CONVEX HULLS AND EXTREME POINTS 419

zfWiiz) = fx l + if~£)xt+iW  0 e A)
for some probability measure u, on the unit circle A". By Theorem 3, there is a
measure ^ such that

«« -íx7Tzb^^y)  (2GA)-(l-y2>

Hence

where u = u, X p?. Thus/' G 9 and therefore $K'(a,ß) C 9. Conversely it is
clear that each kernel function in (8) belongs to K'(a,ß). Hence 9 C §K'(a,ß).

Remarks. (1) We know (see [2, Theorem 1]) that the extreme points of
¡§K'(a,ß) are contained among the above kernel functions but we have not
determined which kernel functions are extreme points. Of course Theorem 5 can
nevertheless be quite useful in solving certain linear extremal problems over the
class K(a,ß).

(2) By means of our Theorem 1 we observe that each kernel function in (8)
belongs to the class Q defined by

Hence 9 C 6?. It appears, however, that 9 ¥= <3 in general. But if a = \,
reasoning based on Theorem 1 yields 9 = <3 and leads to a precise theorem
concerning §K(\,ß) and <&§K(\,ß).

3. Coefficient estimates for functions majorized by or subordinate to functions
in St (a) or Stk. In this section we take advantage of Theorem 3 to solve extremal
problems. We present our results for the case k = 1, a arbitrary and the case
a = 0, k arbitrary, that is, for starlike functions of order a and for £-fold
symmetric starlike functions Stk = Stk(0). We specifically use the precise deter-
mination of the sets @§[Si(a)] and ©^[S/i].

The extremal problems considered are all concerned with maximizing a
continuous convex functional over a compact subfamily 9 of A. Recall that a real
valued functional J is convex if

Htf+ (1 - t)g) <//(/) + (1 - t)J(g)   (0 < / < 1).

For such functionals we have max/e97(/) = tri&xfee^9XJ(f). In many cases J
is either the real part of or the modulus of a complex valued continuous linear
functional.
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420 L. BRICKMAN ET AL

As an illustration of this approach we deduce the result of Robertson [11]: if
f(z) = z + 2n°-2 a„z" is in St (a), then

■   ,     (2-2a)(3-2a)---(«-2a)
Kl <-,   _ )s,-   (" = 2,3,...).

Namely, we need only consider the set E§[5/(a)] which consists of the functions
f(z) = z/(\ - xz)2_2a, \x\ = 1, according to Theorem 3. For such functions
clearly

,(2-2a)(3-2a)---(«-2tv)kl-(—i)j-•
Another illustration depends upon the fact that if /is analytic in A,p > 1, and

0 < r < 1, then the functional

11/11 = {/02'l/(«íí)lP^},/P

is convex. If/W denotes the nth derivative of /(« = 0,1,2,...) and if 9 is any
compact subset of A and p > 1, then maxyeç, H/M || = max/6e$[9]||/M||. This
was pointed out in [8]. If we apply this result and use the fact, given by Theorem
3, that @§[S/(a)] is the set of functions/(z) = z/(l - xz)2'2", \x\ = I, we find
that

f2' \f(>.)(re»)\pd8 < fo2' \W(re»Vd9
for each / in St(a) (n = 0,1,2,...), 0 < r < 1, p > 1. Here we can take
/0(z) = z/(l - z)2_2a, because the functional ||/W|| is constant on @$[S/(a)]-

We generalize Robertson's coefficient inequality to functions subordinate to a
fixed arbitrary function in St (a). The initial step in the argument depends upon
a fact proved in [8]. Suppose that ^ is a compact subset of A and that 9 is the
class of functions subordinate to some function in <ß. Let 90 be the subset of 9
of functions subordinate to some function in 6®[^]. If J is a complex valued,
continuous, linear functional on A, then max/e9|y(/)| = maXf69J./(/)|.

A similar result was obtained in [8] when the relation between the families 9
and <3 is given by majorization. This information and the result of Theorem 3
will be used to find coefficient bounds for functions majorized by functions in
St (a) or in Stk. The further details of these arguments are similar to those
presented in [7] for majorization by functions in St or in K. The central idea is a
method introduced by E. Landau (see [4, p. 21]), which has been effectively used
by several authors to solve extremal problems for the family of bounded, analytic
functions in A. The sharpness of our results about majorization depends on a
result of 5. Kakeya ([3]; also see [4, p. 20]) as used by Landau. This is the
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CONVEX HULLS AND EXTREME POINTS 421

Theorem. // a\, > dx > d2 > • • • > d„ > 0, then the polynomial q(z) = do
+ dxz + d2z2 + • • • + dnz" does not vanish for \z\ < 1.

Our proof of Theorem 7 depends on a result of W. Rogosinski (see [13, p. 64]),
which is convenient to state now. Suppose that/(z) = 2¡¡°-i a„z" is subordinate
to F(z) — 2£°-i ¿n2" m A. If> for 1 < * < «, the numbers Ak are nonnegative,
nonincreasing, and convex,then

(9) M<AX    (k= 1,2,...,n).

If, for 1 < k < n, the numbers Ak are nonnegative, nondecreasing, and convex,
then

00) \aH\<An.

Theorem 6. Let f(z) = 2¡¡li anz" be analytic in A and be majorized by some
function in St(a). If a > 0, then

k|<l+[l-aP+[^-^2-")]2

+ ,., + r-(l-a)(2-;)_.;)(«-l-a)J    (n=12>      }
01)

If a < 0, then \an\ < (2 - 2a)(3 - 2a) • • • (n - 2a)/(n - 1)\ (n = 1,2,... ). All
inequalities are sharp.

Proof. Because of the results mentioned from [8] it suffices to assume that/is
majorized by some function in ©$[5/(a)]. According to Theorem 3 we may thus
assume that f(z) = ¿»(2)2/(1 - xz)2'2*, \x\ — 1 and <f> is analytic in A with
\fa{z)\ < 1. Without loss of generality we may assume x = 1.

Using Cauchy's formula for the coefficients of f\z) we have

JLr
2mJ\i\-r ^SL    [^dz,      where0<r<l.

I\z\-r z"+1 (1 - zf

If we expand 2/(1 - xz)2'2" in a power series and integrate term by term, the
"tail" of the series integrates to zero leaving

1   /■     <b(z)f      2-2a       (2-2a)(3-2a)_,
a» - 2Vih-r IT}} + -ÎT2 +-2!-Z

(2-2a)(3-2a)---(«-2a)      }
(n-l)\ z    jaz-

Let bk = (2- 2a)(3 - 2a) •••(*+ 1 - 2a)/*! (* = 1,2,... ). It follows from
Cauchy's theorem that a„ — (l/2m) J[t!_,(<b(z)/z")p(z)dz, wherep is any func-
tion analytic in A with a power series which begins
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422 L. BRICKMAN ET AL.

(12) p(z) = 1 + bxz + b2z2 + • • • + bH_xz-x + b*nz" + b*+xz«*x + ■■-.

The functiong(z) = 1/(1 - z)2-2a has the power seriesg(z) = 1 + 2f-i bkzk.
If we let «(z) = y/gjzj = 1/(1 - z)1-" = 1 + 2?-i dkzk and ?(z) = 1 + dxz +
i/2z2 + • •. + d„-Xz"~x then as h2(z) = g(z) it follows that q2(z) is a polynomial
of degree 2(n - 1) with the form of p(z) described by (12). Therefore,

(13) *-¿JLÍk»*

- ¿rO + M.I2''2 + 141V + ••• + K-i l2^-»}.
Since this inequality holds for each r (0 < r < 1), we conclude that

|aJ<ï + |4|2 + M2|2 + ... + |4,_,|2

= 1+[1_a]2+[O^Í2^)]2 + ...

r(l-a)(2-a)-..(/i-l-q)-|2

This proves the inequality (11).
To show that it is sharp we need to take advantage of the assumption a > 0.

If a > 0 then the sequence {d„} is nonnegative and strictly decreasing since
da - 4.+I = ((1 - a)(2 -(*)•••(«- a)/(n + l)!)a. Due to the result of Kakeya
the polynomial q(z) does not vanish for |z| < 1. Therefore, $(z)
= zn~xq(\/z)/q(z) is analytic for |z| < 1. If \z\ = 1, then \<P(z)\ = 1 and thus
|$(z)| < 1 for |z| < 1. With this function in the place of </>(z), equation (13)
implies that

fl-=¿x,-^^)&=¿x,-,Mí>(2)<fe

- ¿Jo'' l^')!2^ = í + l^.l2 + I4I2 + • • • + k-.l2-
As this is the «th coefficient of the function f(z) — <P(z)z/(\ - z)2-2" our
sharpness assertion is proved for a > 0. For a = 0 inequality (10) is the same
as \a„\ < n and this is sharp as illustrated by the function f(z) = F(z) =
z/(\-z)2.

Next we consider the case a < 0 and again note that we may assume that
|/(z)| < \F(z)\ where F(z) = z/(l - z)2"2". Set g(z) = (1 - z^Hz) = b,z
+ b2z2 H-. Then |g(z)| < |z/(l - z)2|, that is, g is majorized by the Koebe
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CONVEX HULLS AND EXTREME POINTS 423

function k(z) = z/(l - z)2. As k G St the case a = 0 of this theorem implies
that \b„\ < « (« = 1,2,... ). The coefficients of the power series for (1 — z)2"
are all positive since a < 0 and thus the nth coefficient of / is maximal when
bk = kfoT k = 1, 2,..., «. That is \a„\ < A„ where F(z) = z/(l - 2)2"20 = 2
+ 2r=-2 A„z". This proves the inequality

\a„\ < (2 - 2a)(3 - 2a) • • • (« - 2a)/(n - 1)!,

and it is sharp if f(z) = F(z) = 2/(1 - 2)2-2a.

Theorem 7. Let f(z) = 2^i a„z" be analytic in A and be subordinate to some
function in St (a). If a < 0 then

(14,             U I < (2-2a)(3 -2a)---(«-2a)       ,   _ .
U4; Ia»! =-(^Tfji-      («=1,2,...).

// î < a < 1 then

(15) kl<l       («=1,2,...).

Proof. Since the family St (a) is compact the arguments given in [8] show that
in order to maximize \an\ we need only consider the functions / which are
subordinate to a function in Qr$[Sf(a)]. Therefore, by Theorem 3,/has the form
f(z) = fa(z)/[l - x^z)]2-2", where \x\ = 1, d> is analytic for \z\ < 1, |¿<2)| < 1,
and ¿>(0) = 0. The function <b(z)/x has the same properties as <¡> and a function
/ and xf have «th coefficients with the same modulus. This implies that we may
assume that x = 1, that is, that/is subordinate to F(z) = z/(l - z)2'2".

If we set F(z) = 2f-i A„z" then

^, = 1   and   ^ = (2-«)(3-2a).--£^

for n = 2, 3,_The sequence {An} consists of nonnegative real numbers. Since

A2 - Ax = 1 - 2a   and

An+X - An   = ((2 - 2a)(3 - 2a) • • • <l^a))[l - 2a]
V «!      '

for « > 2, we see that {A„} is nondecreasing fox a <\ and nonincreasing for
a > \. Also, Ax - 2A2 + A} = a(2a - 1) and

A. - 2An+x + An+2 = 2(2-2a)(3-2a)...(«-2a)[a(2a _        fM „     ^
(« + 1)!

Thus, {A„} is convex if a < 0 or if a > ^.
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A direct application of the result of Rogosinski given by inequalities (9) and
(10) concludes the proof. The sharpness of inequality (14) is exhibited by
f(z) = F(z) = z/(l - z)2-2a. The sharpness of inequality (15) is shown by
f(z) = F(z") = z"/(l - z")2"2". We cannot prove what result holds when 0 < a
< i although it appears likely that inequality (14) also holds in this range of a.

Theorem 8. Let f(z) = XT-i anz" tie analytic in A and be majorized by some
function in Stk(0) = Stk. Then

\amk+J\ < 1 +

+... + r(iA)(iA+D---(iA + m-i)-j2

(/- \,2,...,k;m = 0,1,2,...).

This inequality is sharp.

Proof. The proof is similar to that given for Theorem 6. We may assume that
the majorant is in Gf^S/^O)] and hence has the form F(z) = z/(l - xzk)2,k
(\x\ = 1), according to Theorem 3. As before we let jc = 1.

If we set g(z) = 1/(1 -zk)2'k, h(z) = y/g(z) = 1/(1 - zk)x'k = 1 +
2"_i d^z"* and q(z) = 1 + dkzk + t/^z2* + • • • + d^z"*, then the argument
given in the proof of Theorem 6 shows that

Therefore,

*mk+j\

= ^¿R O + I4IV* + \d»\2r" + • • • + IdUpr«}.
Since this inequality holds for each r (0 < r < 1) we conclude that

l<w,-l< i + kr + ky2 + -" + l4*r
12       r(Mb\(\lL- x in¡= 1 +

[

[iT+pi£iOj
(l//c)(l/A:+ 1) - • ■ (1/ifc + m — 1)'

m!

This proves the required inequality.
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To prove that the result is sharp, recall that the case * = 1 was already done
in Theorem 6. If * > 2 then 1 > dk> d2k> • ■ • > dmk> 0 &nd so by Kak-
eya's theorem q(z) does not vanish for |z| < 1. The function

$(2) = z"*^q(l/z)/q(z)

is analytic for \z\ < 1, and since |<p(2)| = 1 for \z\ = 1, we conclude that
\$(z)\ < 1 for \z\ < 1. If we let/(2) = <S>(z)[z/(l - zk)2'k] then

a^>= e¡L-r^ji2udz - ¿i,-. MD?(*)£fe

" ¿X* M**>l2<" = i + Kl2 + fel2 + • • • + k*l2-

Theorem 9. Let f(z) = 2^-i a„z" be analytic in A and be subordinate to some
function in Stk(0). Then, \a„\ < l for n = l, 2,... and for k > 2.

Proof. We may assume that/is subordinate to a function in ©§[S^(0)], that
is,/is subordinate to a function F(z) = z/(l — xzk)2/k, where |x| = l. Again, it
is easy to see that we may assume that x = \. But, for the functions/subordinate
to F(z) = 2/(1 - zk)2,k it has already been shown by W. Rogosinski [13, p. 67]
that \a„\ < 1 (n = 1,2,... ). This depends on the fact that the nonzero coeffi-
cients of F(z) are nonnegative, nonincreasing and convex. The sharpness of this
inequality is exhibited by the function f(z) = F(z") = 2n/(l — znk)2/k.

4. Majorants for f(z)/z where/is in K(a). We shall take advantage of Theorem
4 to solve some extremal problems over K(a). As in the previous section we use
the exact knowledge of 6$[/T(a)]. Here we shall be interested only in the case
a > 0

Theorem 10. /// G K(a) and 0 < a < 1, a ^ \, then

■K^t-^srO-o + m»")-
If a = \, then Re{f(z)/z} > (l/|^|)log(l + \z\). This inequality is sharp for each
a and each z.

Proof. The case a = 0 is found in [9] and [14] and follows from Re{/(2)/2}
> 2 (1*1 < 1) an£l Lindelöf's principle for subordination. In the range 0 < a
< 1 we reduce the problem to one involving only the extreme points as follows:
On the disc {\z\ < r} the minimum value of Re(/(2)/2) over the family K(a) is
attained at some point z0. The continuous convex functional Re(/(20)/20} is now
minimized over the extreme points. Restricting our attention to extreme points,
according to Theorem 4 we may assume that
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f(z)=fol(l-w)-(2-^dw.

Since 0 < 2 - 2a < 2 we may put b = 2 - 2a and c = 2 in the identity (2)
discussed in the proof of Lemma 1. This gives

(Í - z)-Q-2a) =-—-f f'-^n - ri2°-,i'l - tzY2dtu    2; r(2-2a)r(2«)Jo '     *'    "     U    ,z'   M-

Therefore

and

f(¿] = -EÖ]- /-i  .j,,,   _ )2a.x    z
nz>     T(2-2a)T(2a)Jo '     U     n      1 - tzM

fjz) 1X2) f I ,,-w, _ rt2«-._L_
2       r(2-2o)r(2a)Jo v'     l)      l-tz dt.

From the last equation it is clear that min {Re/(z)/z: |z| < r < 1} occurs when
z = -r. (Note that Re 1/(1 - tz) > 1/(1 + tr) for every t G [0,1] and every z
with |z| < r.)

For a # i,/(*)/* = (1/(1 - 2a))(l/z)[(l - z)2""1 - 1]. Hence

mm ^^fr^Rö"^^-
For a = |,/(z)=-log(l-z) and min Re{/(z)/z: |z| < r) =(l/|z|)log(l + |z|).
Since the sharpness of the inequalities is evident, this completes the proof of the
theorem.

Corollary. /// G K(a) and 0 < a < 1, a ¥= \, then

Re{/(z)/z} >(1 - 22«-')/(l - 2a)      for \z\ < 1.

If a = i then Re{/(z)/z} > log 2 for \z\ < 1.

Remark. The result Re{/(z)/z} > 1/(1 + |z|) for / in K = K(0) is also a
consequence of what is directly developed in this paper. Specifically, this case of
Theorem 4 implies that f(z)/z = fx (1/(1 - xz))du(x) and hence

**fJr = fxRe rh^ * L îTHMx) - îTûi > I
The original proof given in [2] for determining !§K depended on knowing the
result Re{/(z)/z} > \ for/in K, but that is not needed and the arguments here
are independent of that fact.

The following result was proved by R. J. Libera in [6].
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Lemma 2. Let f be analytic and univalent for \z\ < l,/(0) ■» 0, and letf\A) be
convex. Ifg(z) — (1/z) f0' f(w)dw then g is also univalent and convex for \z\ < 1.

Lemma 3. Let K(z,a) = (1 - 2a)_1[(l - zf^ - 1], a * |. Let K(z,\)
= log(l/(l - z)).If 1 > a > \, then K(z,a) /z is univalent and convex for\z\ < 1.

Proof. We have K(z,a)/z - 1 = (1/z)So (K'(w,a) - l)dw. Since K'(z,a)
= 1/(1 - z)2'2", a simple computation shows that K'(w,a) — 1 is a convex map
for 1 > a > |. (Note that (1 - z)~p is a convex map for 0 < p < 1.) Hence, by
Lemma 2, K(z,a)/z - 1 is univalent and convex, and consequently so is
K(z,a)/z.

Theorem 11. Iff(z) G K(a) and\<a<l, thenf(z)/z < K(z,a)/z in A.

Proof. We know by Theorem 4 that

/(r) * Sx T=2a- iß - XZ)*"1 - 1]*W       if a * *

and

/(z) * Sx ~\log(1 " xz)d^x)      for a = *'

Hence f(z)/z = fx (K(xz,a)/xz)dp(x). By Lemma 3, for \ < a < 1, it follows
that

z z ' '

Remarks. We remark that Theorem 10 (for | < a < 1) follows from this
result. We also note that Theorem 10 can be obtained when \ < a < 1 by
appropriately integrating the lower bound on Re f'(z) for any f\z) in K(a). One
uses the known fact that f'(z) < 1/(1 - z)2'2" to obtain the lower bound on
Re/'(2). This approach is independent of knowledge of the extreme points of
K(a).

We conjecture that Theorem 11 holds for all a, 0 < a < 1. This would be a
consequence of the expected result that K(z,a)/z is univalent and convex for
\z\ < 1 for 0 < a < i. Writing H(z,a) = K(z,a)/z this is equivalent to showing
that zH'(z, a) is univalent and starlike. We can show by lengthy computation that
zH'(z,a) is univalent for |r| < 1, which, incidentally, affords another proof of
Theorem 10.
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