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Abstract

The Hough transform is a standard technique for finding features such
as lines in images. Typically edgels or other features are mapped into
a partitioned parameter or Hough space as individual votes. The tar-
get image features are detected as peaks in the Hough space. In this
paper we consider not just the peaks but the mapping of the entire
shape boundary from image space to the Hough parameter space. We
analyse this mapping and illustrate correspondences between features
in Hough space and image space. Using this knowledge we present
an algorithm to construct convex hulls of arbitrary 2D shapes with
smooth and polygonal boundaries as well as isolated point sets. We
also demonstrate its extension to the 3D case. We then show how this
mapping changes as we move the origin in image space. The origin
can be considered as a vantage point from which to view the object
and the occluding contour can be extracted easily from Hough space as
those points where R = 0. We demonstrate the potential for tracking
of transitions in the mapping to be used to construct an aspect graph
of arbitrary 2D and 3D shapes.

1 Introduction

The Hough transform [2] is a standard technique in computer vision having many
applications for finding lines, circles and other features in images [3]. Typically
edgels or other features are mapped into a partitioned parameter or Hough space
as individual votes. The target image features are detected as peaks in the Hough
space.

One particular variant of the Hough transform for line detection is shown in
figure 1. This uses the Rf parameterization and makes use of edgel orientation to
reduce computation [4]. For each edgel a perpendicular is dropped from the origin
in image space to a line passing through the edgel and with the same orientation.
This is then mapped to a space with two parameters R and @ where R is the
length of perpendicular and @ is the angle it makes with the zaxis. As orientation
information is avialable then each edgel maps to a single point in Hough space. If
the edgels lie on a line then all will map to a common point in the Hough space

1 This work was funded by EPSRC grant number GR/J44018
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Figure 1: On the left is a set of edgels in image space with the same orientation
and aligned such that they lie of the same line. On the right we can see that they
map to a single point in Hough space and so the line they create can be detected
as a peak at this point.

and this peak in the Hough space or accumulator signifies a linear feature in image
space. If no orientation information is available then each edge point maps to a
sine wave in Hough space corresponding to the set of all lines passing through
that point. The intersection of these sine waves signifies the parameters of the line
that passes through all the points. In this paper we consider not just the peaks
in Hough space but the mapping of a whole object boundary from image space to
R, 8 space. The layout of the paper is as follows:

Firstly we examine this mapping and find that for a smooth object boundary
this is a continuous curve. We outline what features of the Hough space curve
relate to features of the object boundary. We then show how the Hough transform
can be used to generate the convex hull of an object if a stationary origin is used
in image space. We also show how the problem of discontinuity can be overcome
and demonstrate the extension to 3D.

We then consider a dynamic situation where the origin is allowed to move
anywhere. We show that this can be used to extract the apparent contour and
tracking of features in Hough space could be the basis for an algorithm to compute
aspect graphs for arbitrary 2D and 3D shapes.

2 The R,0 mapping of the shape boundary

In the Hough transform algorithm described above individual edgels are mapped
into the Hough space and the peaks detected. Those edgels not contributing to
peaks in the accumulator are ignored. We will now consider what happens to these
other edgels and what this can tell us about the geometry of the curve. Consider
the smooth image curve in figure 2a. We can sample the boundary of this curve
and at each point determine the orientation of the tangent to the curve. As we
traverse the curve in image space a curve is also traced out in R, 6 space. The
mapping to Hough space for our smooth curve is given in figure 2b. This curve is
remarkably structured and we will now describe how its geometric features relate
to the image space curve.

The main features of the curve are self intersections, cusps, maxima, minima
and inflexions. The self intersections of the R,# curve at C' and F' in figure 2b
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Figure 2a shows a smooth image curve. Figure 2b shows the mapping of the image
curve to R, or Hough space. Features on the Hough space curve have been labeled
to show corresponding features in image space depicted in figures 2a and c (see text).
Figure 2d shows the evolute of the image curve. The relationship between the evolute
(dotted line) and origin (astrix) determine the type of turning points that exist on the
Hough space curve (see text).

Figure 2: The mapping from image space to R, # space

are due to two points on the curve boundary at C' and F' in figure 2a mapping
to the same point in Hough space. This signifies where there is a bi-tangent line
in the image 7.e. a line tangent to the boundary at two distinct points. The loop
formed by the self intersection corresponds in this case to the indentation in the
curve boundary. The cusps within this loop at D and E in figure 2b correspond
to points of inflexion at D and E on the image space curve in figure 2a. The
maxima (B, G, 1), minima (H) and inflexion (A) points on the Hough space curve
in figure 2a all correspond to points on the shape boundary where the normal at
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that point passes through the origin as shown in figure 2c¢. It is a minima if the
distance along the the normal measured from the shape boundary to the origin
is less than the radius of curvature of the curve at that point. It is a maxima if
the normal length is greater than the radius of curvature and it is an inflexion if
they are equal. The locus of centres of curvature defines a cusped curve called the
evolute which is depicted over the shape boundary as a dotted line in figure 2d.
So the minima correspond to an origin within the evolute, maxima have an origin
beyond the evolute and inflexions occur when the origin is on the evolute.

3 The R,6 mapping and convex hull

The relationship between the R, # mapping and the convex hull is as follows. If we
take for every value of f that portion of the Hough space curve that has maximum
R i.e. the upper envelope of the R, @ space graph. Then the corresponding points
in image space are those points on the convex hull.

3.1 Dealing with discontinuity

It would appear at first sight that this might only work for smooth curves because
if the derivative of the boundary 1s discontinuous then there is a break in the Hough
space curve. It is however a simple matter to join up these gaps. We remember
that, for the original Hough transform, if there is no orientation information then
points in image space map to sine waves in Hough space. At a corner we merely join
the end of one edge to the beginning of the next with the appropriate sine wave.
In fact this idea can be taken to its extreme if we wish to construct the convex
hull of sets of isolated points. In figure Ja we see a point set in image space. Each
of these points maps to a sine wave in Hough space which are labeled in figure 3b.
The convex hull consists of all those points for which their corresponding Hough
space sine wave is maximal in R for any particular value of #. Further more their
ordering around the hull is given simply by their adjacency in Hough space. Only
sine waves 1,2 and 3 have a maximal R and are on the convex hull. Sine wave 5
never approaches a maximal position but wave 4 comes close at the intersection
of wave 1 and 2. This is because point 4 in image space is nearly collinear with
points 1 and 2. In figure 4 we see the convex hull of 7870 i1solated points randomly
distributed within a unit circle.

3.2 Extending to 3D hulls

Extending the approach to 3D is straight forward. We now drop a perpendicular
to a tangent plane rather than a tangent line. The parameters are the distance R
of the plane from the origin and 6, and 2 which are the azimuth and elevation of
the perpendicular. The Hough space now has three dimensions rather than two.
(In the general case we drop the perpendicular to a hyperplane and the Hough
space becomes n-dimensional.) Figure 5 shows a 3D point set with the points on
the convex hull marked with circles. Figure 6 shows the Hough space for this three
dimensional point set. This is the upper envelope of the sinusoids generated by all
points and each one corresponds to a point on the convex hull.
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Figure 3a shows a set of 5 image points and their convex hull. In figure 3b we can see
their corresponding sine waves in Hough space. Only those waves with maximal R for
some value of # contribute to the convex hull, in this case waves 1,2 and 3.

Figure 3: The relationship between the convex hull and the Hough transform for
isolated points

05

Figure 4: The convex hull of 7870 points generated using the Hough transform
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Figure 5: A three dimensional point set. Points on the convex hull are ringed with
circles.
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Figure 6: The Hough space for the set of 3D points in figure 5. The surface is of
the upper sinusoids in Hough space corresponding to points on the convex hull.

3.3 Algorithms
3.3.1 Algorithm 1: sampling

In Hough space the upper envelope of all sine waves defines the convex hull, in
that each sine wave segment on this envelope corresponds to a single point in the
hull. We now describe an algorithm to identify these segments. The array hull is
workspace.
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Step 1 Let p1(@),...,pn(@) be the sine waves in Hough space corresponding to
the n points in the image space.

Step 2 Set index k to 1; for # = 0 to 27 in steps of Ay (see discussion below) fill
an array hull[k] with indicies as follows:

Step 2a Find the greatest sine at this 8: Set hull[k] := i where p;(0) > p;(0)
forall1 <j<n.

Step 2b Increment index & by 1.

Step 3 The distinct indicies in hull are those points in the image plane in the
convex hull.

(Termination is trivial since Ag > (.)

An important issue 1s the granularity of the Hough space from the viewpoint
of the complexity of computing the convex hull by this algorithm. Consider three
collinear points a, b and ¢, with @ and b in the convex hull, and ¢ lying between
them. Without loss of generality we assume that ¢ lies at the origin of the image
plane and a and b on either side of it along the z-axis, at —z, and z,. We will
consider the behaviour in Hough space as ¢ is perturbed along the y-axis by dc,
and derive from this the required sampling interval of the Hough space so as to
detect that ¢ is now part of the hull.

Perturbing ¢ in this way contributes de.sin# to Hough space, and we see that
the interval Ay must be such that

Ag < tan™'(dc/xy) + tan™t (dc/z)

for ¢ to be seen to be in the hull. This gives an approximate complexity O{ =17 e )
where p measures the greatest distance between any two points @ and b. Choosing
p a priori to be the image diagonal renders it independant from (a bounded) n,
and overall complexity i1s O(n); however, constants are much greater than in the
Graham'’s scan algorithm [1] [6].

For example, for a 512 x 512 image we have 512.47n for n points with a twice-

over sampling interval.

3.3.2 Algorithm 2: non-sampling

We can make a significant (see below) average-case improvement in speed of the
algorithm, with the following approach, which has complexity O(n?). (We adopt
the same notation as above.)

Step 1 Determine 7 such that p;(0) > p;(0) for all 1 < j < n. We use this hull
point to start.

Step 2 Record that the point ¢ is on the hull. If i = 27 then we have completed
the hull, so stop.

Step 3 Compute the next point i’ known to be on the hull as follows. Determine
the smallest 6;: such that p;(fi:) = pis(0;:) subject to 8;; > 6;. 7' is the
‘nearest’ sine wave which intersects with since wave 1.

Set i to ‘i and go to Step 2.
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(We omit proofs of termination.)

This algorithm has quadratic complexity since there are n computations in
Step 3 (finding the next interection point), and we do this for each point in the
hull, which is O(n) (think of all n points arranged as as circle). Hence O(n?).

However, we anticipate much better that this worst-case performace in practice,
since typically considerably fewer points are in the hull in comparision with n.

4 The R,6 mapping and aspect graph

In the last section we computed the convex hull of 2D and 3D objects by using
the R, # mapping of object boundaries with a stationary origin in image space. In
this section we consider what happens to the same mapping as we move the origin
in image space.

If the origin is outside the shape then we can consider it as a vantage point from
which we look at the object. Using this perspective the first striking observation is
that the occluding contour of the object, z.e. those point where the local tangent
line or plane lies along the line of sight, is simply those points where R = 0.
Further more those points with i > 0 have normals pointing toward the origin or
vantage point and those with R < ( have normals points away. We suggest, that
these observations can form the basis of an algorithm to build aspect graphs [5]
of arbitrary 2D and 3D shapes. We can move the origin about the viewing sphere
and keep track of the self intersections and cusps of the Hough space curve. As
these features cross the @ axis i.e. R = 0 these constitute event boundaries in
the aspect graph. To illustrate this principle we have devised a graphics program
which animates in real time the mapping from image space to Hough space as the
origin 1s moved or the shape boundary 1s deformed. Figure 7 shows a few different
frames of the animation. As the vantage point (cross) is moved so the concavity
comes into view the self intersection and cusps of the curve in Hough space move
below the # axis. We suggest that tracking of these events could be used to trigger
the building of new branches and nodes in the aspect graph.

5 Discussion

The convex hull algorithms presented above has similarities to Graham’s algo-
rithm where points are sorted according to angle. The complexity of Graham’s
algorithm is O(nIn(n)). However our Hough based approach (algorithm 1) has a
high constant term due to the sampling of Hough space. Algorithm 2 has much
poorer worse case complexity but in the average case we anticipate better perfor-
mance than algorithm 1. Neither algorithm can compete with Graham’s algorithm
in performance as a practical convex hull algorithm. However, our goal was not
to produce an efficient new algorithm but to investigate the relationship between
the convex hull and the Hough transform.

We believe that sampling may also be the basis for producing approximate
convex hulls (and aspect graphs) in a principled way which has been identified as
an important problem. Unlike Graham’s algorithm there is a global representation
of the hull. We could in principle use this to assess the effect of leaving out a
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Figures 7a,c and e show a kidney bean shape in image space where different view
points are marked with a cross. In figure 7a no part of the concavity can be seen and
the loop in Hough space in figure 7b is above the x axis. In figure 7c the viewpoint is
precisely along the bi-tangent line, this is signified by the self intersection in figure 7d

crossing the a axis. In figure 7e the concavity is in plain view and the loop in figure 7f
is below the x axis.

Figure 7: The transitions in Hough space relating to changing view point.
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particular point. This could be on the principle of the area of the sine wave for
which it is maximal in R.

The Hough approach to building the aspect graph has the problem that al-
though we can tell if a face points towards the viewer we cannot tell if it is occluded
by another part of the object. It is as if we are considering the singularities of a
transparent object. We could solve this by filtering the Hough space output with
some kind of visibility check. One such check would be to compute a different
transform, say d, & where d is the length of a line from the boundary point to the
origin and « is the angle this line makes with the z axis. The points in d, o space
with minimal d for a particular @ are those points which are unoccluded.

6 Conclusions

We have considered the mapping of object boundaries using the Hough transforms
R, # parameterization. We have shown the correspondence of features in Hough
space to image space. This information has been used to construct an algorithm
to compute 2D and 3D convex hulls. We considered the effect of moving the
origin and demonstrated the potential of the approach to compute aspect graphs
of arbitrary shapes. We hope that we have challenged the traditional role of the
Hough transform an purely a feature detector. Clearly the local structure and
dynamics of this mapping can tell us alot about the geometry of shapes around
us.
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