Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1987

Convex Hull of Objects Bounded by Algebraic Curves
Chanderijit Bajaj
Myung-Soo Kim

Report Number:
87-697

Bajaj, Chanderjit and Kim, Myung-Soo, "Convex Hull of Objects Bounded by Algebraic Curves" (1987).
Department of Computer Science Technical Reports. Paper 604.
https://docs.lib.purdue.edu/cstech/604

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

CONVEX HULL OF OBJECTS BOUNDED
BY ALGEBRAIC CURVES

Chanderjit Bajaj
Myung-Soo Kim

CSD-TR-697
December 1987

CONVEX HULL OF OBJECTS BOUNDED
BY ALGEBRAIC CURVES'

Chanderjit Bajaj and Myung-Soo Kim

Computer Sciences Department
Purdue University
Technical Report CSD-TR-697
CAPO Report CER-87-2
December, 1987

T Research supported in part by NSF grants MIP-8521356, CCR-8619817, and a David Ross
Fellowship.

Convex Hull of Objects Bounded by Algebraic CurvesT

Chanderjit Bajaj and Myung-Soo Kim

Department of Computer Science,
Purdue University,
West Lafayette, IN 47907.

Abstract

We present an O (n -d°Wy algorithm to compute the convex hull of a curved object bounded by
O(n) algebraic curve segments of maximum degree d.

1. Infroduction

The convex hull computation is a fundamental one in computational geometry. Several linear-time
glgorithms for computing the convex hull of simple planar polygons are known, McCallum and Avis
(1979), Graham and Yao (1983), D.T. Lee (1983), Bhattacharya and El Gindy (1984). These algorithms
achieve the more efficient O (n) bound whereas the Q(x logn) lower bound applies to general problem of
computing the convex hull of n points in the plane, see Preparatz and Shamos (1985). The above algo-
rithms for planar polygons are all vertex-based and it is not straightforward to modify them 1o deal with
curved planar objects with piecewise algebraic boundary curves. Figure 1.1 shows a difference between
simple polygons and curved objects, where a single edge may intersect two different pockets. By general-
izing Graham and Yao (1983) to an edge-based algorithm Schaffer and Van Wyk (1987) extended these
results to a linear-time algorithm for curved objects bounded by piecewise-smooth Jordan curves. Even
though this algerithm gives an O (n -d%®) bound for high order boundary curves with maximal degree d,
the practical efficiency is limited to lower degree algebraic curves because of the ubiquitous computation
of common tangents of two curved edges. To improve the practical efficiency for high degree algebraic
boundary curves, it is necessary to reduce the time consuming curved edge operations. As we will see in
§3, the common tangent computation is the most expensive edge operation for both rarional and non-
rational curves. The philosophy of designing our algorithm is to reduce the number of common tangent
computations by detecting only those edges with right odentations. By generalizing the method of D.T.
Lee (1983) to a coordinate-based algorithm we suggest an O (n -d9*") time algorithm to compute the con-
vex hull of objects bounded by algebraic curve segments (possibly non-smooth) with maximum dagree 4,
which form a Jordan boundary curve. To simplify the whole design of algorithm and improve the overall
efficiency we segment each boundary curved edge into monotone subsegments in a preprocessing step.
Though an expensive computation, O (d2-logd) (resp. O (d%-logd + T(d))) time for rational (resp. non-
rational) curves on an arithmetic operation model, it greatly simplifies further operations on boundary
curve segments, where T'(d) is the time required for the curve segment tracing. Our algorithm computes
the convex hull in a single pass using a single stack and subdivides the original problem into four subprob-
lems. The convex hull computation by Schaffer and Van Wyk (1987) requires two passes and subdivides
the original problem into two subproblems. Souvaine (1986) also suggests a convex hull computation algo-
rithm based on bounding polygon approach for a class of curved objects (termed splinegons). Figure 1,1
also shows a difference between our algorithm and other algorithms for the curved case. Both Souvaine
(1986) and Schaffer and Van Wyk (1987) consider the edge C,; as an event edge and apply the time-
consuming common tangent operation for such edges. Since edges with such orientation cannot belong to

1 Research supported in part by NSF grants MIP-85 21356, CCR-8619817 and a David Ross Fellowship.

-9.

the convex hull boundary, these edges are ignored and not considered as event edges in our algorithm.
Half-plane containments and/or line-curve segment intersections are sufficient to detect edges with wrong
orientations, which cost less than common tangent computations. Further, our algorithm maintains a very
simple loop invariant, se¢ the property (%} in §4.1, which makes the design of a simple algorithm easier.

The rest of the paper is as follows. In §2 we describe the boundary representation for a planar
geometric model with algebraic boundary curves. In §3.1 we segment each boundary curved edge into
monotone subsegments as a preprocessing step. Crucial too is the internal represemtation of algebraic
curves, i.e., whether they are paramelrically or implicitly defined. All algebraic plane curves are implicidy
defined by a single polynomial equation f (x,y}=0. A subclass of algebraic curves known as rational
curves, have an alternate representation in terms of rational functions, x = f(1)/k{t) and y = g 1)/ k(¢),
with f, g, i being polynomials in 1. We present algorithms for both these internal representations., In §4
we present an O (n+(d® logd +d2T(d))) (resp. O (n-(d®logd +d*T (d)))) algorithm 1o compute the convex
hull of the geomeiric models of §2 which have all boundary curves as rational (resp. non-rational), Here
T(d) is the worst case time taken to trace an algebraic curve segment of degree d, see Bajaj, Hoffmann
and Hoperoft (1986). The worst case timing analysis in computing the exponent of the 42t is for the gen-
eral implicitly defined algebraic curves. This expanent is considerably less for curves in their parametric
representation. Our model of computation is the arithmetic model where arithmetic operations have unit
time cost, see Aho, Hoperoft, and Ullman (1974).

2. Algebraic Boundary Geometric Model

In a general boundary represeniation, an object with algebraic boundary curves consists of the fol-
lowing:

(1) A face bounded by a single oriented cycle of edges which forms 2 Jordan curve. (i.e. non-
intersecting)

(2) A finite set of directed edges, where each edge is incident 10 two vertices, Each edge also has a
curve equation, represented implicitly and when possible also with parametric equation. Further an
interior point is also provided on each edge which helps remove any geometric ambiguity in the
representation for high depgree algebraic curves, Reguicha (1980).

(3) A finite set of vertices usually specified by Cartesian coordinates,

The curve equation for each edge is chosen such that the direction of the normal at each point of the edge is
towards the exterior of the object For a simple point on the curve the normal is defined as the vecior of
partials to the curve evalvated at that point. For a singular point on the curve we associate a range of nor-
mal directions determined by normals to the tangents at the singular point. Further the edges are oriented
such that the interior of the object is to the left when the cycle of edges is traversed. Straightforward
assumptions are also made, e.g. object has no holes; edges may be singular, however loop-free; different
edges do not intersect except at vertices elc.

3., Computations with Algebraic Curves

In this section we consider some primitive geomeric operations 1o manipulate algebraic curve seg-
ments. Prior work, of relevance to later sections here, have considered the generation of rational
parametric equations for implicitly defined rational algebraic plane curves and surfaces, see Abhyankar and
Bajaj (1987a, b, ¢), the generation of implicit equations for parametrically defined algebraic curves and sur-
faces, see Bajaj (1987), as well as the robust tracing of algebraic curve segments with the correct connec-
tivity, especially when tracing through complicated singularities, see Bajaj, Hoffmann and Hopcroft
(1986). The latier for insiance is very useful in determining when a given point lies within a cenain

-3.

implicitly defined algebraic curve segment. In §3.1 we consider how to segment the boundary curve seg-
ments into monotone pieces, and in §3.2 we consider operations 10 compute curve-line segments intersec-
tion, halfplane containments, and common supporting lines.

3.1. Monotore Segmentafion

In many of the computational geometry problems dealing with curved objects, it is very convenient
to design efficient algorilhms when we assume each curve segment is monotone (i.e. monotone in x and y
coordinates and without any singular or inflection point). We thus first consider how 1o achieve this mono-
tone segmentation, as & preprocessing siep, for a general algebraic curve, This monotone segmentation
requires adding singular points, infiection points and extreme points on the curve as extra vertices.

First we take care of singular points on curved edges. Singularities are delermined for each curved
edge and are computed by using Lemma 3.1.1: I (i) and I (i). The boundary of the object is next modified
such that nonsingular edges are either convex, concave o linear segments. Such conditions are easily met
by adding extra vertices to inflection points of curved edges. Inflection points of curves can be obtained
and the edges are marked convex, concave or linear respectively by using Lemma 3.1.1: I (iv), (v), (vi) and
I (iv), (v}, (vi). We may also assume edges are further segmented so that exreme points along x or y
directions added as vertices. These extreme points are computed by using Lemma 3.1.1: I (if), (iii) and II
(i), (iD).

Definition 3.1 : Let C be a directed boundary edge without any inflection or singular point. Then

(1) C is convex if and only if the gradient of C turns counter—clockwise along C

(2) C is concave if and only if the pradient of C turns clockwise along C

(3) C is monoione if and only if C is either convex, concave or linear, and the interior of C doesn’t

include any extreme point along the x or y directions.

Lemma 3.1.1: (I) Let C : (ab) — R? be a curve parametrized by 7 € (a,b) and p = C(t) =

{c (1), co(r)) be a point on this curve. Then

(i) p is a (non-self-intersecting) singular point if and only if ¢";(1) = ¢ ’5(r} = 0,

(i) p is a non-singular x -extreme point if and only if ¢ ,(t) = O and c ", (¢t} = 0,

(iif) p is 2 non-singular y-extreme point if and only if ¢';(t) = 0 and ¢ *,{t) # 0, and

(iv) p is an inflection point of the curve C if and only if k(p) = 0= ¢’ (1) - ¢ () — ¢ 5(1) ¢”y(1).

If C has no inflection point, then

(v) C is convex if and only if ¢y {t}- ¢ ",(t) — c”5{t) - ¢";(¢) > 0, and

(vi) C is concave if and only if £"1(t) ¢ ”a(t) = ¢ 5(t) - ¢ *, (£} < 0.

(II) Let C be a carve implicildy defined by f(x.y) =0 and p = (x,y) be & point on the curve C.

Then

(i) p is a singular point if and only if f = f, =f,=0,

(ii) p is a non-singular x-extreme point if and only if f =fy,=0andf, =0,

(iii) p is a y-extreme pointif and only if f = f, =0 and f, #0,and

(iv) p is an inflection point if and only if £, - (f,)2 = 2 - (Fa* fy) + fry * (F2)2 = 0.

If € has no infiection point, then

() C isconvexifand only if . (f, 2 - 2f o, (" f,) + £y - (F)* > 0, and

(vi) C is concave if and only if £ (f,)2 = 2 - (f ") + fo - (F2)? < 0.

Proof : Most of these results are classical, see for example Walker (1978). O

Lemma 3.1.2 ; (T) For a parametric curve ssgment C of degree d, a monotone segmentation ¢an be
obtained in O (d-logd)) time in the worst case and in O (d?- log?4) time on the average.
() For an implicit algebraic curve segment C of degree d, & monotone segmentation can be

Cd. -

obtained in O (d¢-logd + T(d)) time in the worst case and in O (d*:log?d + T(d)) time on the
average, where T(d) is the time required for the curve segment tracing,

Proof : (1) The above equations are of degree O (d) in a single variable ¢, and the squarefree parts
can be calculated in O (d log’d) time and be solved using root isolations in O (4> logd) time in the
worst case and in O (d2- log2d) time on the average, se¢ Schwartz and Sharir (1983).

(2) The above equations are two simultaneous polynomial equations of degree O (d) in two variables
x and y. We can eliminate one variable (say, y) using the Sylvester resultant in O (d*log” d} time,
see Collins (1971), Bajaj and Royappa (1987), and solve the resulting equation of degree O (d3) in
one variable (say, x) in O (d%logd) time in the worst case and O (d*log®d) time on the average.
Similarly, we can solve for another variable (say, y) with the same time complexity. Finally, the
solution points on the curve segment C can be found by tracing the curve segment in 7(d) time, O

3.2. Basic Operations on Monotone Curve Segments

In this section, we consider four types of primitive operations on the monotone curve segments. As

we will see in §4, these are all the required geometric operations on the monolone curve segments to com-
pute the convex hull of planar curved object once the boundary curves are segmented into monotone
pieces. All the other operations are based on the coordinates of the vertices of the monotone curve seg-
ments. These primitve operations compute :

A)
®)
©)

D)

The intersection(s) of a monotone curve segment C and a line segment L

The containment of a8 monotone curve segment C in the upper-left halfplane HYC(L) of a line L

The common supporting line L of a monotone curve segment C and a poinL g such that C \y {¢ }
c HUYL(L), and the comresponding supporting point p of L at C

The common supporting Line L of two monotone curve segments C and D such that C (D <
HU (L), and the corresponding supporting points p and ¢ of L at C and D respectively.

Line-Curve Segments Intersection

Suppose C is a monotone curve segment and L is a line segment. Let R(C) and R(L) be the

minimal rectangles with sides parallel to coordinate axes and containing C and L respectively, and T(C)
be the minimal triangle defined by the line connecting both end points of C and two tangent lines of C at
both end points of €. The intersection of C and L can be computed as follows.

ifR(C) \RL)=D)then C ~L =;

elseif T(CY L =D)thenC L =;

else Letp;=(x1.yy) and pa = (x,.y,) be the starting and ending points of L’ =T(C) L, then
the intersect point(s) of C and L can be computed by the following Lemma;

Lemma 32.1: (I} If C is a parametric curve segment given by C(s} = (x(s).y(s)) witha S s <b,
then C intersects with L’ ata pointp = C(s) =¢ - p, + (1-)-p,if and only if 5 and ¢ satisfy
ass<bh,and 05151 1)
x(Z)=1x;+{1)x, (2
)=ty +(1-t)y, (3}

() If ' is an implicit algebraic curve segment given by f (x,y) = 0, then C intersects with L.’ at a
pointp =1 py + (1-1)- p, if and only if ¢ satisfies

peC and 0sr<1)
F@-xy+(A-t) 25ty +(1-1)y2)=0 (2)

Proof : Stmightforward. [

Lemms 3.2.2 : (I) For a parametric curve segment C, the curve-line segments intersection can be
computed in O (d*logd) time.

{II) For an implicit algebraic curve segment C, the curve-line segments intersection can be com-
puted in O (d*logd + T(d)) time, where T (d) is the time required for a curve tracing along C.
Proof : (I) The elimination of ¢ can be done in O (1) time resulting in a single polynomial of degree
d in a single variable 5. This polynomial can be solved in O (d*logd) time using root isolation, see
Schwartz and Sharir (1983). There are at most d solutions for s with @ <5 <b and the correspond-
ing ¢ to each s can be solved in O (1) time.

(I1) When we expand the equation (2) in an increasing order of ¢, it gives a polynomial of degree 4
in a single variable ¢. The expansion can be done in O (42) time and the polynomial can be solved in
0 (d°logd) time using root isolation. Finally, we need to trace along the curve segment C 1o check
whether these solutions are on the curve segment € in T'(d) time. O

Containment in a Halfplane

The halfplane containment for points and line segments can be done in O (1) time. Suppose C isa
convex monotone edges along which x and y-coordinates are strictly increasing, L is an infinite line with
stope m_ > 0, and HYX (L) is the upper-left closed halfplane of the line L. These are the only types of
curved edges and halfplanes considered in §4. Then, ¢ c H¥ (L) &= ps and pr € HYE (L), and C ')
L’ # @, where L’ = T(C) ~ L Hence, the time complexity of halfplane containment testing is the same
as that of Line-Curve segments inlersection,

Common Supporting Line of a Curve Segment and a Point
Suppose L isa common supparting line of a monotone curve segment C and a pointg = (o, f) ¢ C
suchthatC y{qg }c HYE(L). Then the supporting point p of L at € is given by the following Lemma,
Lemma 3.2.3: () If C is given by a parametric curve C{¢) = (x{¢).y(¢)) witha <t < b, thenp =
(x(£),y (1)) is given by
ast<h (1
x(a)-y' () - Gy P)-x)=0 (2
(I} If C is given by an implicit curve f (x,y) = 0, then the point p = (x,y) is given by

Fxy)=0andp=(x,y}e C (D
(x-a)-f; +@_B)°fy =0 2

Proof : Stmaightforward, O

Lemma 3.2.4 : (I) For a parametric curve segment C, the commeon supporting line of C and g can
be computed in O (dlogd) time,

(II) For an implicit algebraic curve segment £, the common supporting line of C and 4 can be com-
puted in O (d®logd + T(2)) time, where T (d) is the time required for a curve racing.

Proof ;: Similar to Lemma 3.1.2. O

-6-

Common Supporting Line of Two Curve Segmeats

Suppose L is # common supporting line of two disjoint monotone curve segments C and D such that
C \yD c HY(L). Then the supporting points p = (z, y) and ¢ = (&, B of L at C and D respectively
are given by the following Lemma.

Lemma 3.2.5: (D If C and D are given by parametric curves C(s) = (x(s),y(s)) witha <5 <&

andD () = (oft), B(t)) with¢ st sd, thenp = (x(s),y(s)) and g = {&{t), B(¢)) are given by

ass<b and ¢ £t £d ¢y
(x(syat) ¥ () - QGBUN-x'E)=0 (@)
xEYyo@) fE) - GErBE)-a’(t)=0 (3)

{I) If C is given by a parametric curve C(s) = (x(s),y(s)) witha €5 <& and D is given by an
implicit curve g (&,B) = 0, then p = (x(s),y(5)) and ¢ = (. B) are given by

asssh @
g(eP)=0and g =(o,B) e D)]
(x(s)ya)y' (s}~ @GP -x"(s)=0 (3)
(xGsrom)-ga+ Gi)rpBrep=0 “

(I0) If C and D are given by implicit curves f (x,y) = 0 and g(@B)=0,thenp = (x,y) and g =
(cr, B) are given by

fxy)=0andp=(x,y)e C (1)
gPp=0and¢=(a,B)e D (2
(x—o)-fr + -B)-f, =0 3
(x-)-ga+ -P)-gp=0 (@)

Proof : Straightforward. O

Lemma 32.6 ;: (I) For parametric curve segments C and D, the common supporting line of C and
D can be computed in O (d%logd) time,

{IT) For a parametric curve segment C and an implicit algebraic curve segment D, the common sup-
porting line of € and D can be computed in O (d'%logd + 7(d)) time, where T(d) is the time
required for a curve tracing.

(i) For implicit algebraic curve segments C and D, the common supporting line of C and D can
be computed in O (d* logd + T(d)) time, where T(d) is the time required for curve tracings along
CandD,

r

Proof : Similar to Lemmas 3,1.2and 3.24. O

4. Convex Hull of Geometric Model

In this section we present an algerithm to compute the convex hull of planar curved objects bounded
by O (m) monolone curve segments which have been obtained in the preprocessing step from O (r) alge-
braic curve segmenis of maximum degree d. In §3 each implicit {resp. parametric) algebmic curve seg-
ment of degree d has been segmented into at most O (d%) (resp. O(d)) monotone curve segments by
adding extra vertices into singular points, inflection points and extreme points, Afier this preprocessing
step of monotone segmentation, the total number of boundary edges becomes m which is O (r - d2). The
algorithm presenied in this section runs in O (m) steps, where each step would take either (a) a constant

-7-

time if a simple coordinate comparison is enough to process an edge or (b} a polynomial time in the degree
d if a nontrivial operation on cnrve segments such as line-curve intersection or tangent line computation is
required to process an edge. Detailed timing analysis will be given in §5. In the following we consider the
construction of the lower-right subpart of the convex hull boundary which lies between the bottom most
vertex and the rightmost vertex of the criginal object. The entire convex hull is obtained by applying the
same algorithm to the remaining three subparts. Since the minimum horizontal {resp. vertical) line segment
containing all the bottommost (resp. rightmost) vertices is on the convex hull boundary, w.Lo.g. we may
assume there are unique botlommost and rightmost vertices. In the following, suppose €y, Cs, ..., Cyr is a
connected sequence of edges from the bottommost veriex py to the rightmost vertex py,, and each C; has
Pi-y and p; as its starting and ending vertices, For a point p, (resp. p*) wilh subscript # (resp. superscript
#) we denote the x and y-coordinates of p, (resp. p*) by x, and y, (resp. x* and y*). We also denote the
line segment connecting two points p and ¢ by L(p,q) and the path from p 10 ¢ along the boundary curve
by ¥p.q).

4.1. Sequences of Event Edge and Current Hull
We make a constructive definition of & sequence of event edges {C 1Y, with C, = Cy; and a
sequence of current hulls {CH, 1., We show the following property of the & -th current hull CH, :
(%) Ifp € ¥(pe.p;,) is @ point on the convex hull boundary, then p € CHy and the front subare of CH,
between po and p is on the convex hull boundary,

This property () and the fact that py, is the end point of the N -th current hull CHy; imply that CHy, is the
lower-right subpart of the convex hull boundary between two extreme points po and py, .

Definition of C; and CH,

Letip=0and CHy={ py}. Assume that the index iy and the k-th current hull CHy (0 Sk < N)
have been defined. We define the (k+1)-th event edge C, and the (k+1)-th even: component ECy,y < C; |
in terms of i, and CH, as follows, see Figures 4.1.14.1.3.

(A) If x,,, <x, and the inner angle of p;, <, then §;,; = min {j| § > i, and x; > x; }. Further, (a)

ECyy =G, ify, 1 <Y, and C; is convex, and (b) EC,,; = pi,., otherwise,
(B} Xz, <x4 andy, <¥,4, then iy, =i;+1. Further, (a) ECy,q = Ci, I C,, is convex, and (b) EC,,,
= p,., otherwise,

(C) Otherwise, let ymin;,(L(p".p")) = min { ya | pa € ®p;spj-) MY L2 \p™) } for iy <j—1 (we
define the lid L (p’,p”) later). Further,letQ, ={M} U {jl10)ii+1<jsM, @) ¥j-1 <Y¥;,and
(iii) either C; is totally outside of any pocket of CH, or (C; is not lotally inside of a pocket of CH,
and intersects with a lid L(p”, p™) at a point p.. with yau < ymin;_ (L (p’,p"))) }, and let j, = min
Q. (@) If x;,_, < x;, then B,y = jg and ((al) EC,y = C;, if C;, is conver, and (a2) EC, =
L(p,,,-1.p;,) otherwise). (b) Otherwise, i,,; = jo~1and ECy,, = p; .
Next we define the (k+1)-th current hull CH,,,. Itis easy to show there is a unique common supporting
line L of CH, and ECy,, at the points p” and p” (with x* <x” and y* < y*) respectively such that CH, U
ECyy c HY(L). If there is more than one choice of p* (resp. p™*), we choose p* (resp. p*) 5o thal the dis-
tance between p” and p” to be minimal. Further, let FRONT_CH,,, denote the front subarc of CH,
between the points pg and p’, and REAR_CH, ., denote the rear subarc of EC},, between the points p” and
i, The (k+1)-th current hull CH,,, is defined as the connected union FRONT CH, \J L' p")} U
REAR_CH,,,, see Figure 4.14. CH,,, is a convex arc along which both x and y-coordinates are strictly

-8-

increasing. L(p’,p") is called as the lid determined by p’ and p”. Let ¥ be the closed path given as
¥Wp'.p") followed by a path from p” w0 p’ along L{p’,p”). If ¥ has no self-intersection, the region
bounded by 7 is called as the pocket determined by the lid L(p’,p”). Otherwise, ¥(p’,p") has an even
number of intersections with the lid L (p”,p”) counting intersections with multiplicities and ¥ divides the
plane into finite number of connected regions. The union of all the regions which are (o the right of yis the
pocker implied by L (p”, p ™), see Figure 4,1.5,

Properties of CH,
The proof of property {(¥) follows from the following Lemmas 4.1.1-4.1.2.
Lemma4.1.1: Ifapointp € C; (1 <i <i;)ison the convex hull boundary, thenp € CH,.
Proof : The interior of the path ¥(p;,,p;) the arc C;, | ~ ECy,y, and (CH, \ C;,) — CH,,; are in
the convex hull interior, O

Lemma 4.1.2 : If a point p € CH; is on the convex hull boundary, then the front subarc of CH,
between py and p is entirely contained in the convex hull boundary.

Proof : The case £ = 1 is easy to show. By induction, we assume for k (1 <k < N) and consider
k+1. Suppose a point p € CH, 4 is on the convex hull boundary. (2) If p € FRONT CH,,, c CH,,
then the statement follows by induction. (b)) If p € L(p',p™), then L{p’,p""} is also on the convex
hull boundary. Further, FRONT_CH, , is on the convex hull boundary by induction. () If p €
REAR_CHy,,. then there is a supporting line L, at p. We prove the lid L(p’,p") is on the convex
hull boundary. Suppose there is a boundary point ¢ in the region R, sece Figure 4,1.6. We may
assume ¢ is exreme to the outward normal direction of the lid and thus on the convex hull boundary.
() If g € C; (1 S) Si,), then Lemma 4.1.2 implies ¢ € CH,,y. But, it’s impossible since CH,,;
is convex. (ii) Otherwise, there is a continuous path from p;, , 10 ¢. This path should pass through
either the region R, or R4, but both are impossible. Hence, the lid L{p’,p"") is on the convex hull
boundary, and by induction FRONT_CH,,, is also on the convex hull boundary. Similarly one can
show that the subarc of REAR_CH, ,, between p* and p is on the convex hull boundary. O

Hence, each current hull CHy has the property (¥). Since py is the end point of both C and CHy,
Theorem 4.1.1 follows easily from Lemmas 4.1.1-4,1.2.

Theorem 4.1.1 : CHy is the lower-right part of the convex hull boundary between two extreme
points pg and py .

4.2. Description of Algorithm

We describe an algorithm to compute the sequences of event edges {C; Y, and cwrent hulls
{CH, }., by using a single stack CH. CH contains scgments of the &-th current hull CH, which are
subarcs of some convex edges, some linear edges and the lids of pockets. Adjacent elements on the stack
share a common end point and the connected sequence of elements on the stack CH generates the current
hull CH, (we call as the stack CH implies the current hull CH,).

Computing Event Edges

We start with pushing a single poinl interval [pg, pol into an empty stack CH. The stack CH implies
the current hull CH = { pp }. In general, suppose i, is detecied and the stack CH implies the k-th cwrrent
hull CH, (0 <k < N). To detect iy, we call the procedure Detect_Event_Edge of Appendix 1. Since the
correctness of the cases (A) and (B} is obvious, we will consider the case (C) in the following.

-9.

An integer variable j initiglized to i, is used to detect i, ,,. The initial value of j satisfies the follow-
ing property.
(xx*) C, is not totally contained in an interior of any pocket of CH,, and TOP(CH) is not strictly below

the horizontal line y = y;.
Within the branch (C) there is 2 while-Ioop. Upon completion of each loop either i, has been detected or
the loop-invariant (%) holds for the new j. We show this fact while describing the sub-branches (C1)-
{C3) in the following.

At the beginning of each loop, (%) holds and j < min Q,. After we increment § by 1, in (C1) and
(C2), j = min Q; and #;,; and EC are comrecily set (0 appropriate values. Further, in (C3), j < ;. To
make the loop-invariant (%) hold we manipulate the stack CH. First of all, we check whether pyisan
interior point of any pocket of CH,. For this j, p; Is an interior point of a pocket bounded by a lid
L{p’,p") if and only if p; is in the upper left open half plane of L (p*, p) and C; intersects with L (p’, p ™).
Further, if C ; intersects with L (p”,p“), then L (p’,p ") is neither strictly above the horizontal line y = ¥j
nor strictly below the line y = y;. Since the current stack CH contains all these elements, we need 1o
examine only those elements not swictly below the line y =y; in a finite siep. If the top stack element
TOP(CH) lies strictly above the line y =y;, it cannot be a lid bounding a pocket with p; in its interior,
Since it is in the convex hull interior, we pop TOP(CH). We repeat this popping procedure until (g) an
intersecting lid is found which bounds a pocket with p; in its interior, or (b) 2 non-intersecting element is
found which is not strictly above y = y;. In the case of (a), we have one right-to-left cut on the edge C 8
Right-to-left cut (vesp. lefi-to-right cut) at a point p. is a transversal intersection of an edge C with a lid at
an interior point pa such that C traverses from the right to the left (resp. from the left to the right) of the lid
in the neighborhood of p.. When the boundary curve transversally intersects at a vertex Pj» we consider
the point p; as a point of C;,y and determine the cut direction in a similar way. Whenever we mest a
wansversally intersecting edge with a lid, we update the total number of right-to-left cuts and/or lefi-to-
right cuts. In Figure 4.1.7, a path Y(p., p;) is totally contained in a self-intersecting pocket and has its first
interior intersection with a lid L (p”,p") in a right-1o-left direction. When ¥{(p., Pp;) comes out of a pocket
through a point .., the total cuts in both directions are equal, Hence, we can detect the next edge not
toially contained in a pocket by counting the cuts in both directions properly. To detect the next event edge
satisfying the condition (C), we skip all the subsequent edges until an edge C;- intersecting with L(p”, p™)
ata point p»« such that the total number of right-1o-left cuts and left-to-right cuts upto p.. are the same and
Yeo <ymin;(L(p°.p"). (i)Y y;.y <y then j* =min Q, and iz, is set to j* correctly, (i) Otherwise,
the loop-invariant (%) holds afier the assignment j = j. In (b), the loop-invariant (%) holds. Hence, we
proved the following Theorem,

Theorem 4.2.1: The algorithm Detect_Event_Edge detects the (k+1)-th event edge C,, .

Computing Current Hulls

Now, we describe how to compute the (k+1)-th current hull CHy,, from the k-th current hull CH,
and the (k+1)-th event component ECy,, by using the stack CH. Since we are popping some stack ele-
ments so that TOP(CH) is neither strictly above nor strictly below the horizontal line y = MIN, the stack
CH may not imply the k-th currens hull CH, when EC,,, is computed. However, the stack CH always
contains all the elements necessary for the construction of the new stack CH implying the (k+1)-th ciorent
hull CH, ,y, i.e. the stack elements not strictly above the horizontal line y = MIN. A detailed procedure to
update the stack CH to a new stack CH implying CH, ,, is given as the procedure Update_Current Hull in
Appendix I, where SUPP1(C,D) (resp. SUPP2(C,D)) returns the supporting point p* at C (resp. p” at
D) of the snpporting line L such that C uDlc HY (L).

-10-

In each loop we check whether TOP(CH) contains the common supporting point p” of CH,., We
have () p” = pg if and only if EC < HYA(L,,) and EC is not strictly below the horizontal Iine y = yg, (B)
p’ € TOP(CH) if and only if EC c HY (L), and (v) p’ € TOP(CH)) otherwise, where pg and py are the
starting and ending points of TOP(CH), and L, and L, are the tangent lines of TOP(CH) at ps and pg
respectively. In the cases (o) and (B), the loop terminates afier setting p” and p* appropriately. The
correctness of the branches for (&) and (B) is obvious. And, in (y), we pop the element TOP(CH) from the
stack CH and repeat the loop. Since EC is in the upper half plane of the horizontal line y = yy, the loop
terminates in a finite step and the correctness of the algorithm follows by induction. Hence, we proved the
following Theorem.

Theorem 4.2.2 : The algorithm Update_Current Hull computes the (k+1)-th current hull CH, ..

Computing the Convex Hull

Using the above procedures 10 detect event edges and update current hulls we can design an algo-
rithm 10 compute the lower-right subpart of the convex hull boundary between the bottommost vertex and
the rightmost vertex as follows.

procedure Lower Right Convex Hull,

begin
LetCH ={Zandi =0;
Push [pg, pol into CH;

while (i <¥N) do begin
Detect_Event Edge (CH,I,i,EC);
Update_Current_Hull (CH , ECY); end; (* while)
end; (% Lower_Right Convex Hull ¥}

The comecness of the procedures Detecr_Event Edge and Update Current_Hull follows from Theorems
42.1-2. Since the above while-loop terminates at a finite step and Cy, is an event edge at some N -th step,
the correctness of Lower Right Convex_Hull follows by induction and Theorem 4.1.1.

Theorem 4.2.3 : The algorithm Lower_Right_Convex Hull computes the lower-right subpart of the
convex hull boundary between the botommost vertex and the rightmost vertex.

5. Algorithm Analysis

Complexity of Event Edge Detection

We consider the time complexity required to manipulate the edge segments in the process of detect-
ing next event edges. In the cases of (A) and (B), each edge requires O (1) processing time since a simple
coordinate comparison is enough to process an edge. But, in the case of (C), either finite number of simple
coordinale comparisons or intersections with a line segment are required 1o process an edge. The total
numbers of coordinate comparisons and curve-line ssgments intersections are O (m). Since many of
curve-line segments intersection testings can be done in a finite number of simple operations using bound-
ing wiangle testings, eic., the actual number of curve-line segment intersections based on curve tracing, say
my, would be much less than m though the worst case complexity can be O (m). Hence, the overall time
complexity for event edge detections is O (m +m,-d*logd) = O(m -d*logd) = O (n -d%logd). Even
though we are also manipulating the stack CH while detecting next event edges, we will consider this cost
in the following.

-11-

Complexity of Current Hull Computation

We consider the time complexity required to manipulate the stack elements in the process of updat-
ing the cimrent hulls, Each stack element is either (1)} popped, {2) pushed, or (3) replaced by a subsegment
of it. (1) The cost of popping a stack element can be charged to the stack element popped itself, and hence
to the event edge which pushed this stack element. Since a stack element can be decided to be popped afier
an half-plane containment testing to the next event edge, each popping could be done within either (i) a
constant time if finite simple operations are sufficient, or (if) O (4% logd + T(d)) time if a curve-line seg-
ment intersection is required, where T{d) is the ume required for curve tracing. (2) Each stack element
first pushed is either a subsegment of an event edge or a lid common to this event edge. (3) Some stack
elements need to be replaced to shorter subsegmenis, The replaced segment has a2 common lid with & new
stack element which is a subsegment of the new event edge. We charge the cost for pushing and replacing
to the new lid, and eventually to the new event edge. A lid is computed within either (iii) a constant time,
(iv) O (d®logd + T(d)) time if a tangent line computation from a point 10 & curve segment is required, or
(v) 0(d*®-logd + T(d)) time if a common tangent line computation between two curve segmenls Is
required, Let m, be the number of event edges, and my,, mp2, Mo 3, Mo4, M2 s be the number of elements
of type (), (i), (iii), Gv). (v). myy, Ma35, Maa, Maog, My s are O (my), and O (my) is O (m). Hence, the total
cost for manipulating stack elements takes O(myy + mp3 + may- (d>-logd) + m,,e-(d%-logd) +
mys+(d®logd)) = O(m,-(d°logd)) = O(m-d®logd) = O(n-d*logd) (resp.
0 (n - (@ logd + d*T(d)))) for object with all boundary curves as rational (resp. non-rational),

6. Conclusion

In this paper, we suggested an O (n -d®logd) (resp. O (n -(d®logd + d*T (d)))) algorithm to com-
pute the convex hull of planar curved object bounded by ¢ {a } rational (resp. non-rational) algebraic curve
segments. The true bound on 4 for the latter can be substantially reduced by use of the multivariant resul-
tant, see Salmon (1885), Macaulay (1902), and Bajaj (1987). An accurate timing analysis on computing
the muldvariate resultants is currently underway. Though within the same asymptotic time complexity, this
improves Schaffer and Van Wyk (1987) to the cass of planar curved objects bounded by arbitrary algebraic
curve segments, Main differences between this algorithm and Schaffer and Van Wyk (1987) are : (1) the
boundary curves are segmented into monotone curve segments by adding inflection points and extreme
points as vertices in a preprocessing step, (2) the original problem is divided into 4 subproblems instead of
2 subproblems, (3) the convex hull boundary is computed using a siack in a single pass instead of two pass,
(4) it is a coordinated based algorilhm instead of edge based algorithm, (5) this algorithm reduces the
number of common tangent computation by detecting next event edges with a correct orientation,

7. References

Abhyankar, S., and Bajaj, C., (1987a)
Automatic Rational Paramelerization of Curves and Surfaces I Conics and Conicoids, Computer
Aided Design, 19,1, 11-14, '

Abhyankar, S., and Bajaj, C., (1987b)
Automatic Rational Parameterization of Curves and Surfaces II: Cubics and Cubicoids, Computer
Afded Design, 19,9, 499-502.

Abhyankar, S., and Bajaj, C., (1987¢)
Auwtomatic Rational Parameterization of Curves and Surfaces III: Algebraic Plane Curves, Com-
puter Science Technical Report CSD-TR-619, Purdue University.

Abhyankar, S_, and Bajaj, C., (1987d)
Automatic Rational Parameterization of Curves and Surfaces IV: Algebraic Space Curves,

-12-

Computer Science Technical Report CSD-TR-703, Purdue University.
Aho, A, Hoperoft, I., and Ullman, T, (1974)
The Design and Analysis of Compuiter Algorithms, Addison-Wesley, Reading, Mass.
Bajaj, C., (1987)
Algorithmic Implicitization of Algebraic Curves and Surfaces, Computer Science Technical
Report, CSD-TR-681, Purdue University.
Bajaj, C., Hoffmann, C., and Hopcroft, 1., (1986)
Tracing Planar Algebraic Curves, Computer Science Technical Report CSD-TR-637, Purdue
University, : . : -
Bajaj, C., and Royappa, A., (1987)
A Note on an Efficient Implementaiion of the Sylvester Resultant for Multivariate Polynomials,
Computer Science Technical Report CSD-TR-718, Purdue University.
Bhattacharya, B., and El Gindy, H., (1984)
A New Linear Convex Hull Algorithm for Simple Polygons, JEEE Trans, Inform. Theory, 30, 1,
85-88.
Collins, G., (1971)
The Calculation of Multivariate Polynomial Regunltants, Journal of the ACM, 18, 4, 515-532.
Graham, R., and Yao, F., (1983)
Finding the Convex Hull of a Simple Polygon, Journal of Algorithms, 4, 324-331,
Lee, D.T., (1983)
On Finding the Convex Hull of a Simple Polygon, Inzernational Journal of Computer and Infor-
mation Sciences, 12, 2, 87-98.
Macaulay, F., (1916)
The Algebraic Theory of Modular Systems, Cambridge Tracts, No 19, Combridge University
Press,
McCallum, D, and Avis, D., (1575}
A Linear Algorithm for Finding the Convex Hull of a Simple Polygon, Information Processing
Lerters, 9, 5,201-206.
Preparata, F., and Shamos, M., (1985)
Computational Geomerry, Springer Verlag, New York
Requicha, A, (1980)
Representations of Rigid Solid Objects, Computer Aided Design, Springer Lecture Notes in Com-
puter Science 89, 2-78.
Salmon, G., (1885)
Lessons Introductory to the Modern Higher Algebra, Chelsea, New York.
Schaffer, A., and Van Wyk C., (1987)
Convex Hulls of Piecewise-Smooth Jordan Curves, Journal of Algorithms, 8, 66-94,
Schwartz,], and Sharir, M., {1983)
On the Piano Movers Problem: II, General Techniques for Computing Topological Properties of
Real Algebraic Manifolds, Adv. Appl. Math. 4, 298-351.
Souvaine, D., (1986)
Compuational Geometry in a Curved World, Computer Science Technical Report CS-TR-094-87,
Ph.D Thesis, Princeton University.
Walker, R, (1978)
Algebraic Curves, Springer Verlag, New York.

.13-

Apperdix I

procedure Defect Event_Edge (CH , iy, iy, ECY;
begin
(A) if (x;y; Sx; and the inner angle of p; < 1) then begin
Leti=min{j|j>i+1andx; >x};
if (i <y; and C; is convex) then Let EC = C;; else Let EC = p;; end; (% (A) %)
(®B) elseif (x; <x;,; and y; <¥;41) then begin
Leti =i+1;
if (C; is convex) then Let EC = C;; else Let EC = p;; end; (% (B) %)
(C) elsebegin
Letj =i and FOUND = falss;
while (not FOUND) do begin
Letj=j+1;
(C1) if (x;; <x; and y;_, <y;) then begin
Letiy,) =J and FOUND = true;
if (C; is convex) then Let EC = C; _; else Let EC = L{p,, ~1.0:.): end; (% (C1) %)
(C2) elseif (yj; < y;) then
Letiyyy =j-1,EC = p,, and FOUND = trug;
(C3) elsebegin
Pop all the stack elements until (a) a lid L (p’, p’") which contains P; in the interior
of the pocket bounded by the lid L (p’,p*} or (b) a stack element which is not
strictly above the horizontal line y = ¥ii
(8) if (p; is an interior point of the pocket bounded by the lid L{p’,p”) which inter-
sects with C; at p. } then begin
Let DONE = false, RightLeftCut = 1, LeftRightCut = 1, and YMIN = Yol
repeat ,
Skip all the subsequent edges until an edge C; which transversally
intersects with L (p”,p ™);
for (each transversal intersection point p.. on Cy-) do begin
if {the intersection is a left-to-right cut) then
Let LefiRightCut = LeftRightCut + 1;
else Let RightLeftCur = RightLeftCut + 1
if (oo <YMIN and RightLeftCut = LeftRightCut) then
Let DONE =1rue;
else Let YMIN = min (YMIN, y..); end; (% for %)
until (DONEY;
() @<y thenletiy, =’ and FOUND =rue;
() elseLetj=j" end; (% (3) %)
end; (% (C3) %)
end; (% while %) end; (% (C))
end; (% Detect Event_Edge)

-14-

Appendix II

procedure Update_Current Hull (CH,EC);

Let DONE = false;
while (not DONE') do begin
Let pg and py be the starting and ending points of TOP(CH');
Letl,, and L, be the tangent lines of TOP(CH) at ps and pg respectively;

if(EC cH L"I'(LJ;,_) and EC is not strictly below the horizontal line y = yg) then begin

if (EC isapointp;)thenLetp” =p;, ;

else if (EC is a convex edge C;,) then Let p” = SUPP2 (pg. C)i

else if (EC is a line segment L (p;,,, -1, p;..)) then
if (Pym1 € HZ @ Qe) then Letp” = p,, s else Letp” = p,,, y;

Push the lid L (pg ,p ") into CH;

if (p” #p;.) then
if (EC = () then Push the subsegment of C between p” and p; _ into CH';
else if (EC =L (p;, —1.p;,.)) then Push the Lid L {p; ,_1.p;,,) into CH;

Let DONE = true; end; (% () %)

else if (EC < HY-(L,)) then begin

if (EC isapoint p;,) then Let p” = p; and p” = SUPP1 (TOP(CH), p;,.):
else if (EC is a convex edge C;) then
Let p* = SUPP1 (TOP(CH), C;,,) and p” = SUPP2 (TOP(CH), C;)i
else if (EC is a line segment L (p;, _, 1)) then begin
Let p’ = SUPP1 (TOP(CH), p.,);
if (9,-1€ H (L (", p,.))) then Let p” = p, ;
elseLetp” =p; _, and p’ =SUPP1 (TOP(CH), p;,,1); end; (% else if %)
Let C = the subsegment of TOP{CH) between pg and p*;
Pop TOP(CH) from CH , and push C and the id L (p’,p ") into CH;
if (p” #p;) then
if (EC = C;,,) then Push the subsegment of C; between p” and p,, into CH';
else Push the lid L (p;, .y, py,,) into CH';
Let DONE = true; end; (% () %)

else Pop TOP(CH') from the stack CH; end; (% while %)
end; (% Update_Current_Hull %)

Figure 1.1 Difference between Polygonal and Curved Cases

l Pi..
pi}.ﬂ l >

Figure 4.1.1 (a) Event Edge of Type (A) with EC = Ci., Figure 4.1.1 (b) Event Edge of Type (A) with EC =Di,..

————

pl‘ld

Figure 4.1.2 (a) Event Edge of Type (B) with EC=C; Figure 4.1.2 (b) Event Edge of Type (B) withEC=p; |

pl';

Pin-1

G

[I R

Py

Po

Figure 4.1.3 (b} Event Edge of Type (C) wi[b EC=p;,.,

—

Figure 4.1.3 (a) Event Edge of Type (C) with EC=C;, |

2o

Figure 4.1.5 (a) Simple Pockets

Figure 4.1.5 (b) Self-intersecting Pocket

Figure 4.1.6 The Regions R pRoand R4

Figure 4.1.7 ¥(Ds, pj) in the interior of a pocket

	Convex Hull of Objects Bounded by Algebraic Curves
	Report Number:
	

	tmp.1307986960.pdf.UhBhr

