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Chanderjit Bajaj and Myung-Soo Kim

Department ofComputer Science.
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Abstract

We present an O(n ·dO(l) algorithm to compute the convex hull of a curved object bounded by

o(n) algebraic curve segmenJs ofnuuirrwm degree d.

1. Introduction

The convex hull computation is a fundamental one in computational geometry. SeverallineaNime

algorithms for computing the convex hull of simple planar polygons are known, McCallum and Avis

(1979), Graham and Yao (1983), D.T. Lee (1983), Bhattacharya and EI Gindy (1984). These algorithms

achieve the more efficient 0 (n) bound whereas the n(n Iogn) lower bound applies to general problem of

computing the convex hull of 11 points in the plane, see Preparata.and Shames (1985). The above algo­

rithms for planar polygons are all vertex-based and it is not straightforward to modify them to deal with

curved. planar objects with piecewise algebtaic boundary curves. Figure 1.1 shows a difference between

simple polygons and curved objects, where a single edge may in~ect two different pockets. By general­

izing Gr2ham and Yae (1983) to an edge-based algorilhm Schaffer and Van Wyk (1987) extended these

results to a linear-lime algorithm for curved objects bounded by piecewise·smoOlh Jordan curves. Even

though this algorithm gives an 0 (11 • dO (!) bound for high order boundary curves with maximal degree d,
the. practical efficiency is limited to lower degree algebtaic curves because of the ubiquitous computation

of conunon tangents of two curved edges. To improve the practical effici~cy for high degree algebraic

boundary curves, it is necessary to reduce the time consuming curved edge operations. As we will see in
§3, the common tangent computation is the most expen·sive edge operation for both rational and non·

rational curves. The philosophy of designing our algorithm is to reduce the number of common tangent

computations by detecting only those edges with right orientations. By genenllizing the method of D.T.

Lee (1983) to a coordinate-based algorithm we suggest an 0 (n •dO(I) lime algorithm to compute the can·

vex hull of objects bounded by algebraic curve segments (possibly non-smooth) with maximum degree d,
which form a Jordan boundary curve. To simplify the whole design of algorithm and improve the overall

efficiency we segment each boundary curved edge into monotone subsegments in a preprocessing step.

Though an expensive computation, o(d3 ·logd) (resp. o(d6 ·10gd + T(d») time for rational (resp. non­

rational) curves on an arithmetic operation model, it greatly simplifies further operations on boundary

curve segments, where T(d) is the time required for the curve segment tracing. Our algorithm computes

the convex hull in a single pass using a single stack: and subdivides the original problem into four subprob·

lems. The convex hull computation by Schaffer and Van Wyk (1987) requires two passes and subdivides

the original problem into two subproblems. Souvaine (1986) also suggests a convex hull computation algo­

rithm based on bounding polygon approach for a class of curved objects (termed spIinegons). Figure 1.1

also shows a difference between our algorithm and other algorithms for the curved case. Both Souvaine

(1986) and Schaffer and Van Wyk (1987) consider the edge CJ as an event edge and apply the time­

consuming common tangent operation for such edges. Since edges with such orientation cannot belong to

t ReseaJdI5IIpported iII pan. by NSF grants MIP-85 21356, CCR-8619817 and a David Ross ~llowship.
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the convex hull boundary, these edges are ignored and not considered as event edges in our algorithm.

Half-plane containments and/or line-curve segment intersections are sufficient to detect edges with wrong
orientations. which cost Jess than common tangent computations. Further. our algorithm maintains a very
simple loop invariant. see the property (IE) in §4.1, which makes the design of a simple algorithm easier.

The rest of the paper is as follows. In §2 we describe the boundary representation for a planar
geometric model witll algebnric boundary curves. In §3.1 we segment each boundary cW'\'ed edge inlO

monotone subsegmenls as a preprocessing step. Crucial too is the internal representation of algebraic

curves, i.e•• wbelher they are paramelrically or implicitly defined. All algebraic plane curves are implicitly
defined by a single polynomial equation I(x,y) = O. A subclass of algebraic curves known as rational

curves, have an alternate representation in tenDs of mnonal functions.;c = f(t)1 h(r} and y = g (I){ h(I),

with f . g. h being polynomials in I. We present algoritJuns for both these internal representations. In §4

we present an 0 (n '(d8logd +d7(d») (resp. 0 (n '(d261ogd +d'T(d»» algorithm to compute the convex
hull of the geomelric models of §2 which have all boundary curves as rational (resp. non-rational). Here
T(d) is the worst case time taken to trace an algebraic curve segment of degree d, see Bajaj, Hoffmann
and HopcrofE (1986). The worst case timing analysis in computing the exponent of the dOC!) is for the gen­
eral implicitly defined algebraic curves. This exponent is considerably less for curves in their parametric
representation. Our model of computation is the arithmetic model where arithmetic operations have unit
time cost, see Abo, Hopcroft, and Ulbnan (1974).

2. Algebraic Boundary Geometric Model

In a general boundary representation, an object with algebraic boundary curves consists of the fol­
lowing:

(1) A face bounded by a single oriented cycle of edges which foons a Jordan curve. (i.e. non­
intersecting)

(2) A finite set of directed edges, where each edge is incident to two vertices. Each edge also has a
curve equation, represented implicitly and when possible also with parsmeaic equation. Further an
interior point is also provided on each edge which helps remove any geometric ambiguity in the
representation for high degree algebraic curves. Requicha (1980).

(3) A finite set of vertices usually specified by Cartesian coordinates.

The curve equation for each edge is chosen such that the direction of the normal at each point of the edge is
towards the exterior of the object For a simple poinl on the curve the normal is defined as the vector of
partials to the curve evaluated at that point For a singular point on the curve we associate a range of nor­
mal directions determined by normals to the tangents a1 the singular point Funher the edges are oriented
such that the interior of the object is to the left when the cycle of edges is traversed. Straightforward
assumptions are also made, e.g. object has no holes: edges may be singular, however loop-free; different
edges do not inlel"SeCt except at vertices ele.

3. Computations with Algebraic Curves

In this section we consider some primitive geometrlc operations to manipulale algebraic curve seg·
ments. Prior work. of relevance to later sections here, have considered lIle generation of rational
parametric equations for implicilly defined rational algebraic plane curves and surfaces, see Abhyankar and
Bajaj (1987a, b, c),lIle generation of implicit equations for parametrically defined algebraic curves and sur·
faces, see Bajaj (1987), as well as the robust tracing of algebraic curve segments with lIle correct coonce·
tivity, especially when tracing through complicated singularities. see Bajaj, Hoffmarm and Hopcroft
(1986). The latter for instance is very useful in delermining when a given point lies wilhin a cenain
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implicitly defined algebraic curve segment In §3.1 we consider how to segment the boundary curve seg­
ments into monotone pieces. and in §3.2 we consider operations to compute curve-line segments intersec­
tion, halfplane containments. and common supporting lines.

3.1. Monotone Segmentation

In many of the computational geometry problems dealing with curved objects, it is very convenient
to design efficient a1gorilhms when we asswne each curve segment is monotone (i.e. monotone in z and y
coordinates and without any singular or inflection point). We thus first consider how to achieve this mono­
lone segmentation, as a preprocessing step, for a general algebraic curve. TIlis monotone segmenlalion
requires adding singular points, inflection points and extreme points on the curve as extra vertices.

FII'St we take care of singular points on curved edges. Singularities are deLennined for each curved
edge and are computed by using Lemma 3.1.1: I (i) and IT (i). The boundary of the object is next modified
such that nonsingular edges are eilher convex, concave or linear segments. Such conditions are easily met
by adding extra vertices to inflection poinlS of curved edges. Inflection points of curves can be obtained
and the edges are marked convex. concave or linear respectively by using Lemma 3.1.1: I (iv), (v), (VI) and
II (iv), (v), (vi). We may also asswne edges are further segmented so lhat extreme points along x or y
directions added as vertices. These extreme points are computed by using Lemma 3.1.1: I (il), (iii) and II
(til, (iii).

Definition 3.1: Let e be a directed boundary edge without any inflection or singular point. Then
(1) e is convex ifand only if the gradient ofe turns counter--clockwise along e
(2) e is concave if and only if the gradient ofe turns clockwise along C
(3) C is mon%ne if and only if C is either convex, concave or linear, and the interior of e doesn't
include any extreme point along thex or y directions.

Lemma 3.1.1 : (I) Let C : (a.b) ~ R 2. be a curve parametrized by I E (a.,b) and p =e(t) =
(c 1(1), c'}.(t» bea point on this curve. Then
(i) p is a (non-self-intersecting) singular point if and only ifC'l(t) = c''}.(r) = 0,
(ii) p is a non·singular x-extreme point if and only if c''}.(r) = 0 and C'l(l) * 0,
(iii)p is a non·singular y-exuerne point if and only if C'l(t) =0 and c''}.(t) * 0, and
[Iv) p is an inflection point of the curve C if and only if1C(P) =0 =c'I(r)· c"'}.(t) - c ''}.(t). c "l(t).
If C h8s no inflection point, then
(v) C is convex' if and only if c'l(r)· c"2(t) - c'2(t)· c"l(t) > 0, and
(vi) e is concave if and only ifc'l(t)· c"'}.(/) - c '2(t)· c "I(t) < o.
(II) Let C be a curve impliciL1y defined by f (x;y) = 0 and p =ex ,y) be a point on !he curve C.
Then

(i) p is a singular point if and only ifI =I" = I, = 0,
(ii)p is a non·singular x-extreme point if and only ifl =/, =0 andl.. * 0,
(iii) p is ay-extrerne pointifand only iff =I" =0 and!, * 0, and
(iv)p is an inflection point if and only ifI Z% • if,)'}. - 2f%y • if" .I,) + f Y1 . ifez)'}. = O.
If C has no inflection point, then
(v) C is convex if and only iffZ% • if,)'}. - 21zy ·ifez·I,) + I» .if,,)'}. > 0, and
(vi) e is concave if and only iff:r:r. • if,)'}. - 2[%y. ifez 1,) + [Y1 . if,,)'}. < o.
Proor: Most of these results are classical, see for example Walker (1978). 0

Lemma 3.1.2: (I) For a paramemc curve segment C of degree d, a monotone segmentation can be
obtained in 0 (d3 ·logd) time in the worst case and in 0 (d2 ·lo,rd) time on the average.
(II) For an implicit algebraic curve segmenl C of degree d, a monotone segmentation can be
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obtained in o(d6·logd + T(d» time in the worst case and in O(d4·1o.rd + T(d» time on the

average. where T(d) is lIle time required for the curve segment tracing.

Proof: (1) The above equations are of degree 0 (d) in a single variable t. and the squarefree parts

can re calcu1aled in 0 (d Iotd) time and be solved using root isolations in 0 Cd! logd) lime in the

worst case and in 0 (d2·1ord) time on the average. see Schwartz and Sharir (1983).
(2) The above equations are two simullaneous polynomial equations of degree 0 (d) in two variables

% and y. We can eliminate one variable (say. y) using the Sylvester resultant in 0 (d41ord) time,
see Collins (1971), B~~ and Royappa (1987), and solve the resul!in8 equation of degree 0 (d') iD
one variable (say, x) in O(d6 1ogd) time in the worst case and O(d4 1otd) time on the average.
Similarly, we can solve for another variable (say, y) with the same time complexity. Finally, the

solution points on the curve segment C can be found by tracing the curve segment in T(d) time. 0

3.2. Basic Operations on Monotone Curve Segments

In this section. we consider four typeS of primitive operations on the monotone curve segments. As
we will see in §4, lhese are all the required geometric operations on the monotone curve segments to com­

pute the convex hull of planar curved object once the boundary curves are segmented into monotone

pieces. All the other operntions are based on the coordinates of the vcnices of the monotone curve seg­
ments. These primitive opemtions compute:

(A) The int.erseetion(s) ofa monotone curve segment C and a line segment L

(B) The containment ofa monotone curve segment C in the upper-left halfplane HUL(L) ofa lineL

(e) The common supporting line L of a monotone curve segment C and a point q such that C U {q }

cHUL(L), and the corresponding supporting pointp ofL at C

(0) The common supporting line L of two monotone curve segments C and D such that CUD c
HUI.(L), and the corresponding supporting poinlSp and q ofL at C andD respectively.

Line-Curve Segments Intersection

Suppose C is a monotone curve segment and L is a line segment Let R (C) and R (L) be the

minimal rectangles with sides parnlIelto coordinate axes and containing C and L respectively, and T(C)
be the minimal triangle defined by the line connecting both end points of C and two tangent lines of C a1

both end points of C. The intersection of C and L can be computed as follows.

if(R(C)nR(L)=0)thenC nL =0;

else if (T(C) nL = 0) then C nL = 0;

else LetPI =(XI.Yl) and P2 =(x2.y:0 be the starting and ending points ofL' =T(C) nL, then

the intersect point(s) of C and L' can be computed by the following Lemma;

Lemma 3.2.1: (I) IT C is a parametric curve segment given by C (s) = (x (s ),y (s» with aSs S b,

then C intersecls with L' at a pointp =C(s) = t .PI + (I-t)·P2ifand only if s and t satisfy

{

a-5.S-5.b,andOStSI (1)

X(S)=I·XI+(1-t)·X2 (2)

y(s)=/oy,+(1-I)0" (3)

(IT) If C is an implicit algebraic curve segmenl given by f (x ,y) = 0, then C intersecls with L' at a

pointp =I 'Pl + (1-1)· P2 ifand only if t satisfies
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{
PEcandOSISl

f(1 'x, + (1-1) 'x" I 'y, + (1-1)'y,) = 0

(I)

(2)

'.

(1)

(2)

Proof: Straightforward. 0

Lemma 3.2.2: (I) For a pammetric curve segment C. the curve-line segments intersection can be

computed in 0 (d31ogd) time.
(IT) For an implicit algebraic curve segment C. the curve-line segmenlS intersection can be com­
puted in 0 (d 3 )ogd + T(d» time, where T(d) is the time required for a CllIVe tracing along C.

Proof: (I) The elimination of t can be done in 0 (1) time resulting in a single polynomial of degree
d in a single variable s. This polynomial can be solved in 0 (d3 1ogd) time using root isolation, see
Schwartz and Sharir (1983). There are at most d solutions for s with aSs S b and the correspond­
ing t to each s can be solved in 0 (1) time.
(0) When we expand the equalion (2) in an increasing order of t • it gives a polynomial of degree d

in a single variable t. The expansion can be done in 0 (d~ time and the polynomial can be solved in
o(d3 Iogd) time using root isolation. Finally, we need 10 trace along me curve segment C to check
whether these solutions are on the curve segment C in T(d) time. 0

Containment in a HaIf'plane

The halfplane containment for points and line segments can be done in 0 (I) time. Suppose C is a
conva' monotone edges along which x and y-<:oordinates are strictly increasing, L is an infinite line with
slope m. ~ 0, and HIlL (L) is the upper-lefl closed halfplane of the line L. These are the only types of
curved edges and halfplanes considered in §4. Then, C cHIlL (L) <=> Ps and PE e HIIL(L), and C n
L ',* 0, where L ':::: T(e) n L; Hence, the time complexity of halfplane containment testing is the same

as tha1 ofLine-Curve segments intersection.

Common Supporting LIne ofa Curve Segment and a Point

Suppose L is a common supponing line of a monotone curve segment C and a point q :::: (n, ~) f C

such thatC U { q } c HIIL(L). Then the supporting pointp ofL at C is given by the following Lemma.

Lemma 3.2.3: (I) IrC is given by a parametric curve C(t) :::: (x(t),y(t» with a ~ t ~ b, thenp::::
(x (I),y (I)) is g;ven by

{ a~t~b(x (1)-") 'y'(1) - (y(I)-jl) ,x'(1) = 0

(II) If C is given by an implicitcurvej (x ,y) :::: 0, then the pointp =(x,y) is given by

{
f(X,y)=oandP=(X,y)ec (1)

(x-a.l'f. + (Y-~)'f, = 0 (2)

Proof: Straightforward 0

Lemma 3.2.4: (I) For a paramelric curve segment C, the common supponing line of C and q can
be computed in o(d31ogd) time.
(ll) For an implicit algebraic curve segment C, the common supponing line of C and q can be com­
puted in O(d6 logd + T(d» time, where T(d) is the time required for a curve tracing.

Proof: Similar to Lemma 3.1.2. 0
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Common Supporting Line ofTwo Curve Segments

Suppose L is a common supporting line of two disjoint monOlOne curve segments C and D such that
CUD c H UL (L). Then the supporting points p =(x. y) and q = (a., ~) ofL 81 C and D respectively

are given by the following Lemma

Lemma 3.2.5: (I) If C and D are given by parametric curves C ($) = (x(s ),y(s» with a S; s s; b
andD (I) ~ (lX(I),P(t» with cSt S d, thenp = (%(s),y(s» and q = (lX(t),P(I» are given by

{

aSSSb8l1dCSISd (1)

(%(s)-<x(t»· y'(s) - (Y(S)-P(I»'%'(S) =0 (2)

(;c(s }-<x(t»· Wet) - (y (s )-P(I»' a'(t) =0 (3)

(IT) If C is given by a parametric curve C(s) = (x ($ ),Y ($» wi!h. a s: s S; b and D is given by an

implicit curve g (o:,P) = 0, thenp = (%(s),y(s» and q = (o:,P) are given by

aSsSb (1)

g(o:,p)=Oandq~(o:,p)ED (2)

(%(s)-a)' y'(s) - (y(s)-P) ·%'(s) =0 (3)

(%(s}-<x)' g. + (y(s)-P)'g~ =0 (4)

(ITI) Ire andD are given by impticitcurvesf(x.y) =o and g(a..!3) =0, thenp =(.%,y) andq =
(0:, P) are given by

f(%,y)~Oandp=(%.y)E C (1)

g(o:,p)=Oandq~(o:,p)ED (2)

(%-o:)·f. + (y-P)·f, ~ 0 (3)

(%-a)·g.+(y-P)·g~=O (4)

ProoF: SIraightforward. 0

Lemma 3.2.6: (I) For parametric curve segments C and D. the common supporting line of C and

D can be computed in 0 (d6 1ogd) time.
CD) For a parametric curve segment C and an implicit algebraic curve segment D. the common sup­
porting line of C and D can be computed in O(d 121ogd + T(d» time. where T(d) is the time
required for a curve tracing.

(UI) For implicit algebraic curve segments C and D. the common supporting line of C and D can

be computed in 0 (d24 1ogd + T(d» time, where T(d) is the time required for curve tracings along
C andD.,
Proof: Similar to Lemmas 3.1.2 and 3.2.4. 0

4. Convex Hull of Geometric Model

In this section we present an algorithm to compute the convex hull of planar curved objects bounded.

by 0 (m) monOlone curve segments which have been oblained in the preprocessing step from 0 (n) alge­

braic curve segments of maximum degree d. In §3 each implicil (resp. parametric) algebraic curve seg­

ment of degree d has been segmented into at most O(d1 (resp. Oed»~ monotone curve segments by

adding extra vertices into singular points, inflection points and extreme points. Ailee this preprocessing

step of monotone segmentation, the total number of boundary edges becomes m which is 0 (n . d2). The

algorithm presenLed in this section runs in 0 (m) steps. where each step would take either (a) a constant
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time if a simple coordinate comparison is enough to process an edge or (b) a polynomial time in the degree
d if a nontrivial operation on curve segments such as line-curve intersection or tangent line computaLion is
required to process an edge. Detailed timing analysis will be given in §5. In the following we consider the
construction of the lower-right subpart of the convex hull boundary which lies between the bottom most
vertex and the rightmost vertex of the original object The entire convex hull is oblained by applying the
same algorithm to the remaining three subparts. Since the minimwn horizontal (resp. vertical) line segment
conlaining all the bonommost (resp. rightmost) vertices is on the convex hull boundary, w.LD.g. we may
assume there are unique bottommost and rightmost vertices. In the following, suppose C I. C2••..• eM is a
connected sequence of edges from the bottommost venex Po to tlJe rightmost vertex PM, and each Cj has

Pj-l and Pi as its starting and ending vertices. For a point P, (resp. p') wilh subscript # (resp. superscript

#) we denote thex and y-coordinares of P, (resp.p') by x, andy, (resp. x' andy'). We also denote the

line segment connecting two points p and q by L(p,q) and the pam fromp to q along lhe boundary curve

bY'lIP.q)·

4.1. Sequences of Event Edge and Current Hull

We make a constructive definition of a sequence of e'Jent edges {Cd:"l wilh C;., =CM and a

sequence of current hulls {CHI; If'''l. We sh.ow lhe following property of lhe k -th current hull CHI: :

(!lIE) IfP e "'«p(}oP,J is a poinl on the convex: hull boundary, then p e CHI: and rhe front subarc of CHI:
between Po and p is on the convex hull bolUll1ary.

This property (!lIE) and the fact that PM is the end point of the N-lh current hull CHN imply that CHN is lhe
lower-right subpart of lhe convex hull boundary between two cxrreme pointsPo and PM'

Definition ofCi" and CHI:

Let io=0 and CHo={Po}. Assume that lhe index il: and lhe k-m current hull CHi (0 s. k < N)

have been defined. We define the (k+l)-lh e'Jent edge Ci"" and the (k+l)-lh e'Jent componenl ECI:+1 c C4..
in tenns of il: and CHI: as follows, see Figures4.1.1-4.1.3.

(A) If Xi,,+1 S. x.. and the inner angle of Pi" < x, then il:+1=min {j I j > il: and Xj > Xi }. Further, (a)

ECt +1 =Ci"" ifYr:..,,-l <YoO., and CoO•• is CORva, and (b) EC.t+l =P..., olherwise.

(B) If x.. < X"+l and Y.. < y..+] , then i.l:+1 = il:+1. Fwther, (a) ECI:+1 = C1".. if C.... is conva, and (b) EC.I:+1
=P..., olherwise.

(C) Otherwise, let yminj_l(L(p',p")) = min {y. Ip. E r(p;.,Pj_l) n L(p',p'') } for il: < j -I (we

define lhe lid L(p ',p") later). Further,let 0.1: = {M } U {j I (i) i.l: + 1 <j S M, (i.i) Yj_1 < Yj, and

(iii) either Cj is totally omside of any pocket of CHI: or (Cj is not lotally inside of a pocket of CHI:
and intersects wilh a lid L (p ',p'') at a point p•• willi y.. < yminj_I(L (p ',P ''))) }, and let jo =min

Ol:' (a) If Xj,_1 < Xj.' lhen ik+l = jo and «(al) EC.I:+1 = C..., if C4.. is conva, and (81) EC.t+1 =

L(Pi".,-I'Pi".,) otherwise). (b) Otherwise, il:+1=jo-l and EC.t+1 =P;. ...

Next we define lhe (k+I)-lh current hull CH.I:+1. It is easy to show lhere is a Wlique common supporting
lineL of CH.I: and ECl:+1 at the pointsp' andp" (with x' <,X" and y' < y'') respectively such that eH! u
ECt +1 c HUL(L). If lhere is more than one choice ofp' (resp.p''), we choose p' (resp.p'') so lhallhe dis­

lance between p' and p" to be minimal. Further, let FRONT_CHl:+1 denote the front subarc of CHi
between the points Po andp', andREAR_CHI:+l denote the rear subarc ofECt +1between the pointsp" and

P"." The (k+I)-lh ClUrent hull CH.I:+1 is defined as the connected union FRONT_CHl:+1 U L(p ',p'') U

REAR_CHt +I , see Figure 4.1.4. CH.t+1 is a convex arc along which hom x and y-coordinates are strictly
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increasing. L-(P',p") is called as the lid determined by p' and p". Let:r be the closed path given as

1:P',p") followed by a paIh from p" 10 p' along L(P',p"). If Yhas no self·inlerseclion, the region

bounded by '1 is called as the pocut dele1lTlined by the lid L(P',p"). Otherwise, "j(p',p"} has an even

number of intersections with the lid L(P',p") counting intersections with multiplicities and r divides the

plane into finite number of connected regions. The union ofall the regions which are lO the right ofr is the
poWI implied by L (p ',P"J. see Figure 4.1.5.

Properties of CH..

The proofofproperty (*) follows from the following Lemmas 4.1.1-4.1.2.

Lemma 4.1.1: Ifapointp E Ci (1 :!i{; i ~ i1.) is on Ihe convex hull boundary, thenp e eH!:..

Proof: The interior of lhe path "((pi"P;,.,), the arc Ci... - ECJ:+!. and (CHt. U CLo,) - CHJ:+1 are in
the convex hull interior. 0

Lemma 4.1.2: If a pointp e CHJ: is on the convex hull boundary, then lite front subarc of CH"
between Po andp is entirely contained in the convex hull boundary.

Proof: The case k = I is easy to show. By induction, we assume for k (1 S k < N) and consider

k+l. Suppose a poinlp E CHt+1 is on the convex hull boundary. (a) Ifp E FRONr_CHt+1 C CHI:'
then lhe Sta1emenl follows by induction. (b) If pEL (p ',p "), then L (p ',p ") is also on the convex

hull boundary. Further, FRONI'_CHt+1 is on the convex hull boundary by induction. (c) If p E

REAR_CHI:+I • then there is a supporting line Lp al p. We prove the lid L (p ',p ") is on lhe convex

hull bOlmdary. Suppose there is a boundary point q in the region R I' see Figure 4.1.6. We may

assume q is extreme to lhe outward nonnal direction of lhe lid and thus on the convex hull boundary.

(i) If q e Cj (1 'S.j 'S. it +1), then Lemrna4.1.2 implies q E CHt +1• But., it's impossible since CHt +1

is convex. (ii) Otherwise, there is a continuous path from P..... to q. This path should pass through

either the region R 2 or R 3' bUl both are impossible. Hence. the lid L (p ',p") is on the convex hull

boundary, and by induction FRONI'_CHt+1 is also on the convex hull boundary. Similarly one can

show that the subarc of REAR_CHt+1 betweenp" andp is on the convex hull boundary. 0

Hence, each cUTTent hull CHI has the pmpelt)' (ft). Since PM is the end point of both C;,. and CHN ,

Theorem 4.1.1 follows easily from Lemmas 4.1.1-4.1.2.

Theorem 4.1.1 : CHN is the lower-right part of the convex hull boundary between two extreme

pointspoandPM'

4.2. Description or Algorithm

We describe an algorithm to compme the sequences of elIenl edges {Ci" Jr...1 and cllTrenl /wIts

{CHI: Jfcl by using a single slack CH. CH contains segments of the k -th current hull CHI which are

subarcs of some conllex edges, some linear edges and the lids of pockets. Adjacent elements on the stack

share a common end point and the connected sequence of elements on the stack CH genemtes the curren!
hull CHt (we call as the stack CH implies the current hull CHt).

Compnting Event Edges

We start with pushing a single poinL interval [POopol into an empty stack CH. The Slack CH implies

the current hull CH0 = {Po J. In general, suppose it is detected and the stack eH implies the k-th current
hull CHI: (0 :s; k < N). To detect i t +1 we call the procedure Detect_ElIent_Edge of Appendix 1. Since the

correctness of the cases (A) and (B) is obvious, we will consider the case (C) in the following.
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An integer variable j initialized to;1; is used to detect ;"+10 The initial value of j satisfies the follow­

ing property.

(••) C) is hot totally contained in an interior of any pocket of CHI:,. and TOP(CH) is not strictly below

the horizontal line Y = Yj'

Wilhin the branch (C) there is a while-loop. Upon completion of each loop either i.l:+1 has been detected or
the loop-invariant (¥it) holds for the new j. We show this fact while describing (he sub-branches (el}

(C3) in the following.

At the beginning of each loop. (**) holds and j < min 01:' After we increment j by 1. in (el) and

(C2), j =min 0 1 and il:+1 and EC are com:ctly set to appropriate values. Funher, in (C3), j <: nl::' To
make the loop-invariant (**) hold we rnanipu1aI.e the stack CH. F1I'SI. of all, we check whether PJ is an

interior point of any pocket of CHI:' For this i, Pj is an interior point of a pocket bounded by a lid
L(P',p") if and only ifpj is in the upper lefL open halfplane ofL(P',p") and Cj inlcrSects with L(P',p").

Further, if Cj intersects wilh L(P',p"},lh.en L(P',p") is neither strictly above the horizontal line Y = Yj_1

nor strictly below the line Y = Yj' Since llIe current stack CH contains all these elements. we need to

examine only those elements not smctly below the line Y = Yj in a fim.1e step. If the top stack element

TOP(CH) lies strictly above the line Y = Yj' it cannot be a lid bounding a pocket with Pi in its interior.
Since it is in the convex hull interior, we pop TOP(CH). We repeat Ibis popping procedure until (a) an
intersecting lid is found which bounds a pocket withpj in its interior. or (b) a non-intersecting element is

found which is not strictly above Y = Yj' In the case of (a), we have one right-to-left. cut on the edge Cj •

Right-Io-Ieft cut (resp. left-to-right cut) at a point p. is a transversal intersection of an edge C willi a lid at

an interiorpointp. such that C traverses from the right to the left (resp. from the left to the right) of the lid

in the neighborhood ofp•. WIlen the boundary curve transversally intersects at a vertex Pj' we consider

the point Pj as a point of Cj +1 and detmnine the cut direction in a similar way. WIlenever we meet a
lIBIlSVersally intersecting edge with a lid. we update llIe total number of right-to-left cuts and/or left-to­

right cuts. In Figure 4.1.7, a path -NJ. ,Pj) is totally contained in a self-intersecting pocket and has its first
interior intersection willi a lid L (p ',p") in a right-to-Ieft direction. When -NJ••Pj) comes out of a p:x:kel

througlt a point p.. , the total cuts in both directions are equal. Hence, we can detect the next edge not
lOlally contained in a pocket by counting the cuts in both directions properly. To detect the next event edge

satisfying the condition (C), we skip all the subsequent edges until an edge Cr intersecting with L(P'.PJ
at a pointp.. such that the total number of right-to-Ieft. cuts and Ieft-to-right cuts upto p•• are the same and

y.. < yminj_I(L (p',p n». (i) lfYr-l < Yr. thenj' = min.Q!: and ihl is set toj' correctly. (ti) Otherwise.
the loop-invariant (*tilE) holds after the assignmentj =r. In (b), the loop-invariant (iOK) holds. Hence. we

proved the following Theorem.

Theorem 4.2.1: The algorithm DereccEvent_Edge detects the (k+ l)-th event edge Co....

Computing Current Hulls

Now, we descn"be how to compute the (k+l)-th current hull CH!:+! from the k-th current hull CHI:

and the (k+l)-th event compone1l1 EC!:+! by using the stack CH. Since we are popping some stack ele­

ments so tha1 TOP(CH) is neither strictly above nor strictly below the horizontal line y = MIN, the stack
CH may not imply the k-th currenr hull CHI:. when ECI;+! is computed. However, the stack CH always

contains all the elements necessary for the construction of the new stack: eH implying the (k+ l)-th current
hull CHI:.+!. i.e. the stack elements nOl strictly above the horizonlalline y =MlN. A detailed procedure to

update the stack CH to a new stack CH implying CHI;+l is given as lhe procedwe Updare_Currenr_Hull in
Appendix n, where SUPPI(C ,D) (resp. SUPP2(C ,D) returns the supporting pointp' at C (resp. P" at

D) of the supporting lineL such that C UD c HUL(L).
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In each loop we check whelher TOP(CH} contains lhe common supporting point p' of CHI;' We
have (a) p' =Pe if and only ifEe c HUL(Lp) and Ee is not strictly below the horizontal line Y = YEo@)

p' e TOP{CH) if and only ifEe c nUL (LPf)' and (y) p' E TOP(CH) otherwise, where Ps and PE are the

starting and ending points of TOP(CH), and Lp• and Lp~ are the tangent lines of TOP(CH) a1 Ps and p£

respectively. In the cases (a) and @), the loop tenninates after setting p' and p" appropriately. The

correctness of the branches for (a) and (13) is obvious. And. in (y), we pop the element TOP{CH) from the
stack eH and repeat the loop. Since Ee is in the upper half plane of the horizonlalline y = Yo. lhe loop
tenninaIeS in a finite step and the correctness of the algorithm follows by induction. Hence. we proved the
following Theorem.

Theorem 4.2.Z: The algorithm Update_Current_Hull computes the (k+l)-th currenl hull CHt.+l'

Computing the Convex Hull

Using the above procedures 10 detect event edges and upda1e current hulls we can design an algo­
rithm to compute the lower-right subpart of the convex hull boundary between the bottOmmost vertex and
the righonost vertex as follows.

procedure Lower_Righl_Conller_Hull;
begin

LetCH =t2l and i =0;
Push [p~p~ into CH;
while (i <N) do begin

Detect_ElIent_Edge (CH. i, i, EC);

Update_CJJT7ent_Hull (CH .EC); end; (* while *)

end; (*Lower_Righi_Convex_Hull ff:)

The correctness of the procedures Detect_Event_Edge and Update_Current_Huli follows from Theorems
4.2.1-2. Since the above while-loop tenninates a1 a finite step and CM is an event edge at someN -th step,
the correctness of Lower_Right_Convex_Hull fonows by induction and Theorem 4.1.1.

TbeoTem 4.2.3: The algorithm Lower_Right_Convu_Hull computes the lower-right subpart of the
convex hull boundary between the bolIQmmost vertex and the rightmost vertex.

5. Algorithm Analysis

Complexity or Event Edge DetectioD

We consider the time complexity required to manipulate the edge segments in the process of detect­
ing next event edges. In the cases of (A) and (B), each edge requires 0 (1) processing time since a simple
coordinate comparison is enough to process an edge. But, in the case of (C), either finite number of simple
coordinate comparisons or intersections with a line segment are required to process an edge. The tola1
numbers of coordinate comparisons and curve-line segments intersections are 0 (m). Since many of
curve-line segments inteI1iection testings can be done in a finite number of simple operations using bound­
ing mangle testings, etc., the actual nwnber of curve-line segment intersections based on curve tracing, say
mI' would be much less than m though the worsL case complexity can be 0 (m). Hence, the overall time
complexity for event edge detections is 0 (m +ml . d3Iogd) =0 (m 'd310gd) =0 (n ·dslogd). Even
though we are also manipulating the stack eN while detecting next event edges, we will consider this cost
in the following.



Complexity or Current Hull Computation

We consider the time complexity required to manipulate the stack elements in the process of updat­
ing me current hulls. Each srack element is either (1) popped, (2) pushed. or (3) replaced by 8 subsegment
of it (1) The cost of popping 8 stack element can be charged to the stack element popped itself. and hence
to the event edge which pushed this stack element Since a stack. element can be decided to be popped after
an half-plane containment testing to the next event edge. each popping could be done within either (i) a

constant time if finite simple operations are sufficient. or (li) 0 (d3 'logd + T(d» time if a curve-line seg­
ment intersection is required. where T(d) is the time required for curve lracing. (2) Each stack element

first PllSbed is either a subsegmenl of an event edge or a lid common to this event edge. (3) Some stack
elements need to be replaced to shaner subsegmenlS. The replaced segment has a common lid with 8 new
stack element which is a subsegmem of the new event edge. We charge the cost for pushing and replacing
to the new lid., and evenbJa1ly to the new event edge. A lid is computed within either (iii) a constant lime.
(iv) 0 (d6 'logd + T(d» time if a tangent line computation from a point to a curve segment is required. or
(v) O(d24 ·logd + T(d» time if 8 common tangent line computation between two curve segments is

required. Let mz be the number of event edges, and m2,l. m2,2t m2,'3' m2,4' m2,5 be lhe number of elements
of type (i), (ii), (iii). (iv). (v). m2,l. m2,2.' m2,3' m2,4. m2,5 are 0 (m;J. and 0 (m;J is 0 (m). Hence, the total

cost for manipulating stack elements takes o(m2,l + m2,3 + mu·(d3·logd) + m2,4·(d3·1ogd) +
m2,S' (d"logd)) = O(m,' (d'logd) = 0 (m ·d'logd) = 0 (n ·d'logd) (=p.

o(n . (d26 logd + d 2T(d)))) for object with all boundary curves as ralional (resp. non-rational).

6. ConclllSion

in this paper. we suggested an O(n ·dBlogd) (resp. O(n '(d26 1ogd + d 2T(d»» algorithm to com­
pute the convex hull of planar curved object bounded by 0 (11) raLional (resp. Don-ralional) algebraic curve
segments. The true bound aD d for the latter can be substantially reduced by use of the multivariant resul­
tant. see Salm~n (1885), Macaulay (1902), and Bajaj (1987). An accwate timing analysis on computing
the mullivariate resultants is currently underway. Though within lhe same asymptotic time complexity, this
improves Schaffer and Van Wyk (1987) to the case of planar curved objects bounded by arbitrary algebraic
curve segments. Main differences between this algorithm and Schaffer and Van Wyk (1987) are: (1) the
boundary curves are segmented. into monolone curve segments by adding in.Ilection points and extreme
points as vertices in a preprocessing step. (2) the original problem is divided into 4 subproblems instead of
2 subproblems, (3) the convex hull boundary is computed using a SlaCk in a single pass instead of two pass,
(4) it is a coordinated based algorithm instead of edge based algorithm, (5) this algorithm reduces the
Dumber of common tangent computation by detecting next event edges wilh a correct orientation.
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Appendix I

procedure Detecl_Evenl_Edge (CH. ill iJ:+!.EC);
begin

(A) if (%;+1 .s Xi and the inner angle ofPi < n:) then begin
Leti =min {j Ii > i + 1andxj >X;};

if 601-1 <y; and Cj is con",ex) then LetEe =C,·; e1seLelEC =Pi: end; (:lIE (A) lIE)

(B) else if (Xi <X'+I andy; <Y;+I) lhen begin
Leti=i+l;

if eel is convex) lhen LetEe =Gi : else LetEe = Pi: end; (IE (B).)

(C) else begin

Let j =ij; and FOUND = false;
while (not FOUND) do begin

Letj=j+l;

(el) if (Xj_l <Xj and Yj-l <Yj) then begin
Let il:+1 =j and FqUND =true;

if(ej is convex) lhenLetEC =Ci"..: else Let EC =L(Pi""_l,P;,,.,): end; (:lIE (el) lIE)

(C2) else if (Yj-l <Yj) then

Letij;+l =j-I.Ee =Pio., and FOUND =true;

(Cl) else begin

Pop all the stack elements until (a) a lidL(p',p'') which conlainsPj in lhe interior
of the pocket bounded by the lid L(P',p") or (b) a stack element which is not
strictly above the horizontal line Y = Yj;

(a) if (pj is an inLerior point of the pocket bounded by the lid L(P',p") which inter­
sects with Cj alp.) then begin

Let DONE = false,RigJuLeftCw = I, LeftRightCw = I, and YMIN =y.;
repeat

Skip all the subsequent edges until an edge Cj ' which transversally
intersects with L (p '.P ");

for (each transversal intersection pointp•• on Cr)do begin

if (the intersection is a left·to·right cut) lhen
Let Lefl1UghlCUl =LeftRighlCUl + I;

else LetRighILeftCur =RighJLeflCUl + 1;

if (y.. < YMIN and RighJLeflCut = LeftRighlCut) lhen
Let DONE =true;

else Let YMlN =min (YMlN, y•• ); end; (lIE for lIE)
unlil (DONE);

(i) if (Yj'_1 <Yr) lhen Let '.1+1 =j' and FOUND =true;

(ii) else Let j =j'; end; (~ (a)~)

end; (~(Cl)~)

end; (lIE while lIE) end; (;K (C) ;K)

end; (lIE Detecl_ElIent_Edge It<)
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Appendix IT

procedure Update_Currentflull (eH ,Ee);
begin
wDONE = false;
while (notDONE) do b:gin

Letps andpE be the starting and ending points ofTOP(CH);
LetL,. andL,. be lhe tangent lines ofTOP(CH) alps andpE respectively;

(a) if(EC cHUL(Lp~)andEC is not strictly below thehorizontalliney = YE) then begin

if (BC is apointPi..,) then Let p" = Pl..,:

else if (BC is a convex edge C;...) then Letp" = SUPP2 (PE. Ci..,);

else if (BC is aline segmenlL(Piw,_t.Pio.,» then

if (P;'..-l E HUL(L(PE,P...,») lhen Lelp" = Pi,.,: else !.elp" = Pio..-l:
Push the lidL(PE.P") into eH;

if (p" :# P...,> then
if (EC = Ci".,) then Push the subsegment of Co.., between p" and Pi.... into eH;

else if(EC =L(Pi..•-t,P...,» then Push the lidL(P;'.,_I'P;,.,) into eH;
Let DONE = true; end; (* (a) ¥)

(fl) else if (EC c: H!IL(L,.)) !hen begin

if (EC is a point P,.,) then Letp" =P'.' andp' = SUPPI (rOPCCH}.p,•..>;

else if (BC is a convex edge Ci..,) then

Letp'= SUPPI c:rOPCCH), C,..> andp" =supnc:rOp(CH), C,..);

else if (BC is a line segment L (P...,_I ,P...,» then begin

Letp' =SUPPI c:rOPCCH), p,..>:

if (P....-t E H UL (L(P ',Pi...») then Letp" = Pl..,;

else Letp" = Pi..,-l andp' = SUPPl (I'OP(CH),Pio,,_l): end; (ill< else ifill<)
Let C = the sllbsegmenl ofTOP(CH) betweenps andp';
Pop TOP(CH) from CH. and push C and the lidL(P',p") into CH;
if (p" ¢ P;..,) then

if (EC = Ci,.,) then Push the subsegmenl oCC;.., between p" andpio., into CH;

else Push the lidL(Pi•.,_I'P4,.,) into CH;

Le. DONE = ""e; end; C" (fl) ,,)

(y) else Pop TOP(CH) from the stack CH; end; (lIiE whiJelliE)
end: (* UpdJJte_CW7en,_Hull il:)



Figure 1.1 Difference between Polygonal and Curved Cases
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Figure 4.1.2 Ca) Event Edge of Type (B) with Ee = C,',.,

Figure 4.1.3 Ca) Event Edge of Type (C) with Ee = Cil<l
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Figure 4.1.2 (b) Event Edge of Type (B) with EC =Pil .,

Figure 4.1.3 (b) Event Edge of Type ee) with EC = PiHI



Po

Pi~

Figure 4.1.4 The (k+l)-th current hull CH
k
+1

Po--~

Figure 4.1.5 (b) Self-intersecting Pocket

Po-__-

Figure 4.1.5 (a) Simple Pockets

P

Figure 4.1.6 The Regions R I. R 2 andR3

\



Po

Figure 4.1.7 w..,Pj) in the interior of a pocket
-- -_._--"------ --_.

,


	Convex Hull of Objects Bounded by Algebraic Curves
	Report Number:
	

	tmp.1307986960.pdf.UhBhr

