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CONVEX HULLS OF SOME CLASSICAL FAMILIES
OF UNIVALENT FUNCTIONS^)

BY
L. BRICKMAN, T. H. MacGREGOR and d. r. wilken

Abstract. Let S denote the functions that are analytic and univalent in the open
unit disk and satisfy /(0) = 0 and/'(0) = 1. Also, let K, St, SR, and C be the subfamilies
of 5 consisting of convex, starlike, real, and close-to-convex mappings, respectively.
The closed convex hull of each of these four families is determined as well as the
extreme points for each. Moreover, integral formulas are obtained for each hull in
terms of the probability measures over suitable sets. The extreme points for each
family are particularly simple; for example, the Koebe functions f(z) = z/(l-xz)2,
\x\ = 1, are the extreme points of cl co St. These results are applied to discuss linear
extremal problems over each of the four families. A typical result is the following:
Let J be a "nontrivial" continuous linear functional on the functions analytic in the
unit disk. The only functions in St that satisfy Re/(/) = max {ReJ(g) : geSt} are
Koebe functions and there are only a finite number of them.

Introduction. We shall be concerned with the closed convex hulls of various
families of functions that are analytic and univalent in the open unit disk
A={z eC : \z\< 1}. For each family considered we obtain integral representations
for the closed convex hull, and we determine all the extreme points. In each case
the extreme points are strikingly simple and familiar functions. Thus we obtain a
powerful tool for solving linear extremum problems over such families.

Let us establish some notation and outline our main results. We shall let A
denote the set of all functions analytic in A. With the natural topology of uniform
convergence on compact subsets of A, A is a locally convex linear topological space
[15, p. 150]. Let S be the subset of A consisting of functions / that are univalent
(one-to-one) in A and satisfy/(0)=0,/'(0) = l. It is well known [7, p. 217] that S
is compact in A, or, equivalently, that S is closed and locally uniformly bounded.
(On each compact subset of A there is a common bound for all the functions in S.)
We shall be particularly interested in the following subfamilies of S.

K={fe S : /(A) is convex},
St={fe S : /(A) is starlike with respect to 0},
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92 L. BRICKMAN, T. H. MacGREGOR AND D. R. WILKEN [May

SR = {fe S : fis real on (-1, 1)},
C={fe S : fis "close-to-convex"}.

(A fonction / is close-to-convex if Re {zf'(z)/g(z)} > 0, z e A, for some fonction g
that is analytic and univalent in A, and such that g(A) is starlike with respect to 0.
For any such g it is clear that g(0) = 0 and Reg'(0)>(). Functions in the class C
can be characterized by a geometric mapping property [4].) Since these four families
are locally uniformly bounded (in fact, they are compact) so are their convex hulls.
(The reader is referred to [2, Chapter 5] for the definition of convex hull and other
related terms as well as for some results we shall use.) Hence the closure of these
hulls, denoted cl co K, cl co St, cl co Sr, cl co C, are compact. Therefore we know
a priori [2, p. 440] that the extreme points of cl co K, cl co St, cl co Sr, cl co C
belong to K, St, SR, C, respectively; in symbols «?(cl co A)CA &(clco St)<= St,
<f(cl co Sr)<=Sr, <?(cl co C)(=C. (An extreme point of a set F is a point of F that
cannot be written as a proper convex combination of two other points of F.)
Indeed, we find that <?(clco A) is the set of Möbius functions z/(l— xz), |x| = l;
<f(cl co St) is the set of Koebe functions z/(l — xz)2, \x\ = 1 ; <?(cl co Sr) is the set of
functions z/(l—2az+z2), — l^a^l; and <f(cl co C) is the set of functions
[z — ̂(x+y)z2]/[l—yz]2,\x\ = \y\ = l,x^y. (The functions in <?(cl co C) are
precisely those functions in S that map A onto the complement of a half-line.)
Moreover we obtain the integral formulas

r z j (.\ f f        z-((x+y)/2)z2     .      ,
J0 1-2Z cos/ + *■**>'       L.J,,,^       d-yz)2      d^y)

for the functions in cl co K, cl co St, cl co Sr, and cl co C, respectively. In each
formula /x is a probability measure on the indicated set (that is, a positive measure
of total mass 1). These formulas illustrate the Krein-Milman theorem for compact
convex subsets of a locally convex linear topological space. Namely, each point of
such a set is the limit of convex combinations of extreme points [2, p. 440]. We also
note that the integral formula for cl co Sr is also the formula for functions belong-
ing to T, the set of typically real functions, defined by T={fe A : /(0) = 0,/'(0) = 1,
f(z) is real if and only if z is real} (see [12]). Thus cl co Sr = T. This and other re-
lated facts about Sr were noted independently by W. E. Kirwan and one of the
present authors using a method different from that employed here. Various inclu-
sion relations among the families considered in this paper are discussed in §4.

Perhaps the fundamental interest in the results outlined above arises from the
fact that the maximum (or minimum) real part on K, St, Sr, or C of a continuous
linear functional on A occurs on S(c\ co K), i (cl co St), i(zl co Sr), or «?(cl co C),
respectively. For instance if J is a continuous linear functional on A, then

max {Re A/) :feSt} = max JRe./(     z'    \ : \x\ = 1
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1971] CONVEX HULLS OF UNIVALENT FUNCTIONS 93

a highly useful result. We note that this relation also follows from our integral
formula for cl co St. We also obtain the further refinement that if Zis "nontrivial",
then Re Z(/) is maximized over St only by finitely many Koebe functions. Analo-
gous results are proved for K and Sg.

Our viewpoint in the paper, that of considering convex hulls and extreme points
in connection with univalent functions, is rather new. (Consideration of extreme
points is of course routine for convex sets such as analytic functions with positive
real part and the unit balls of the Hp spaces.) We can mention only the following
papers. In [13] some results are obtained concerning meromorphic, univalent
functions and extreme points; a necessary condition on an extreme point of S is
proved in [1]. The present authors intend to write a second paper in the same vein
on related topics.

1. A general theorem on integral representations and applications to K, St, and
Sr. In this section we present a general theorem establishing the basic properties
of integral representations of the type we shall encounter. Following this we deter-
mine the closed convex hulls of K, St, and Sg.

Theorem 1. Let A be the open unit disk in the complex plane C, and let X be any
compact Hausdorff space. Let k: A x X -> C have the following three properties:

(1) For each x in X the map z -> kiz, x) is analytic in A.
(2) For each z in A the map x -> kiz, x) is continuous on X.
(3) For each r, 0 < r < 1, there exists Mr>0 such that \kiz, x)\ ^ Mrfor \z\^r and

for x in X.
Let ¿? denote the set of probability measures on the Borel subsets of X. For p, in 38, let

(4) fuiz) = ^kiz,x)dpix)      (zea).

Finally, let F = {fu: pe38}. Then
(a) Each function in F is analytic in A.
(b) The map p -»■/„ is continuous iwith the relative weak-star topology on 38,

regarded as a subset of CiX)*, and the topology of uniform convergence on compacta
on F).

(c) F is compact and is the closed convex hull of the set of functions
{z ->■ kiz, x) : x e X}.

(d) The only possible extreme points of F are the functions z -> kiz, x), xe X.
Ifx0e X and kiz, x0) = |x kiz, x) dpix) iz e A) holds only for p = 8Xo iunit point mass at
x0), then the function z -*■ kiz, x0) is an extreme point ofF. In particular, if the map
P —»■/„ is one-to-one, then each function z -» kiz, x), xe X, is an extreme point of F.

Proof, (a) Suppose that pe^. Then there is a net ipa)<=^ converging to p
such that each p.a consists of a finite set of "point masses." Hence (2) implies

fua(z) = J  k(z> x) dpaix) -> j  kiz, x) dpix) = fAz)
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94 L. BRICK MAN, T. H. MacGREGOR AND D. R. WILKEN [May

for each z in A. By (1) each fUa is analytic in A. Hence (a) will follow if the
convergence /„„(z) ->fu(z) is uniform on compact subsets of A. But by (3) and
(4), ifUa) is locally uniformly bounded on A. Hence (fUa) has a convergent subnet.
But from what was shown above it follows that any convergent subnet con-
verges pointwise on A to/,. Thus (/„J has/u for its only cluster point, and hence
/«« -*u

(b) Weak-star convergence of any net ipa)^F to p in F implies pointwise con-
vergence /„„(z) ->/„(z), and this in turn implies that (/„J converges to /„ in the
topology of uniform convergence on compacta. The required arguments are as in
(a) above.

(c) F is compact since F is compact and because of (b). As shown in the proof
of (a), any / in F is the limit of a net of convex combinations of functions
z-+kiz, x). Hence F^c\ co {z->kiz, x) : xe X}. Conversely

{z -»■ kiz, x) : x e X) c F,

and since F is convex and closed, cl co {z->&(z, x) : xe X}<=F.
(d) Let/ be any extreme point of F. As a result of (b), {p : peF,fu=f} is

compact, and therefore has an extreme point v. But since/is extreme, v must actually
be an extreme point of a*. Hence v is a unit point mass and/(z)=/v(z)=/c(z, x) for
some x in A'. Finally, suppose that the function z -> kiz, x0) is not extreme. Then
kiz, x0) = i/I(z) + (l-0/v(z), where 0<r<l, /¿g^, vg^>, p#v. But ifÄ+(l-/)/»
=/A, where A = r/n-|-(l — i)v. It follows that A is not a unit point mass while kiz, x0)
=f\iz)—jx kiz, x) dXix) as required.

Remarks. 1. In all the applications of Theorem 1 throughout the paper (2) and
(3) will hold by virtue of the continuity of k on A x X.

2. Probably the best known integral representation of the above type is the
Herglotz formula for analytic functions having a positive real part in A. In this
case it is known that the map p. ->•/, is one-to-one [8, p. 30], and we shall use this
fact in Theorems 2 and 4 below.

Theorem 2. Let X be the unit circle {z : \z\ = 1}, 38 the set of probability measures
on X and F the set of functions fa on A defined byfj^z) = \x [z/(l — xz)\ dpix), peF.
Let K be the set of convex, univalent, normalized functions on A. Then F=cl co K.
Also the map p ->/„ is one-to-one, and the extreme points of cl co K are precisely
the functions z -> z/(l —xz), xe X.

Proof. Since each function z ->- z/(l — xz), xe X, belongs to ZCit is clear (Theorem
1, part (c)) that Fcc\CoK. Next, let / be in K. It is known ([6], [14]) that
Re{/(z)/z}>^ for all z in A. Thus 2/(z)/z—1 has a positive real part for z in A.
This function also has the value 1 at z=0. Hence, according to Herglotz's formula,
there exists p in F such that 2fiz)/z-l=jx[ix + z)/(x—z)]dpix). Therefore
fiz)=\x [z/(l— z/x)]dpix), or replacing p. by p (/!(£')= p{E) for £cj) we conclude
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that feF. Therefore K<^F. Since F is convex and closed (Theorem 1, part (c))
cl co AT<= F. Thus J^=cl co K as stated. lífUl=fu.¿, then (for all z in A)

-.-r dpx(x) =      -.-r dp2(x), -dpx(x) =      -dp2(x),Jxl-z/x  riy Jxl-z/x  r JxX-z  riy JxX-z

and /x1=/x2 by the one-to-one property of the Herglotz representation. The asser-
tion concerning extreme points of cl co K follows from Theorem 1 (d).

Theorem 3. Let X be the unit circle {z : \z\ = 1}, F be the set of probability
measures on X, and F be the set of functions /„ on A defined by

Mz) = LlT^zfMx)'     "e*
Let St be the set of starlike, univalent, normalized functions on A. Then F = clco St,
the map p. —*-fu is one-to-one, and the extreme points of cl co St are precisely the
Koebe functions z -> z/(l — xz)2, xe X.

Proof. The operator L defined by Lf(z)=zf'(z) is a linear homeomorphism of
the space of analytic functions on A that vanish at 0, and L(K) = St. This and
Theorem 2 imply Theorem 3.

Theorem 4. Let F be the set of probability measures on [0, tt], F be the set of
functions fa on A defined by

^ = il-2zeost+z2d^       ^

Let Sr be the set of analytic, univalent, normalized functions on A that are real on
(—1, 1), and let T be the set of typically real functions on A. Then cl co Sr = T=F,
the map /x—>-/, is one-to-one, and each function z->z/(l—2zcos t + z2) is an
extreme point of cl co Sr.

Proof. It is known [10] that T=F. Further, cl co Sr^T, for Sr<=T and F is a
closed convex family. Also, since each function z -»■ z/(l -2z cos t + z2) belongs to
Sr, F^cl co Sr. Thus cl co S/je T=Fccl co Sr. It remains to prove that p. ->/a
is one-to-one. If p is in F define the probability measure p* on [—tt, tt] by p*(E)
=4/x(F, n [0, Tr])+ip(-En [0, tt]), where E<=[-w, n]. Then

and

l~*rt ï      T   l-z2-2izsint ; f»   l+e-«z J „.
—fM - J_, l-2zcos/+z^ **« = L T^e^z * (i)-

Thus fUl=fU2 implies pf=p$ which implies p.x=p2.
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96 L. BRICKMAN, T. H. MacGREGOR AND D. R. WILKEN [May

2. The determination of cl co C and «f (cl co C). This section is devoted to the
study of cl co C, the closed convex hull of the set of close-to-convex functions. We
begin by discussing a sequence of families important for our investigations.

Theorem 5. Let X be the unit circle {z : |z| = l}, F be the set of probability
measures on X, and Fk (7c = 1, 2,...) be the set of functions f on A given by

/(z)=f   ¿Wi)        ^^
}xi\-xz)k

Then FmFn<^Fm + n; that is, for any positive integers m andn, the product of a function
in Fm and a function in Fn belongs to Fm + n.

Proof. The product of a function in Fm and a function in Fn can be written as
an integral with respect to a probability measure on XxX, the integrand being of
the form (1 — xz)~mi\ — yz)~n, where |x| = |j| = l. Since Fm+n is a closed, convex
family, it is sufficient to prove that this integrand belongs to Fm+n. This is trivially
true if x=y so we let x#j. Let cit) = tx+il — t)y, and /i(z)=J"¿ dt/il — cit)z),
where z e A. Since |c(i)|<l it follows that Refxiz)>$. This and/j(0)=l imply
that/i g Fx as a consequence of the Herglotz formula. Now, in general, if fk e Fk,
then the function {d/dz[zkfkiz)]}/kzk~1 belongs to Fk+X. Therefore d/dz [z/i(z)]
belongs to F2. But

dif(yi      f1       dt _l_/   1 1   \      _J_1_
dz[ZJAZn     J0 [l-c(t)z]2     ix-y)z\\-xz   l-yz)      l-xzl-yz

Thus the theorem is true for m=n= 1.
Next we differentiate the identity \\ dt/[l - c(r)z]2 = [1/(1 -xz)] • [1/(1 -yz)] m -1

times with respect to x and n — 1 times with respect to y. This yields

r1 r-iji-t)*-1 , _   _j_       1
Jo [l-c(r)z]m+n      ~ il-xz)m\l-yzf

where Amn = (m+n -1) !/[(w -1) ! (n -1) !]. Let

f1 rm-1Cl —r)n_1
B^ = A-L    {l-c(t)zf   *'

Then Bx e Fx because

ReZi^z) ^ Amn f y-iQ-ty-1 dt = iZim + n(0) = i,
Jo

and BxiO) = Bm+niO) = 1. Finally, the rule mentioned above for passing from Fk to
Fk+1 leads to the conclusion Bk e Fk for k = 1, 2,.... In particular Bm+neFm+nas
required.

Remarks. 1. Since the function that is identically 1 belongs to Fx, Theorem 5
implies that J^cj^cj^c....
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2. Theorem 5 provides a means of giving alternative proofs to some of the results
in [11] (see in particular pp. 4-8) as well as proving some generalizations of these
results.

Theorem 6. Let X be the torus {(x, y) : \x\ = \y \ = 1}, F be the set of probability
measures on X, k(z, x,y) = [z-(x+y)z2/2]/[l—yz]2, where ze A, \x\ = \y\ = 1, and
let F be the set of functions fß on A defined by

fH(z) =      k(z, x, y) dp(x, y),       where peF.

If C is the set of normalized, close-to-convex functions on A then F=clco C, and
the extreme points of cl co C are precisely the functions z -> k(z, x, y), x^y. Each
extreme point maps A conformally onto the complement of a half-line.

Proof. We first show that cl co Cc F, or equivalently that C<= F. If/e C there
is a starlike, univalent function g such that p(z)=zf'(z)/g(z) has a positive real
part in A. Let Y denote the unit circle. Then because of the Herglotz formula, there
is a probability measure a on Y so that

f P(0)u+W)zda{
Jr      u-z

Also, by Theorem 3 there is a probability measure ß on Y such that g(z)/g'(0)
=jr[z/(l-vz)2]dß(v). Hence

and since g'(®)p(Q) = I we obtain

r      in- ehzf'(z) =      -p.——^-.-^da(u)dß(v),       where Ici = 1.Jx(1-mz)(1-i>z)2     v '  rv " ' '

To show that fe F it is sufficient to show that /' e F', the set of deviatives of
functions belonging to F. (Note that both / and the functions belonging to F
vanish at 0.) For this it is enough to prove that (1 +e£z)/(l -wz)(l -vz)2 belongs to
F' for arbitrary u and v with \u\ = \v\ = 1. Given u and v, Theorem 5 implies there is
a probability measures y on Y such that

1 + eiiz f    l + eüz   j .
(\-üz)(l-vz)2 ~ Jr (1-wz)3  Y{W)-

It is now clear that we need only prove that the function (1 +eüz)/(l — wz)3 belongs
to F' for arbitrary w with |w| = l. However, d/dz k(z, x, y) = (l —xz)/(l —yz)3,
and therefore we can choose a unit point mass at (—eü, w) to obtain this function
from F'. Thus cl co C<=-F.

To prove that F^cl co C it is enough to observe that the functions z -> k(z, x,y)
belong to C. For this, let \x\ = \y \ = 1. Then there exists 8 such that

Re{S(l-xz)/(l-jz)} > 0,
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98 L. BRICKMAN, T. H. MacGREGOR AND D. R. WILKEN [May

g(z)=z/S(l— yz)2 is starlike and univalent, and

Re {z d/dz kiz, x, y)/g(z)} = Re {8(1 -xz)/(l -yz)} > 0

as required.
We now prove the assertion concerning extreme points of cl co C. By Theorem

1(d), the only possible extreme points are the functions z -*■ kiz, x, y). In the case
x=y, kiz, x,y)=z/il —yz). Since this function belongs to cl co St but is not an
extreme point of cl co St (by Theorem 3), it cannot be an extreme point of the
larger set cl co C. Next we suppose that |x0| = | j0| = 1, Xo^JCo» and

k(z, x0, y0) = J   kiz, x, y) dpix, y),       z e A.

If we can show that p is a unit point mass at (x0, y0), then by Theorem 1(d) the
function z -*■ kiz, x0, y0) is an extreme point of cl co C. Differentiating the above
formula for kiz, x0, y0) we obtain

l-x0z f 1-xz   j ,      . ,  f 1-xz .

il-x0z-\ il-xz)dpix,y)\(l-y0z)3 = -—^dp.(x,y).
I Jrx(!/o) J/ JrxrUj/o)!1-^)

Let a = piTx{y0}). Then

\-x0y0-a+y0 xdpix,y)= lim   (1 -yQz)3 T—^ dp (x,y) •
JrMvo) «-So L Jrxr\{v0) v1— /Z) J

We shall prove below that this limit is zero, and therefore y0 §rx[1/g}x dp.(x,y)
= x0y0-l +a. Now \x0y0-(l -a)\ £ 1 -(1 -a) = a, while \y0 Jrx{!/o)xdpix,y)\ ^a.
Therefore \x0y0 — (1— a)\ = 1—(1 —a), and this implies that either x0>;o = l or a = \.
Since x0^y0 we must have 0=1. Hence J"rx(Uo) x c//a(x, y) = x0, and this is possible
only if^{(x0,j0)}=l.

To show that the above limit equals zero, we shall let z approach y0 radially from
A. Let e be an arbitrary positive number and let N be a corresponding neighbor-
hood of y0 in T such that p(T x N\{y0})<s. Then

lim [(l-joz)3 \ n ~**.%dft{x,y)\
«-So L Jrxr\>y0){i-yz) i

= lim   (1-joz)3 \ T¡—¡¡-^dpix,y) + il-y0z)3 ~ **<//*(*, y)
«-So L JrxN\{y0)il-yz) Jr*r\N(l-yz) J

- lim [(l-joz)3 f        n ~^3^(^y)1-
«-¡«o L JrxN\(v0) (i —jzj j

Now |(1 — joz)3/(l — yz)3\ Ú1 for every y with |_y | = 1 and every z of the form ry0,
0<r< 1. Therefore the above limit has absolute value less than 2e, and so must be
zero as asserted.
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The last assertion of the theorem concerning the image of A under the mapping
z -*■ k(z, x, y) is well known [5].

Remark. We note that the set of extreme points for cl co K, cl co St, and
cl co Sr is closed. The set of extreme points of cl co C is not closed since the
functions z -> z/(l — yz), \y | = 1, associated with the case x=y of Theorem 6, are
not in «?(cl co C). It would be interesting to determine whether the set of extreme
points of cl co S is closed.

3. Linear extremal problems. We now discuss the problem of maximizing (or
minimizing) a linear functional over K, St, Sr, or C. More precisely, if / is a con-
tinuous, complex-valued, linear functional on A, we wish to determine max Re J(f),
where/ranges over any of these four families. Easy arguments based on linearity,
continuity, and [2, Lemma 2, p. 439 and Lemma 3, p. 440] show that if Fis any of
these families, then

max {Re /(/) : fe F} = max {Re J(f) : fe cl co F}
= sup {Re J(f) : fe <f(cl co F)}.

Since we have completely determined <^(cl co F) in all four cases, our problem
reduces to that of maximizing a real-valued function of the parameters defining
the functions in <?(cl co F). To illustrate this we consider the example F= C. Then

max {Re A/) :/eC} = max^Re '[*'$*$ß] ■ M - bl - l}*

For instance, if for some positive integer n, J(f) is the «th coefficient an of the
Taylor expansion of/in A, then

max{Rean :/e C} = max {Re •£[(« +l)/,-1-(n-l);c>'n-2] : |x| = \y\ = 1} = n.

(See [9] for the original proof.) Other classical results concerning K, St, T, and C are
also readily obtainable by these methods. Additional extremal problems over sub-
families F of S, such as max {\an\ : fe C}, can often be reduced to a problem of
the form max {Re /(/) : fe F} since a number of families are rotationally in-
variant; that is, iifeF then the function z->/(xz)/x is in F for all x, |x| = l.
However, rather than pursuing this we shall show that if F=K, St, or Sr, and if/
is " nontrivial," then max {Re J(f) : fe F} is attained on F only by extreme points
of cl co F and there are only finitely many of them. We begin by recalling a con-
crete representation for the continuous linear functionals on A [16]; the analogous
result for entire functions can be found in [3, p. 222].

Theorem 7. Let {¿?n} be a sequence of complex numbers such that lim supn_oo |A|1,n
< 1, and set J(f) = 2 ™= o <^rt>n where f(z) -— 2 "= o onzn andf e A. Then J is a continuous
linear functional on A. Conversely, any continuous linear functional on A is given by
such a sequence {¿>n}.
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Theorem 8. Let J be a continuous linear functional on A not of the form
J(f)=af(0) + bf'(0). The only functions f in St that satisfy

Re/(/) = max {Re J(g) :geSt}

are the Koebe functions z -»■ z/(l — xz)2, \x\ = 1, and there are only finitely many of
them.

Proof. According to Theorem 7 J is given by a suitable sequence {bn}. If/ is a
Koebe function/(z)=z/(l —xz)2, \x\ = l, then its nth Taylor coefficient is an=nxn~1,
and therefore A/) = 2"=i nbnxn~x. This defines an analytic function F(x) for
|x|^l since limsupn-,00 |«A|1,n = lhn sup,,^«, |¿?„|1,n<l. The image of the circle
\x\ = 1 under F can intersect a line for only a finite number of values of x, unless
Fis constant. (A proof of this familiar fact is given in the Appendix.) But Fis not a
constant because J does not have the ïormJ(f)=af(0)+bf'(0). Therefore there are
only finitely many numbers x such that |x| = 1 andReF(x) = max{ReF(j) : |j| = l}.
Equivalently, if S*={/:/(z) = z/(l -xz)2, |x| = l} then there are only finitely many
functions/in S* such that Re7(/) = max {Re J(g) : ge S*}.

Let G={/: feel co St, Re J(f) = max Re J(g), g eel co St}. G is compact,
convex, and nonvoid and therefore has extreme points [2, p. 439, Lemma 2]. G
also is an extremal subset of clcoSr; that is, if tf+(l — t)ge G, 0<r<l,
fe cl co St, and g e cl co St, then/and g are in G. Thus the extreme points of G
are extreme points of cl co St; that is, they are Koebe functions. Because of what
was first proved there can be only a finite number of such functions, say
/i./a»•••>/» where fk(z) = z/(l-xkz)2, \xk\ = l (k=l,...,m), x,^xk for jj=k.
Since S(G)={fx,f2,.. .,fj it follows that

{m m \

f-f= 2 A*/*,Afc^o, 2 A* = u-
k=l k=l J

The function A has a pole of order two at z=xk, and therefore if Afc^0 for at
least two values of k, the function 2¡?=i Kfk has two poles on the unit circle each
of order two. Such a function is not univalent in A since its local behavior at the
poles shows that it takes on most large values at least twice in A. Hence the only
functions in G which are in St are the functions fx,f2,.. .,fm. Because

max {Re J(g) : g e St} = max {Re J(g) : g e cl co St}

this completes the proof that /,.. .,/m are the only functions in St satisfying
Re J(f) = max {Re J(g) : g e St}.

Remarks. A simple application of Theorem 8 is the known fact: if /is in St and
/(z)=z + 2"=2 onzn then Rean^n, and equality occurs only for the functions
f(z)=z/(l—xz)2, xn~1 = l. Indeed, Theorem 8 indicates that this problem is
equivalent to max {Re nxn~1 : \x\ = I}.

With regard to the actual number of solutions to a linear extremal problem over
St the last example is a particular case of the following situation. Let J be defined
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byZ(/) = 2fc=o akbk, where n^2,f e A, fiz) = 2k=oakzk, and b0,bx,..., bn are given
complex numbers, ¿»„^0. life St and Re7(/) = max {Re/(g) : g e St}, then/is a
Koebe function /(z)=z/( 1 —xz)2 and x is any solution to

Reí V kbicx"-1] = maxÍRe f kb^-A-
U=l J l!/l = l   I fc=l J

This equation, which determines x, is equivalent to finding the values of 6 in
[0, 277-) that maximize a trigonometric polynomial J(0) of degree n — 1. Between
each pair of numbers giving relative maxima of 7/(0) is a point at which 7\0) has a
relative minima. Likewise there is a point at which Tid) has a relative maxima
between any two points producing relative minima of Tid). Therefore Tid) has the
same number of relative maxima and minima on [0, 27r). As Tid) has degree n — 1
it takes on a value at most 2(n— 1) times on [0, 2tt). Thus there are at most n — \
numbers in [0, 2v) at which Tid) achieves its (absolute) maxima. Our conclusion is
that the functionals Re J of the above kind are maximized over St for at most n — 1
(Koebe) functions.

Next we shall show that any finite collection of Koebe functions is the solution
set to max {Re Jig) : g e St} for a suitable continuous linear functional J. Because
of our previous arguments it is clear that such an assertion is equivalent to the
existence of a function F analytic for \z\ ^ 1 such that Re Fiz) is maximal at pre-
scribed points on |z| = 1. We now prove such a result. Another proof of this can
be given containing the additional information that there is such a function F
which is also univalent for \z\ ^ 1.

Theorem 9. Let B be any finite set of points on the unit circle. There is a function
F analytic for \ z | ^ 1 such that Re Fiz) ä 0 and Re F(z)=0 only for z in B.

Proof. Let xx, x2,..., xm be m distinct points on the unit circle. Define the
complex numbers c¡ by

m m

Y\V°-xn)ie-»~xn)=   2   <*ue
n=l j=-m

and note that C-j=c¡ (c0 is real). Let F(z) = c0+2 2™=i CjZ1. Then
m m

Re F(eie) = ir[Fieie) + F(eie)] = c0+ £ c^M'+ 2 sie~m
1=1 i=i

= 2 ^"9 = n(ei8-^x^ií'-^) = niei9-^i2.
í= -m n = l n=l

This shows that Re Z=Xeia)^0 and thus Re F(z)^0 for \z\ £.1. Also, since Re F(z)
is not constant it can be zero only on |z| = l and therefore only at ete=xn
in = \,2,...,m).

Theorem 10. Letfx,f2,.. .,fmbe m distinct Koebe functions. There is a continuous
linear functional J on A such that the functions f in St which satisfy Re /(/)
= max {Re Jig) : ge St} are precisely the functions fx, f2,... ,fm.
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Proof. Let A be given by/n(z) = z/(l -xnz)2 («== 1,2,..., m), |xn| = 1, where the
numbers xu x2,..., xm are distinct. Let F be the polynomial defined in the proof
of Theorem 9 and define G by G(z) = - F(z) = J%= 0 dnzn. Then ReC(z)^0 for
\z\ ̂ 1 and Re G(z)=0 only for z=xn, n = \, 2,..., m. Set è0=0 and ¿>n = <4-i/"
for «=1, 2,..., m. The continuous linear functional J is defined on A by J(f)
= 2n=oûnA where/(z) = 2"=oûnzn. According to Theorem 8 the only functions/in
St satisfying Re J(f) = max {Re J(g) : g e St} are Koebe functions/(z)=z/(l — xz)2,
|x| = l. For these functions Re J(f) = Re G(x) and this has its maximum value of
zero only for x=xn, n = \, 2,..., m.

We next prove two theorems concerning linear problems over K and Sr analo-
gous to the result for St given in Theorem 8. The first theorem follows by appealing
to Theorem 8 and the fact that/(z) e K if and only if zf'(z) e St. (See the remarks
in the proof of Theorem 3.)

Theorem 11. Let J be a continuous linear functional on A not of the form J(f)
= af(0) + bf'(0). The only functions f in K satisfying Re J(f) = max {ReJ(g) : ge K}
are the functions f(z) = z/(\ —xz), \x\ = 1, and there are only finitely many of them.

Theorem 12. Let J be a continuous linear functional on A such that ReJ(f) is
not constant on Sr. The only functions f in Sr satisfying

Re J(f) = max {Re J(g) : g e SR}

are the functions f(z)=z/(l - 2az+z2), -1 ¿ a ^ 1, and there are only a finite number
of them.

Proof. Let

F(z'r) = l-2zcosr+z2

= (l-e*zXl-e"<,z) = Z+„?2 an(*)z"'       X = e""

Computing an(x) in terms of a polynomial in x and l/x we find that \an(x)\ ^wn_1
(«=2, 3,...) if 1/rS \x\ ^r, r> 1. The functional J is given by a suitable sequence
{bn} according to Theorem 7. If / is applied to the above functions we obtain
bx + 2"-2 an(x)bn. Since limsupn^OT |èn|1/n<l the above estimates on an(x) show
that this series is majorized by a convergent geometric series for r sufficiently close
to 1. It follows that when / is applied to the functions F(z, t) a function F(r) is
defined for real values of / which can be analytically extended into some strip
{i : | Im r| </?, />>0}. Likewise Re F(t) can be analytically extended into such a
strip.

Now, Re F(t) cannot be constant for all real values of t. Indeed, if Re F(t) = A
for all real numbers t it follows that ReJ(f)=A for all/in T since the functions
F(z, t) are the extreme points of T. In particular, this implies that ReJ(f)=A for
each / in Sr contrary to our assumption. Because of the identity theorem for
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analytic functions, we now conclude that Re Fit) takes on any value for at most a
finite number of real numbers t in [0, 2tt). This shows that there is only a finite
number of functions fx,f2, ...,fm in S{J) that maximize Re7(/).

Let G = {f:fe T, Re/(/) = max Re Jig), ge T}. G is compact, convex, and
nonvoid and therefore has extreme points. Each such point is also an extreme point
of T because G is an extremal subset of T. But as we showed above there is only a
finite number of such functions, say fx,f2, ■ ■ .,/m, where

/fc(z) = z/(l -2z cos tk+z2),       0 g tk Ú 7T       (k = l,...,m),

and the numbers tk are distinct. Therefore
f m m 'N

G = \f:f= 2 Kfk,KZ0,% Xk= ll.
I fc = l fc=l J

The function F(z, t) either has two simple poles or one double pole on the unit
circle. Therefore a function of the form/=2¡?=i Kfk where Afc^0 for at least two
values of k has poles on the unit circle with a total order of at least four. Such a
function is not univalent in A as it takes on most large values at least twice in A.
This implies that the only functions in G which are also in Sr are the functions
fi,fi,---,fm- Because max {Re Jig) : ge Sr}=max {Re J(g) : g e T} we conclude
that/!,/2,.. .,/m are the only functions/in Sr satisfying

Re Jif) = max {Re Jig) : g e SR}.

This completes the proof. We add the observation that Re /(/) is constant on Sr
only for a functional J such that b2, b3,... are purely imaginary.

4. Inclusion relations. In this section we describe some additional properties of
the closed convex hulls treated earlier, focusing attention on the inclusion relations
between them as subsets of A. One of the first questions one would like to answer
is whether every normalized univalent function can be obtained as a limit (uniform
on compact subsets of A) of convex combinations of close-to-convex functions.
The implications of a positive answer to this question are enormous, including a
positive conclusion to the Bieberbach conjecture. We show, however, that
cl co Cj>S and we decide this by showing that some of the "half-lines" which are
extreme points of cl co C are not extreme in cl co S. To see this we appeal to the
result in [1] that a necessary condition for /to be extreme in clco S is that the
complement of the range of/be a continuous arc tending to infinity with increasing
modulus.

The general extreme point of cl co C has the form

fiz) = [z-ix+y)z2/2]l[l-yz]2

with |x| = \y\ = 1, x^y. By an appropriate rotation it is sufficient to consider those
of the form/(z)=(z-flz2)/(l -z)2 where a=-£(l +ew), 0< |0| ^tt.

Theorem 13. /(z)=(z-az2)/(l -z)2 is not extreme in cl co S if \d\ <w/2.
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Proof. Since /omits a half-line containing the values /(±i)= —%±\ia, /also
omits — \, the average of these values. The base of the half-line occurs at/(Z?)
where f'(b) = 0. Note that ô = l/(2a-l) and f(b)=i(a-l)-1=^(ew-l)-1= -\
— (isinB)/4(\—cosO). Therefore the half-line contains two points of equal
modulus iff [(sin 0)/4(l -cos 0)| >\, i.e. |0| <tt/2.

Corollary. Sdzcl co C and cl co S^cl co C.

Remark. We do not know whether -^^ |0| <tt =>/is extreme in cl co S. Indeed
we are unable at present to exhibit any extreme points of cl co S aside from
rotations of the Koebe function.

The starlike functions lie in a distinguished subclass C0 of C where
C0={/e S : Re {zf'(z)/g(z)}>0 for some g e St}.

We are able to show that some functions in C0 which are not starlike can never-
theless be approximated by convex combinations of starlike functions—so that
cl co St n S^St. Although it may seem plausible that cl co St contains all of C0,
an elementary computation with coefficient restrictions shows this not to be the
case. This information is contained in the following two theorems.

Theorem 14. Let f'(z) = [(l+üz)/(l-üz)][l/(l-uz)2] where u = ew. If 5/6<
cos2 0< 1, thenfÇ cl co St.

Theorem 15. Let

f'(z) = [(l+üz)/(\-üz)][l/(l-uz)2]

where u = em. There exists a positive number r¡ such that if 0 = ±n/2 + p and \p\ ̂ -q,
thenfe cl co St; that is, there exists a probability measure p on the unit circle X such
thatf(z)=\x z/(l-xzf dp(x).

Remarks. 1. The generic form for/', if/e C0, is given by

/'(z) = [(l+öz)/(l-«z)][l/(l-t;z)2].

By the rotation z -> ult2vll2z we obtain the form discussed in the theorem.
2. We do not know if there exists a unique dividing value for 0 to distinguish the

two cases in the theorems.
3. A direct computation shows that if u is near i or — /' (u j= ± i) on the unit circle,

then there exist complex numbers with \z\ < 1 such that Re {z/'(z)//(z)} <0. Hence
the functions described in Theorem 15 are close-to-convex, not starlike, but
approximable by convex combinations of starlike functions.

4. It is always the case that for/in C0 there exists a finite real measure v on the
unit circle X such that/(z)=Jx z/(l —xz)2 dv(x). The proof of this follows from a
description of the necessary conditions imposed on the Fourier-Stieltjes coeffi-
cients of the measure v if such an integral representation is to exist.

Proof of Theorem 14. If f eclco St and we let g(z)=\lf(w)/w dw, then
Reg(z)/z>\,   i.e.   Re/?(z)>0   where   p(z) = 2(g(z)/z)— 1.   If   we   write   p(z)
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= l+pxz+p2z2+ • • -, it follows from known results that \2p2—px\ ¿4— \px\2. For
instance, we can apply the inequality | cx ¡ ̂  1 — |c0|2 (see [7, p. 168, (28)]) to
il/z)ipiz)-l)/(piz) + l) = c0 + cxz+ ■ ■ ■ =px/2 + i2p2-pï)z/4+ • • •. If we use f\z)
= [(1 + wz)/(l — hz)][1/(1 -mz)2] and expand in a power series we obtain the co-
efficients of piz) expressed as px = u+ü, p2 = (2/9)i3u2+4+2ü2). If u = ew, then

\2P2-Pi\2 = (16/81)(1 +14 cos2 0-15 cos4 d)
and

(4- \Px\2)2 = 16(1-2 cos2 0+cos4 0).

Thus if 0 is chosen so that

16(1 -2 cos2 0+cos4 0) < (16/81X1 +14 cos2 0-15 cos4 0),

then/^cl co St. This inequality reduces to (1—cos2 0)(5 — 6 cos2 0)<O. Hence if
5/6 < cos2 0< 1, then/£ cl co St.

Proof of Theorem 15. fe cl co St provided /(z)=\x [z/(l — vz)2] dp(v) for a
positive measure p on the unit circle X. If /'(z) = [(1+mz)/(1 — z/z)][l/(l — uz)2],
then/g cl co St provided Re F(z)>\ where

Fiz) = -     -      -.—=z 7j-yrñ dt, d.w.
z Jo w Jo 1-uíil-uQ2

Direct integration shows that

ví      ir» ri    2»    f» -i       î+M2    i   i ,
F{z) = z)0[w (T^T L T=l *~T=? Y^w\ dw-

If we let A(í) = /m+(1 -t)ü, í = K0w>then

w     z Jo u-u Uo l-A(/)w        (l-iw)J
Now let u = ie""= —sin a+icos a, so that

Fiz) = - -—rr^— dt dw-i- \ -—r?-?-—,...      dt dw.z Jo Jo 1-A(f)w eos«   z J0 J0 [\-Xit)w    1-A(l)wj

A similar computation shows that we obtain the same expression if 8 = — ieia and
X(t) is changed accordingly. To prove the theorem we must show that Re F(z)>^
for all z in A provided a is near zero; i.e. there exists i?>0 so that Re F(z)>^ if
\z\ < 1 and |oc| ̂ r¡. We need to use the following Lemma.

Lemma. If A(z) = l/z ¡*0g(w)dw where g(0) = l, Reg(w)>i, |w|<l, then
ReA(z)>log2>+, |z|<l.

Proof. It follows from known facts about functions with positive real part that
Re giw)^ 1/(1 + |w|). If we write Kz)=H g(zü) du, then

ReA(z)= í Regizu)du^  f       \ ,   du =-r\ log (1 + |z[) > log 2.
Jo Jo i + \z\u \z\

(The case z=0 is clear.)
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To apply this to F(z) note that Re {1/(1 - X(t)w)} >i so that Re {J¿ 1/(1 - X(t)w) dt]
> \ also. By the Lemma

Re{;n.'r^'"'""}>log2-
Thus to show Re F(z) >\i\. suffices to show

i   cosa   zJoJo \l-X(t)w    1-A(l)wj J

goes uniformly to 0 in z as a -> 0. This occurs if Im H(z) is uniformly bounded in z,
where

H(z) = - f f Í,    L,   -,    !n 1 dtdw.z Jo Jo \l-X(t)w    1-A(l)wj

Now

H{z) = Í [^log(1-A(i)z)-^ÂoTzlo^1-A(1H *
and the integrand is uniformly bounded (Im l/w log (1 + w) is uniformly bounded
for |w| < 1). Hence H(z) is uniformly bounded in z for |z| < 1 and we can choose
17 >0 such that ReF(z)>^ for |z|<l and |a|^??. This completes the proof of
Theorem 15.

Some additional inclusion relations are the following: cl co K£cl co St,
cl co Sr g cl co St, cl co Sä+cI co A cl co ÄTd: cl co Sr. The relation cl co AT
<=cl co Si is immediate from K^St. That they are distinct follows from/e cl co K
if and only if Re{/(z)/z}>i (|z|<l) and Re {1/(1 -z)2}<\ for z near 1. The
inequality cl co Sä#c1 co St is clear, while cl co Säcc1 co St is a consequence of
Theorems 3, 4, and 5. Indeed, by Theorem 4 it is sufficient to show that the function
z/(l— 2z cos t + z2) belongs to clcoSr for each real t. But 1/(1—2z cos r4-z2)
= 1/(1 — e"z)[l/(l — e~uz)] eF2by Theorem 5 and the conclusion then follows from
Theorem 3. The relations cl co K<kcl co Sr and cl co Sä4:c1 co K are obvious.

5. Appendix. In this section we prove the result that was used earlier in the
proof of Theorem 8.

Theorem 16. Let f be an analytic function in the closed unit disk. Iff(eie) lies on
a line for infinitely many values of 0 in [0, 27r), then f is constant.

Proof. Without loss of generality, the given line is the imaginary axis. Let

g(z) = (f(z)+fW))/2.
Then g is analytic in a neighborhood of the unit circle, and g(eie) = Ref(eie) for 0
in [0, 27t). Hence g vanishes on an infinite set with a limit point in the domain of
analyticity. Therefore g vanishes identically, and in particular Re/(ei9)=0 for all
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0 in [0, 27t). But then Re/(z)=0 for \z\ ̂  1 by the maximum and minimum prin-
ciples for harmonic functions. Hence /is constant.
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