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ABSTRACT

In this paper certain convex averaging procedures
are investigated with the purpose of:
(2) approximating fixed points of nonlinear nonexpansive
mappings in uniformly convex spaces,
(b) approximating solutions of certain linear operator
equations in reflexive Banach spaces, and
(c) summing divergent sequences and series in Banach
spaces.

Chapter I conslists of preliminary material concern-
ing mappings in Banach spaces, abstract ergodic theory,
summability theory and miscellaneous results,

In Chapter II the iterative process

Vel = (I7Ap)vy + ATV s 0 <A <1

is studied. It is shown that I, (1-A,) = is a
necessary and sufficient condition for the convergence

off the process to a fixed point for every member of a
certain extensive class of nonlinear nonexpansive mappings
in uniformly convex spaces., Cenvergence 1is considered

in both the strong and the weak topology. As an applica-
tion 1t is shown that solutions of variational inequalities
involving nonlinear operators satisfying a monotonicity
condition of F. E, Browder may be approximated by the

above procedure,



In Chapter III results from abstract ergodic theory
are used to show that solutions of linear operator equa-
tions of the type u - Tu = f may be approximated by

the iterative sequence

v = (l"?\.n)vn + hn(Tvn + f) .

n+1
Theorems are proved for operators T which are asympto-
tically bounded on reflexive Banach spaces. Approximation

theorems for various types of linear cperator equations

in 1P spaces and Hilbert spaces are proved as applications.
In the final chapter it is shown that for affine
mappings the iterative sequence defined above is the
transform of the sequence of ordinary iterates by an
infinite matrix which i1s permanent if and only if
Exn = « , This gives rise to a large class of summability
methods which contains the Euler-Knopp methods as a small
subclass, This class is studied in detail. It is shown
that this new class of methods contains methods which are
strictly stronger than any of the Euler-Knopp methods,
Summability of series is studied; it is shown that each
of the summability methods is absolutely permanent and an
analogue of the Abel limit theorem is proved. Applications
to iterative solution of linear operator equations are
given and, in the final section, some unsolved problems

are mentioned,

vi



INTRODUCTION

Much of applied mathematlics is concerned with the
problem of finding solutions of linear and nonlinear
operator equations (e.g. integral equations, boundary
value problems, etc,) in infinite dimensional function
spaces., The most practical method of soclution for many
of these problems is to show that the solution is a fixed
point of a certain operator and to approximate this fixed
point by ifteration. The best known general iteration
theorem is the classical Picard-Banach theorem for strictly
contractive mappings in complete metric spaces., It is
easy to see, however, that the classical iteration process
does not serve to approximate fixed points of mappings
which are nonexpansive (i.e., mappings T which satisfy
d(Tx,Ty) < d(x,y) for all x and y ).

In 1955 M, A, Krasnoselskil [ 20] showed that fixed
points of compact nonexpansive mappings defined on closed
convex subsets of uniformly convex spaces can be approxi-

mated by the process

v

1
nl = 3(Vp * Tq) -

Recently this process was studied further by C. L, Outlaw
[26]. H. H. Schaefer [28]} showed in 1957 that under the

same conditions as in the Krasnoselskil theorem, the more



general process

Vel = (A=a)v + aTv, , 0 <a<1

converges to a fixed point of T . Schaefer also
showed that thls sequence converges weakly to a fixed
point of T (providing, of course, that T has a
fixed point) if T is a weakly continuous nonexpansive
mapping on a real Hilbert space. Browder and Petryshyn
[5] and Opial [25] extended these results by assuming
less stringent conditions on the mapping and on the
space.
In this paper we undertake a theoretical investigation

of the general convex iteration procedure

Varr = (I=ap)vg ATV 5, 0 <A, <

n
and certain associated summability methods. Recently,
Dotson [11] showed that the arguments of Browder-
Petryshyn and Opial go through for this process under
the assumption that ln is bounded away from ©O and 1 .,
It should be mentioned that all of the methods considered
above are special cases of a very general iteration
procedure introduced by W. R. Mann [22].

In Chapter ITwe find a necessary and sufficient
condition on the weights {An] in order that the general
convex iteration procedure converge for every member of

a large class of nonexpansive nonlinear mappings on



uniformly convex spaces, We thus obtaln generalizations
of all of the results mentioned above, As an application
we show that solutions of certain variational inequalities
in Hilbgrt space may be approximated by the above pro-
cedure. 

Dotson [12] first considered the connection between
iteration theory for affine mappings and abstract ergodic
theory. In Chapter III we employ Eberlein's abstract
ergodic theory and a specialization of an argument of
Dotson's to approximate solutions of the equation
u - Tu =f for asymptotically bounded linear operators
T on reflexive Banach spaces. We also obtain theorems
on the approximate solution of equations of the type
Au = £ for linear 6perators A defined on a Hilbert
space and a theorem on the approximation in Lp norm
of solutions of a certain linear functional equation
in Lw spaces.

In the final chapter it is shown that for affine
mappings T , the convex iteration procedure defined
above glves a sequence whiqh is the transform of the
ordinary sequence of iterates by an infinite matrix
which is permanent if and only if Zﬁn = o , (Chapter IV
is devoted to a detalled study of these associated
summability methods. For the speclal case An ='% for
all n this gilves what is perhaps the oldest known
summability method, that studied by Euler in 1755. Some



of the results obtailned by studying these summability
methods are used to give theorems on the iterative
solution of linear operator equations (see 4.4).

Finally, we mention that all theorems, definitions
and other such items are numbered consecutively, with
a,b.c denoting item number ¢ in section b of

chapter a.



CHAPTER T
PRELIMINARIES

In this chapter we state the fundamental definitions
and theorems which will be used in the sequel. Our
standard references are the comprehensive treatises of

Dunford-Schwartz [14%] and Zeller [ 32].

Section 1. Mappings in Banach Spaces

We shall consider mappings on spaces which satisfy

the following classical definition of Clarkson [8].

1.1.1, Definition. A norm |-l on a linear space X

is called uniformly convex if given 2 > € > 0 there
exists a &8(e) > O such that if x,y € X with
Il <2, llvll €1 and |x-y|| > € , then

H%(x+y)“ < 1-8(€) . A linear space with a uniformly

convex norm is called a uniformly convex space,

The class of uniformly convex spaces is extensive,
in fact, an easy application of the parallelogram law
shows that every Hilbert space is uniformly convex. The

spaces 174 with 1 < p < » are also uniformly convex,



1.1.2. Definition. A norm || on a linear space X

is called strictly convex if x,y € X with |{x| <1

and |lyll <1 and x £y , then H%{x+y)n <l. A
linear space endowed with a strictly convex norm is

called a strictly convex space.

Of course, every uniformly convex space is also
strictly convex. Conversely, a simple compactness
argument shows that every finite dimensional strictly
convex space is aiso uniformly convex. The next theorem
serves to clarify the position held by uniformly convex

spaces in the class of Banach spaces,

1.1.3. Theorem.(Pettis-Milman). Every uniformly convex

Banach space is reflexive.
Proof. The reader is referred to [19, p. 354].

Reflexive spaces enjoy the following compactness

property.

1.1.4, Theorem (Eberlein-émulian). In a reflexive

Banach space bounded sets are weakly sequencially compact.

Proof. The reader is referred to [14, p. 430].



~
1.1.5. Theorem (Smulian). A convex subset K of a
Banach space 1s weakly compact if and only .if every
decreasing sequence of nonempty closed convex subsets

of K has a nonempty intersection.
Proof. The reader is referred to [14, p. 433].

We now consider some classes of mappings which will

be studied in the next chapter.

1.1.6. Definition., A mapping T defined on a subset

D(T) of a normed linear space is called nonexpansive

if  f|mx-Tyll < ||x-yll for x,y in D(T) . T is called

guasi-nonexpansive if T has a nonempty set of fixed

points and |[|Tx-Tp|| < |lx-pll for x € D(T) and p =

fixed point of T .

The concept of mappings T which map all points
closer to the fixed point set of T was appearently
originated by Diaz and Metcalf [10]; the term quasi-

nonexpansive is due to Dotson [11].

1.1.7. Theorem {Schauder-Tichonov). If T 1is a
continuous mapping of a convex subset E of a locally

convex linear topological space into itself with T(E)



relatively compact, then T has a fixed point in E .

Proof. The reader is referred to [14, p. 456],
1.1.8. Theorem (Browder), If T is a nonexpansive
mapping of a closed bounded convex subset E of a
uniformly convex Banach space into itself, then T
has a fixed point in E ,

Proof. The reader is referred to [2].

1.1.9. Definition. Let X be a Banach space, X¥*¥ 1its

dual space and (u,x) the value of the linear functional
u € X*¥ at the element x of X . Let ¢y be a con-
tinuous strictly increasing real valued function on R+
with u{0) = 0 . A mapping J:X =+ X*¥ 1is called a

duality mapping of X into X* with gauge function

u if: (a) For every x in X , (Jx,x) = ||Jx|.||x]

and (b) For every x in X, ||Jx|| = u(lx]) .

We now define two classes of mappings of the monotone

type which have been studled extensively by F.E. Browder
(see e.g. [T]) .

1.1,10. Definition. Let X be a Banach space, A




mapping A:X o X* 1s called strictly monotone if there

is a ¢ > 0 such that (Ax-Ay, x-y) g.cHx-yH2 for
x,y € D(A) . A is called pB-monotone if (Ax-Ay, x-¥)

> c“Ax-—Ayll2 for some ¢ > O and all x,y € D{(A) .

It is easy to see that every strictly monctone

Lipshitz mapping is f-monotone,

1.1.11. Definition, A linear operator T on a Banach

space is called asymptotically bounded if there is a

constant M such that [TV <M for n = 1,2,... .

For a given M > 0 one can define the operator T

on £2 by

T(Xl’xa’XB"") = (ng,xs,...) .

This shows that there exist asymptotically bounded linear
operators of arbitrarily large norm. Of course, every
asymptotically bounded normal operator defined on a
Hilbert space 1is nonexpansive by virtue of the spectral
radius formula [14, p. 567].

If T 1s a bounded linear operator on a Hilbert
space H we denote the null space and range of T
by N(T) and R(T) respectively. The adjoint of T
is denoted by T* and the orthogonal complement of a

subset C of H 1is denoted by c* sy L.e.,
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¢t = {xeH:(x,¥) = 0 for all y € ¢} . Finally, we
recall the elementary fact that N(T*)* = R{T) and

N(T*) = R(T)" , where the bar denotes the closure operation,.

Section 2. Abstract Ergodic Theory.

In this section we state some fundamental‘results
of Eberlein on abstract ergodic theory. The proorls of
the theorems may be found in the paper of Eberlein [15].

Let X be a locally convex linear topological
space and let G be a semi-group of linear transfor-
mations of X into itself. Denote by G¥ the family
of transformations consisting of all finite convex com-
binations of elements of G s 1.8,

G* = (Za,T.:ta. > 0, EaJ. =1, T, € G} . Let

Jd d dJ J
O(x) = {T*x:T* € G*] denote the orbit of an element x

in X under G¥ .,

1.2.1. Definition. The semi-group G 1is called

ergodic if there exists a net of linear transformations

[TQ]GED with the following properties:

(a) For every x and all a , T x € O(x) .
(b) [Ta} is an equicontinuous family.

(c) l;m (TTax-Tax) = 1ém (TaTX-Tax) =0

for every x in X and all T in G . Such a net



1l

{Ta] is called a system of almost invariant integrals

for G-.

1.2.2. Theorem (Eberlein). If G is ergodic, x an
element of X , and {Ta] any system of almost invariant
integrals, then the following conditions on an element

y in X are equivalent:

(1) ye€0(x), and Ty =y for all T € G ;

(2) ¥

i

lim T x ;
a (0 4

(3) ¥y = lim T X weakly;
o

(4) ¥y 1is a weak cluster point of [Tax] .

1.2.3. Definition, If G 1is ergodic, an element x

in X 1is called ergodic with (unique) limit fixed

point y 1if and only if ¥y = lim Tax for some system
o

of almost invariant integrals (Tal (It follows easily -
from 1.2.2 that this does not depend on the particular
system of almost invariant integrals used). The set

of all ergodic elements is called the ergodic subspace

of G . If the ergodic subspace is all of X , G 1is

called asymptotically convergent.

1.2.4, Theorem, Let & be ergodic. Then the trans-

formation TX = 1im Tﬁx is a bounded linear trans-
a
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formation on the ergodic subspace of G and

2 -
Tp = To = T = UT, if U e G* or U=T for some o .

0

Section 3. Summability.

Let there be given a seqguence [sn]g in a normed
linear space. Employing an infinite real matrix

0]
A= (ank) » a sequence [t }q is formally constructed
o0

where t = k:; 8cSx - We say that the sequence {sn}

is transformed into the sequence {tn] by the ''method!'!’

a .

1.3.1. Definition. The method A 1s called permanent

if for every convergent sequence [sn] the sequence

[tn} exists and converges to the same limit as [sn} .

1.3.2. Theorem (Toeplitz). A method A = (a ) is
permanent if and only if the following'three conditions
are satlisfied:

(1) 1im 8y =0 for k=1,2,... .
ol )

oo
(11) T fay | <M for each n, where M is independent
k=0

of n .

o0
(1ii) 1lim X =&
N9 k=0

nk = 1 ¢



13
Proof. The reader is referred to [31, p. 36T].

The importance of permanent methods resides in the
fact that a divergent sequence {sn} may be transformed
into a convergent sequence {tn] by the method A .

In such a case we say that [sn] is A-summable to

the limit of the sequence [tn} .

1.3.3. Definition. The convergence field of a

#

summability method A is denoted by A" and is defined
to be the class of all sequences which are summable by

A . Two methocds A and B are said to be consistent

if given any sequence s € A# N B# s & 1s summable by

A and B to the same value.

1.3.4, Definition. A method A 1is said to be stronger

than a method B (denoted A > B) if every B-summable
sequence is A-summable to the same value (i.e., if
gt ¢ a¥ and A4 and B are consistent). A method A

is said to be strictly stronger than a method B (denoted

A >B) if A 1is stronger than B and A# # B#

A series is sald to be A~summable if its sequence

of associated partial sums is A-~summable,



14

1.3.5. Definition. A seguence [sn] of numbers is

called absolutely convergent if & |s_-s ll o, If
nop'onT -

a summability method A +transforms every absolutely
convergent sequence {sn] into an abolutely convergent
sequence [tn] and if S, 8 implies t, -+ t, then

A 1is said to be absolutely permanent,

1.3.6, Theorem (Knopp-Lorentz)}. Suppose that the

sunmmability method A transforms a series % a

n=0 P

into a series ﬁ o. , where 0, = § b The

a .
n=0 k=0 RKK

method A 1is absolutely permanent if and only if':

(i) E |b l < M for k = 01112.!.0-0
n=0 nk

and (11) ¥ b, =1 for k=0,1,2,...
n=0

Proof. The reader is referred to [18].

Section 4. Miscellaneous Results.

In this section we 1ist three theorems which will

be useful in the later chapters.
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1.4.1., Theorem. Let a,6 be a sequence of numbers with

n

0¢a <1 for n=1,2..., then R (3-a ) =0 1if and

Ne=1

only if

a‘=mc

by
n=1 n

An amusing (and appearently new) proof of this
theorem may be obtained as an application of 4.3.5,

The next result is a familiar theorem of Riemann.

1.4.2. Thecorem, If [an] is any null sequence of
real numbers, then there exists a divergent sequence

[en} with € = ] for n = 1,2,... such that

b a_ converges.
1 €n®n g

Finally, we mention some concepts from probability

theory which will be useful in the final chapter.

Consider a sequence of independent trials in which the

probability of a success on the ith trial is p; (i.e.,

a Poisson scheme of trials). Let X; be the random
variable indicating the outcome of the ith trial, that
is

P(X, = 1} = p and P{X, =0} =1 - P; »

i

where P(E) denotes the probability of the event E ,

2 .
Let Sn = xl+...+xn and let My and oy denote mean
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and variance of Sn 3

n 5 n
M= T P and o- = I p,(1-p,).
n 1=1 i n 1=1 i i

1.4,3, Theorem (DeMoivre-~LaPlace). Using the notations

introduced above,

t
S_-=K 2
lim P{t; < -S4 < t,) = —L j‘t exp (~u®/2)du .
N n T 1

The convergence is uniform in ﬁl and t2 .

Proof. The reader is referred to [30, p. 294].



CHAPTER II

APPROXIMATION OF FIXED POINTS
OF NONLINEAR NONEXPANSIVE MAPS

In this chapter we show that under certain con-
ditions a fixed point of a (nonlinear) nonexpansive
mapping T on a uniformly convex Banach space may be

approximated by the iterative sequence

2-0-1. v = (1"‘)Ln)vn + )\.nTVn F) n = 132,--.

n+l

where O < A, <1 and vy is arbitrary.

Section 1. Certain Segquences in Uniformly.

Convex Spaces.

H. H. Schaeffer [27] showed that there exists a
function 6:(0,1) x {0,2) + (0,1) such that if X 1is
uniformly convex and x,y € X with [[x) <1, [yl g1
and |lx-y|| > € , then |(1-x)x+ry]l < 1-6(r,€) for
0 <X <1, Schaeffer gave an indirect argument which
did not determine the form of the function § . The
next lemma has a very simple direct proof which gives

g form for & .

2,1.1, Iemma, Let X be a uniformly convex space

17



18

with modulus of convexity & . If x,y e X, x| g1,
Iyl <1 and [x-y|l > € , then
| (1-2)x+ry]l € 2-24(1-A)s(€) , for O <A <1,

Proof., Clearly, we may assume that A 53% . We then

have

| (1-2)xryll = ][ (120 )42 (x+y) /2]
1-2a+2n (1-8(€))

1-205 (€) < 1-2A(1-3)s(e)

il

[

2.1.2., Definition. A sequence of numbers [kn] with

0 <A, <1 and 3 (1-r,) = ® will be called a

D~sequence.

2.1.3. Theorem, Let X be a uniformly convex space,

Suppose ({x,} and ({y,} are sequences in X such

that |ly | < lIx,ll for all n and x

ntl = (I=hp)x H

n’'n
where [hn} is a D-sequence, then O .is a cluster

point of the sequence {xn-yn] .

Proof. First note that "xn+1" S."xnu for all n ,
therefore 1lim “xn“ =d exists, If d =0 , then
lim X, = lim yn = 0 and the result is clear. Hence
we may suppose that d > 0 ., Suppose there is an € > O
such that |lx ~y |l > € for all n . We then have
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lIx -\ e c
T 2 Tl 2 T

et b = 25(“§5W) 3 lemma 2.1.1 then gives
1

N(1-r)x, + 2yl
< lxplh@-a (22 )0) .
Inductively we have

lx I <l ini (1-x;(1-A )b) , for 'n > 1,

Since [ln] is a D-sequence, by 1.4.1 we then have

d = 1im |lx || = 0 , a contradiction,

Section 2. Approximation in the Strong Topology.

2.2.1., Theorem. Suppose T 1is a guasi-nonexpansive
mapping of a convex subset E of a uniformly convex

space into itself; then O 1is a cluster point of the
sequence [vn-Tvn} for each v, € E , where [vn] is

defined by 2.0.1.

Proof, Let p be a fixed point of T ., In

n
follows that v, ~Tv, = X -y, clusters at O .

theorem 2.1.3 set x_ = VP and ¥ = Tv,~P it then



If T 4is nonexpansive and has a fixed point, we

get the following stronger result,

2.2,2, Theorem, If T 1s a nonexpansive mapping of
a convex subset E of a uniformly convex space into
itself with at least one fixed point, then {vn-Tvn}.
converges strongly to O for each v, € E , where

{vn] is defined by 2,0.1.

Proof., By 2.2.1, 0 is a cluster point of

{vn—Tvn] . Since T is nonexpansive we have

1Tl = QA=A v - (1A )PV + Tv, - T4l
But |v v 4l = v~ (1-r)v, - hnTvnH

Xn"vn—TvnH .

1

Therefore
WVorg =TVl € (=-a Mv ~Tv (| + A (v -Tv,
= ”vn-Tvn" .

Hence 1lim [jv -Tv |l = O .

2.2.3. Lemma, If T is gquasi-nonexpansive then

an+1*P" < llvy=pll for any fixed point p of T .

20



2l

Proof. We have
v, -0l = 1 (3=, ) (v,=B) + A, (Tv, =p)]

< @-x v =pll + AgllTe, ol

[P

Iv,-2ll .

2,2.4, Theorem, If T 1is a quasi-nonexpansive mapping
of a closed convex subset E of a uniformly convex
space into itself with at least one fixed point and
I-T maps closed bounded subsets of E into closed
subsets of E , then {vn] converges strongly to a

fixed point of T for arbitrary vy in E .

Proof. Let V ©be the strong closure of the set
(v} . Then V is closed and also bounded since
v ~pll < llvy-pll for al1 n, by 2.2.3. By 2.2.1, O
is in the closure of (I-T)(V) . Since this set is
closed by hypothesis, there i1s a subsequence [vnk]
such that vnk + q where (I-T)q = O . Lemma 2.2.3

then shows that lim vn =q .

2.2,5. Corollary. If T is a nonexpansive mapping
of a closed convex subset E of a uniformly convex
space into itself such that T(E) 1is relatively compact,

then [vn} converges strongly to a fixed point of T
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for arbitrary \a in E .

Proof. Schauder's theorem 1,1.7 guarantees the
existence of a fixed point of T , Since T(E) 1is
relatively compact, I-T maps closed bounded sets into

closed sets., The proof is finished by applying 2.2.%4,

Petryshyn {27] has called a mapping T demi-compact
if given a bounded sequence ({u ) such that {(T-T)(u,)}
converges then the sequence {Tun] contains a con-
vergent subsequence, It is clear that every compact
mapping is demi-compact; it is also easy to see that if
T is demi-compact then I-T maps closed bounded sets
into closed sets. The ldentity mapping on an infinite
dimensional space has the latter property but is not
demi-compact. Theorem 2,2,4 was proved by Browder and
Petryshyn [5] under the assumptions that T is
demi-~-compact and ,xn = l.; with 0 <A <1, for all n .
Dotson{ 11] showed that the same proof carries through
under the assumption that Ay is bounded away from O
and 1 . Petryshyn has shown that a mapping T in
Hilbert space is demi-compact if it satlsfies any one
of the following three conditions:

(1) Re(Tx-Ty,x-y)< ali~y|® with a< 3.

(i1) Re(Tx-Ty,x-y) < allTx-Ty|® with = _<_5,i,- .
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(111) (I-T)'l exists and is continuous on its range.

The next two propositions glve another class of

demi~compact mappings.

2.2,6, Proposition, If T is demi-compact and K

is compact then T + XK 1is demi-compact.

Proof. The definition of demi-compactness may

be verified in a stralghtforward manner.

2.2.7. Proposition, Every strict contraction on a

Hilbert space is demi-compact.

Proof. Suppose ||Tx-Tyl| < allx-yl| for all
X,y € D(T) with a <1 . Then

(1-a)|ix-yll = llx-yll - allx-yl

lz-¥ll - fTx-Tyl|
< li(z-T)x - (z-T)¥li .

I

Hence T satisfies condition (1ii).
If T has a unique fixed point, then the next
corollary gives extra information about the convergence

of the iterative sequence.

2.2.8. Corollary. Suppose T 1is & quasi-nonexpansive
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mapping of a cleosed convex subset E of a uniformly
convex Space into itself with a unique fixed point p .
Let 0 <X <1 and define (v, (X))} by

Vo1 (M) = (3=2)v (A) + ATv_(A) , where v, € E is

arbitrary. Then 1im vn(h) = p and the convergence

is uniform in X on compact subsets of (0,1) .

Proof. BSetting i, =1 for all n in 2.2.4 we
see that v (A) » P as n o+ = for each ) e (0,1) .
The functions f () = [[v (A)-p|l are continuous and
converge pointwise and monotonicaglly to 0O . The

theorem then follows by an application of Dini's theorem.

We have shown that the condition g£A (1-A,) = « is
sufficient for the convergence of the sequence 2,0,1
for a wide class of mappings. We now show that a kind

of converse holds.

2.2.9, Theorem, A sequence [hn] with O < Ay L1
has the property that thersequence 2.0.1 converges

strongly to a fixed point irrespective of the cholce
of X,E and T satisfying the hypotheses of 2.2.4

if and only if [kn] is a D-sequence,

Proof. We need only to show the necessity. For
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this 1t suffices to produce an example of X,E,vl, and T
satisfying 2.2.4 such that the convergence of (vn}
implies zhn(l-kn) =o _, TLet X be the complex plane,

E the closed unit disc and vy = 1 . Choose @ such
that 0 <6 < T and M _(1-A ) sin® (3) #1 for all
n, Let T be the rotation of E about the origin by

& radians. For any two complex numbers u and w

with |ul® = |[w|® =7 and for 0 <t <1 we have
|(l-t)u+tw|2 = r-t(l-t)lu-wl2 . Using this we see that

‘Vn+ll2 = |(:I"'kn)vn - lnTvnle

= v 1? - A () v, -mv | B

= (v lBa-i (1) sin? (3) 3 .
Hence,

s n-l 2 ,8
v I = knl {(1-# (12, ) sin® (F) }

for n>1 . 8Since 0 1is the unique fixed point of T
and v, converges to a fixed point by assumption,
o«

n (1-3a. (-2, ) sin? (21 = 0 .
l[ k( k)sn ('é')}

—
—_

But this is equivalent to zkn(l-ln) = , by 1.4.1,



Section 3. Approximation in the Weak Topology.

We now generalize a result of Opial and show that fixed
points of nonexpansive maps in certain uniformly convex
spaces may be weakly approximated by the sequence 2.0.1
without assuming any ''compactness'' condition on the

mapping.

2.3.1, Lemma., The fixed point set of a quasi-nonexpansive

mapping in a strictly convex space is convex,

Proof. Let T be quasi-nonexpansive with fixed

points x and y . If Ot <1, then
lx-yll < llx=T((2-t)x+ty)l] + |T((1-t)x+ty)-yl|
< tlix=yll + (1-t)lix-yl| = [x-yll
gince T 1is guasi-nonexpansive. Hence T((1-t)x+ty)
lies on the segment [x,y] . Since x and y are

fixed points and T maps no point away from a fixed

point it follows that (1-t)x+ty is a fixed point,

The next two lemmas are due to Opial [25].

2.3.2. Lemma., Let X be a uniformly convex space with

weakly continuous duality mapping J (see 1.1.9). If



the sequence (x

n] is weskly convergent to Xg then

any x # Xg »

lim |l xll > Lim Jlx -x|l

Proof. In the eguation
(J(xn-xo),xn~xo) = (J(xn-xo),xn—x) + (J(xn-xo),xnxo)

the last term goes to 0 as n -+ o since J 1is

weakly continucus. We then have
Lim k(e -xolD) 5 ~xoll < 2im | (T(x,~25) 5%, -%)]
< atm 7Gxy =x0) -l
= 1im b (llx ~xol ) =, -xI|

Hence lim {lx_~x,ll < 1im [Ix -x[| . The equality cannot

a7

for

hold since if this were the case and y was the midpoint

of X5 and x , then taking a subsequence X such
k

that

"xnk—xon + 1im Hxn-xou and . Hxnk—x" -+ lim Hxn-xH s

we would have
Iy 9= Mxg -x) + (%, %)l

< max (llx, ~xll, =, -xoll) (15 (lx=x,]1)) -
k k |



P
5]

Therefore, lim "xn—yn < 1lim ”xn-xO" , which is impossible.

2.3.3. Lemma. Let T be a nonexpansive mapping

on a uniformly convex space X with weakly continuous
duality mapping. If [xn] converges weakly to Xq
and {(I-T)x,)] converges strongly to Yo » then

(I"T)xo = yo

Proof. We have lim [x -x,ll > lim |Tx,-Tx,ll

= lim "xn-yO-TxO" . Hence by 2.3.2 we have
XO=yO+TXO.

The statement of the next theorem is more general
than the theorem of Opial [25], but the proof, except
for very. slight modifications, is the same as that given

by Opial.

2.3.4, Theorem. ILet T be a mapping of a closed
convex subset E . of a uniformly convex Banach space
into itself with a nonempty set of fixed points,

Suppose [xn] ig a sequence in E satisfying:
(a) lxguq-¥ll € lIx -yl for each fixed point y of
T and for all n .

(b) {(I-T)x,} converges strongly to O .
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Then {x converges weakly to a fixed point of T .,

3
Proof. Let F be the fixed point set of T .

For y € F let d(y) = lim |lx -yl . Since d is

lower semicontinuous and F 1s closed and convex,

the set F, = {y € F:d(y) < d} 1is closed, convex and

bounded. Since X 1is reflexive there is a smallest

§ for which F6 is nonempty (1.1.5). Then

F6 = {yo] , 8ince if F6 contained two points then the

average of these two points would belong to an Fd

with d < § Dby uniform convexity. If {xn} does not

converge weakly to y, then by 1.1.4 there would

exist a subsequence [xnk} converging weakly to

Yy # Yo By (b) (I-T)xnk + 0 , hence by 2.3.3 ¥

is a fixed point of T . By 2.3.2 we then have
6 = d(yy) = lim Hxnk-yoll > lim Hxnk-yn = 4a(y) >

a contradietion,

If T 1is nonexpansive and {vn]

2.0.1, then setting x = v, we see by 2.2,3 and 2.2.2

that (a) and (b) of the previous theorem are satisfied.

is defined by

Hence we have

2,3.5., Theorem, ILet T be a nonexpansive mapping
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of a closed convex subset E of a uniformly convex
Banach space with weakly continuocus duality mapping
dinto itself, If T has a fixed point, then the process
2.0.1, where [kn] is a D-sequence, converges weakly

to a fixed point of T for arbitrary vy in E .

Note that a fixed point of T 1s guaranteed 1f
either E 1is bounded (1.1.8) or if T(E)' is relatively
compact (1,1.7). Also, since weak and strong con-
vergence are egquivalent in finite dimensional spaces,
the proof of 2.2.9 shows that for the weak convergence
of 2.0,1 for each T and E satisfying the hypotheses
of 2.3.5 it is necessary that [ln}_ be a D-sequence,
Finally, we note that Browder [3] has shown that the
spaces £p with 1 < p < » have weakly continuous
duality mappings, however, Opial [25] has pointed out
that the spaces IF with 1 < p # 2 do not have weakly

continuous duality mappings.

Section 3. A Theorem on Variaticnal Inegqualities.

Lions and Stampacchia [21] have made extensive in-

vestigations of problems of the following type.

Problem: Let K be a closed bounded convex subset

of a real Hilbert space H . Suppose A 1is a mapping
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from K into H end f e H, Find u, € K such that
(Auy-f,v-u,) > 0 for all v in K,

Such an inequality is called a variational inequality
and Uy s if it exists, 1is called a solution of the
variational inequality. In particular if A 1is the

identity mapping we have

2.3.1. (u -f,v-uo).z 0 for all v in XK.

0
It is well known that this is equivalent to saying
that U is the projection of f on K , in-fact,
the inequality says that the 'Tangle!'! between v-ug
and f - Uy can never be acute for any v in K .
Other motivating examples and references may be found

in the paper of Stampacchia [29].

The next lemma is well known and follows easily

from 2.3.1.

2.3.2. Lemma. The operation of projection onto a

closed convex set in a Hilbert space is nonexpansive,

Proof. ILet P bYe such a projection and x,y be
in H . Applying 2.3.1 with f =x and v = Py and

then with f =y and v = Px we obtaln

(Px,Py-Px) > (x,PysPx)
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and

-(Py,Py-Px} > (-y,Py-Px) .

Adding these inequalities we have

ley-Px||® < (y-x,By-Px) ,

hence the result.

We now show that solutions of variational inequali-
ties involving B-monotone operators (see 1,1.10) may be

approximated by using convex iteration procedures,

2.3.2. Theorem, Let K be a closed bounded convex
set in a real Hilbert space H and A:K * H be a
B-monotone operator with constant ¢ . Then a solution

of the variational inequality (Aup-f v-u.) >0,
2

for all v in K , exists for each f in H and
this solution may be approximated by the convex iteration

procedure,

Proof, The variational inequality is eguivalent to

(2cAu -2¢f,v-u_) >0 for all v in K,

£ £)
i.e,

(uf-(uf-ecAuf+2cf),v-uf)‘2 0 for all v in X,

Hence, u, = P(uf-ecAuf+2cf) where P is the pro-

T



jection on K . Hence we seek a fixed point of the

mapping
Tx = P{x-2cAx+2cf) .
Now,

2
(Ax) =A%, X, -%,) > cllAx, -Ax||

implies that

o1 2
(2cAx, -2cAX,, X ~X,) > Sll2cAx, ~2cax, ||
Therefore,
: 2
| (x, -2cAx, +2eT ) - (x=2c Ax +2ef )|
2 2
= “’"1"‘2" -e(xl—xz,chxl-echa)+||2chl-2ch2]|

1 2
< llxy=x,1P-2 -l 2cax, ~2chx || %+ 2cAx, -2cAx, ||°

1
2
= nxl—xgll .

Hence the map X -+ x-2cAx+2c¢f 1is nonexpansive, But
P 1is nonexpansive by 2.3.2, therefore T 1is non-
expansive. Since T maps the closed bounded convex
set K into itself a fixed point exists by 1.1.7
and may be weakly approximated by using 2.3.5. If
K spans a finite dimensional space then 2.2.4 may be
applied to obtain an approximating sequence in the

strong topblogy.



Remark, The method described in the above theorem is
not effective in general since thé element Px 1s not
aiways computable, However, if K 1s a ball or a
finite dimensional linear manifold, the procedure is

effective.



CHAPTER IIX

ITERATIVE SOLUTION OF
LINEAR OPERATOR EQUATIONS

In the present chapter we consider the problem
of approximating solutions to linear operator equations

of the type
u-Tu=7=¢~

where T 1s a linear nonexpansive or asymptotically
bounded (see 1,1,11) mapping. The main tool is the
Eberlein Ergodic theorem. We apply these results to
obtain theorems on the approximation of solutions of
certain linear operator equations of the type

Au = g , where A 1is a positive linear operator on a
Hilvert space H and eguations of the type Bu = Pg
where B is an arbitrary bounded linear on H and

P 1is the projection onto the closure of the range of
B . We also obtain a theorem on the approximation in
TP norm of solutions of a certain functional equation

. Q0
in L .

Section 1, The QOperator Equation u - Tu = f .,

A point u 1s . a solution of the equation

35
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w - Tu = if and only if u 1is a fixed point o lhe
mapp ing Tf where fo = Tx + T , Hence we conuvider
the 1terative sequence

(IR

.l.o. Vn+l = (1-)\.n)vn+)\anvn F) n = 1,2, LY

where v, is arbitrary and [Xn} is a D-sequence (see
2,1.2). It is easy to see that this can also be written

as

3.1.1. v, = A (T)vy+B (T)f

T)

I AL (T) = ((1-2 )T T)A (T)

il

3.1.3. BJ(T) 0 ; Bn+l(T) = ((1-xn)I+AnT)Bn(T)+xnI .

3.1.4, Lenma. I-An(T) = (I-T)Bn(T) for all n .

Proof., It is clear that I-Al(T) = (I-T)Bl(T) .

Suppose that I-A,(T) = (I-T)B,(T) , then

(I-T)B ({21} )T, T) (I-T)B, (T)+(I-T)A, I

k+1(T)
= ((1-h)T#A, T) (T-A, (T)) 4y (I-T)

I-((l-xk)1+kkﬂjAk(T)
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3.1.5. Lemma. Let T be an asymptoticaelly bounded
linear operator on a Banach space X; G = [I,T,T2,...] .
A sequence {Jn} C Gg* is a system of almost invariant
integrals for G if and only if [(I-T)Jn] converges
to zero in the strong operator topology, i.e.,

(I-T)Jx » 0 for each x in X,

Proof. Suppose (I-T)J, converges to the zero
operator in the strong operator topology. We must
verify that conditions (a), (b) and (¢) of 1.2,1 are
satisfied: Condition (a) is immediate since J, € G*
for all n . Since T is asymptotically bounded and
J, € 6*, anH <M for all n . Hence, condition (b)

is satisfied. Since (I-T)J x + O a trivial induction

argument shows that lim (S-I)J x = lim J (8-I)x = 0

for all x in X and S in G , therefore, condition
(c) holds. Conversely, if condition {(c) holds we

immediately have that (I-T)J x + 0 for each x in X .

3.1.6, Theorem., ILet X be a uniformly convex Banach
space, PFor T a nonexpansive linear operator on X ,
let G(T) = (I,T,7°,...) and let (A (T)} be defined
by 3.1.2, 1If [ln} is a D-sequence, then [An(T)] is

a system of almost invariant integrals for G(T) .



Proof. If (A } is a D-sequence, then (I-T)A (T)
converges to the zero operator in the strong operator
topology by 2.2.2 (in fact, T clearly has a fixed
point and v, = An(T)vl) . The result now follows from

- 3.1.5.

3.1,7. Corollary. Let H be a Hilbert space of real
dimension at least two.. Then {A,(T)} is a system
of almost invariant integrals for G(T) irrespective
of the linear nonexpansive operator T if and only

if {hn} is a D-sequence,

Proof, The sufficiency follows from 3,1.6. For
the converse, we may construct as in 2.2.9 a linear
isometry T on a subspace M of ftwo real dimensions
with the property that (I—T)An(T)x + 0 for each x
in M implies that [Xn] is a D-~seguence. This
mapping may be linearly extended to H without changing
its norm by the Hahn-Banach Theorem., Hence the result

follows.

3.1.8., Theorem, If T is an asymptotically bounded
linear operator on a reflexive Banach space and ln = A
for all n where O <A <1, then ({A (T)} in 3.1.1
is a system of almost invariant integrals for G(T) .
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Proof. 1In this case we note that A,(T) =

z (k)(l x)n‘kkak Hence, if |T%| < M for all n ,

then

I(z-T)A (T)] < {2-2)"M + "M
. n .

n n-k k n n-k+1. k-1
+ M3 L) ()T (B ()RR
k=1
It 1s easy to see that the terms in absolute values are

nonnegative for k < [A(n+l)] and nonpositive otherwise.

Hence the sum may be writen as

[l(n— )] (k)(l_h)n-klk_(knl)(l p )Pl K1y
n 2 ((2)) (a0 (1) P9

k=[A (n+1)]+1

_ 2([l(n+1)])(l"l)n (A (n+1)], [A{(n+1)] _(1-2)"-

Thereforg,
Il (z-T)A, (T)]] 5.2M([l(nil)])(1_1)n—[h(n+l)]h[l(n+l)]

n+l )(l_l)n+1-[x(n+1)]k[x(n+l)] ]

By Stirling's formula, J! ~ v2%] 39¢™9 , we have
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() ~ /a1 28
(al" ™ (atal)emiin] - (a-[aa] )P 00 g A0
< (2r(2-0)[am) Faan) el Dinl 2oyt
A A
Since (F%ET)[ n] 5-(i%%f) ? + @ , we see that

1im H(I—T)An(T)” = 0.. The result now follows from
3.1.5.

We shall obtain a common generalization of 3.1.6
and 3.1.8 in the final chapter.

The proofs of the next two theorems are specializa-
tions of arguments of Dotson [12,Th,3] which in turn
were appearently modeled on a proof of Browder and

Petryshyn [6],

3.1.9. Theorem. Let T be an asymptotically bounded
mapping on a reflexive Banach space X and assume

that [An(T)} is a system of almost invariant integrals
for G(T) . If f is in the range of the operator

I-T , then the sequence 3.1.1 converges strongly to

a solution of the equation u ~ Tu = f .

Proof. We first note that G(T) is asymptotically
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convergent (see 1.2.3), in fact, for each x in X

the sequence [An(T)x] is bounded and hence contains

a weakly convergent subsequence by 1,l1,4, Theorem 1.2,2
then shows that 1lim An(T)x = T x exists. By assumption
there is a w such that (I-T)w = f ., We then have

B, (

Bn(T)f + (I-T_)w and v, = An(T)vl

AT (voow) . Bub  (I-T) (whT (v o))

T)f = (I-T)B, (T)w = (I-An(T))w . Therefore
+ Bn(T)f

= £+(I-T)T(vy-w) = £ by 1l.2.4,

3.1.10, Theorem, Under the assumptions of 3.1.9, if
for some vy the sequence {vn] clusters weakly at ¥
and T\, =@, then y - Ty = f ang [vn} converges

strongly to y .
Proof, Suppose v, ¥y . Since
k

Ank(’.[‘)v1 + T,v, we have Bnk(T)f ¥y - ToVq

Now, TmBl(T) =0 and
T B 1 (T) = T;(ﬁ-xn)l +.KnT)Bn(T) + AT,

= TB,(T) + A, T,

- n, -1 :
hence T8 (T)f = ( ¥ A,)Tf . Since T, 1is weakly
k i=1



continuous and B, (T)f 1is weakly convergent,
[TmBnk(T)] is bounded. Hence T f = O since

Th, = @ . Therefore, (I-T)Bnkf = f-Ankf + f-T f =1 ,

Also (I-T)B. £ ¥ (I-T)(y-T v,) = y~Ty , and hence
nk o ]

y - Ty = f , The rest follows from 3.1.9.

Consider now a finite measure space (S,%,u) and
a measure preserving map ¢ [14,p.667] of S . As
an application of the above results we show that convex
iteration procedures can be used to approximate in

IP norm a solution h € L of the equation

- 3.1.11. h{s) - h(p(s)) = £(s) a.e.

where f € L~ is fixed. F. E. Browder [4] has shown

that a solution to this equation exists if and only if

k

M - ess, sup. | = f(¢J(s))| is uniformly bounded for
3=0

all k ., Accordingly we consider the process

3.1.12, Vel T (1—ln)vn + hn(vn°¢+f)

where v, € A arbitrary and [hn} 1s a D-sequenc

3.1.13. Theorem. ZLet (S,r,u) be a finite measure

space [14,p.126] ¢ a measure preserving map of S .

ho

e.
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Suppose f € Lm(s,z,u) is such that

M- ess, sup. | E f(md(s))| is uniformly bounded.
J=0

Then there exists h € L (S,Z,d) satisfying 3.1.11
and the sequence {vn] of 3.1.12 converges to a

solution of 3.l.11 in the Lp norm for 1 ¢ p < = ,

Proof. Fix p with 1 < p <> and define
TP 4 1P by Tg = gop . Since % 1s measure pre-
serving, T 1is a linear isometry. By Browder's
theorem f € (I-T)ﬁp énd since IF is uniformly
convex we have v, - hel? in the IP norm by 3.1.9,
where h is a solution of 3,1.11l, Extracting an
almost everywhere convergent subsequence we see that

h € Lm(S,E,U) . Hence the theorem is proved.
3.1.14, Theorem. In the context of 3.1.13,

U - ess, sup. | § £(pY(s))| is uniformly bounded if
J=0

and only if there is a vy € I° such that the seguence

{vn] is bounded in IF norm for some p with

1 <p <>,

Proof, The necesslty follows immediately from the
previous theorem, The sufficiency follows from Browder's

theorem, theorem 3,1.10 and the Eberlein-gﬁulian theorem,



Iy

de Figueiredo and Karlovitz [9] have given another
iterative procedure for approximating solutions of 3.1.11
in the 1P norm, however, the intial point of their
sequence must be the function f and the convergence
of the process is not monotoﬁe, as it 1s for the convex

iterates (2.2.3).

Section 2, Qperator Equations in Hilbert Space,

We now specailize the considerations of the
previous section to Hilbert space. Recall that a
bounded linear operator A on a Hilbert space is
called positive (denoted A > 0) if (Ax,x) > O

for every x .

3.2.1, Theorem, If T 1is nonexpansive and self-adjoint
and f is in the range of I-T +then the sequence
{v,} of 3.1.1 converges to the solution of u - Tu = f

which is closest to Vi .

Proof, ILet M = [u:u-Tu=f} . By 3.1.7
An('I‘)vl + veN = {x:x-Tx = 0} , If v, € N then
An(T)vl = vy for all n and thus An(T)vl vy .

If v, is in the range of I-T , then A (T)v,

1
converges to 0 by 3i1.5. Suppose vy = Xty where

x is in the range of I-T and |lyf| < € , then



| 1im An(T)le = ll1im A (T)yll < € . Hence we see that
if vy is in the closure of the range of I-T , then

An(T)vl converges to O ., 8ince T 1is self-adjoint,

N* is the closure of the range of I-T , therefore,

we see that An(T) converges to P the projection

N 3
on N , in the strong operator topology.

As was seen in the proof of 3.1.9 we then have
B (T)f (I-PN)u for some u in M ., Therefore,

we have Vo P.v. + P_..u but this last element is

N1 N

easily seen to be Ple , the point in M nearest to

the initial point vy .

3.2.2. Theorem. Let A > O be. a bounded linear
operator on a Hilbert space H ., Let feH and let

{(+,} be a D-sequence. Define (v, } by

Voal = Vp = M(Av +f)

where X = Eun/"AH .

(a) If f e R(A) , then (v,} converges to the solution
of Au = f which is nearest to vy -

(b) If f £ R(A) , then for each vy in H, the
sequence {vn} contains no weakly convergent

subsequence,
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Proof, Note that
vn-ln(Avn+f) = (l-un)vn + un(Tvn+f)

where T = I-(2/)JAl)A ana T

It

(2/llAl})f . Hence
T = T* and since 0 < A < [|A|T , we have -IQIKT ,

i.

@

. T} € 1 . Therefore by 3,1.9, if

~

f e R(I-T) then v_ <+ u where u is the solution
of u - Tu - T nearest to vy o But this i1s none other
that the solution of Au = f which is nearest to vy .
Since T € R(I-T) if and only if f € R(A) , part
(a) follows. Also f £ R(A) implies T £ R(I-T) and

hence [vn} has no weakly convergent subsequence by

3.1.10

It may happen that the equation Bu = h has no

solution, i.e. h £ R(B) . In this case it might be

of interest to solve the equation Bu = Ph , were P

~is the projection onto the closure of the range of B .

3.2.3. Corollary. Let B be a bounded linear operator
on a Hilbert space H and let P be the projection
of H onto the closure of the range of B . For h

in H and {un} a D-seguence, define [vn] by

Vel = Y o ln(B*an+h)

where X\ = (2/]|B*B||)u .
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(a) If the equatlon Bu = Ph has & solution, then (v}
converges to a solution for each A in H .,

(b) If the eduation Bu = Ph has no solution, then
for each vy in H , the sequence {vn] contains

no weakly convergent subsequence,

Proof, We denote the null space of an operator
A by N(A) . If Bu = Ph , then
B*Bu = B*Ph = B*(Ph+(I-P)h) = B*h since I-P projects

onto RiBil

Bu - h € N(B*) , therefore P(Bu-h) =0, i,e.,

Il

N(B¥) . Conversely, if B¥Bu = B*h then

Bu = Ph, Consequently, we may apply theorem 3.2.2

with A = B*¥B and f = B*h ,

Note that if condition (b) of 3.2.,2 or 3.2.3
holds then the seguence [vn] is unbounded for each

vy by the Fberlein-Smulian theorem.



CHAPTER 1V

A CLASS OF SUMMABILITY METHODS
RELATED TO CONVEX ITERATION PROCEDURES.

We now consider again the process 2.0.1, but we

label the initial point Vg

Vel T (l'ln+l)vn ATy, -

If T is affine (i.e., T((l-t)x+ty) = (1-t)Tx + tTy

for 0<t <1 ) we have

v, = kil((lnxk)m + 2 T)v,
n
- T T ¢
Where,
[ 1 0
1-hq Ay
e (1-2;)(1-2,) Ay (I=a )+, (1-hg) Aqh

It is easy to see that the matrix elements

are given by the following iterative formulae:
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aoo = 1 3 aOk = 0 if 'k > O
#.0.1. anyy o = (3-Apealeng
4.0.2.  apiy een = (Aig)ag pen F Apgifne -

Given a sequence A = (kl,kg,...

) with 0 <X, <1,
the matrix above is denoted by T'(A) . In this chapter
we will show that the summability method associated
with T(A) 1s permanent if and only if ZA = o .

This class of summability methods will be studied in
detail, If ln =k for all n , then this is the
Fuler-Knopp method [16] with parameter XA and will

be denoted by T (actually, Xnopp considered the

special case kn = 7P for n=1,2,... where p 1is

a fixed positive integer).

Section 1, Basic Properties.

4,1.1. Definition. ILet A = (A ) be a

l,le,o-o
sequence of numbers with O < ln <1 for all n .

The I'-method associated with A 1is the summability
method associated with the matrix T'(A) defined by
4,0,1 and 4.0.2.

Hereafter, unless otherwlse specified, the symbol

A will denote a sequence (Aj,h,s...) where O <) <

49
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for all n . We now prove a numerical lemma which will

be useful in the sequel,

L,l.2. Lemma., Let [an] and (bn} be sequences of

real numbers such that 1lim bn =0 and
n

+ ¢t b

a -tn+1)an n+l n

n+l (1

where O < t, <1 for n sufficiently large and

ztn = , Then lim a, = 0.
n
Proof. First we claim that O 1s a cluster point
of [an} . For this purpose we may assume that
la,] > |b,| for all n sufficiently large. Choose
N large enough so that 0 <t <1 and |a,| > |bn|

for n>N, If O is not a cluster point of {an]
then there is an € > O such that |a | - |b | > ¢

for n > N ., But then we have

lapaal < (=t o M epl + by o]

and hence |a | - |an+ll 2_tn+l(]an|—|bnl) >t 1€

for n > N ., Therefore for any M > N,

M
lagl 2 leyl-laggal = = (lagl=lay,y 1)

M
€ Tt
n=N

v

n+l .,
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This gives a contradictlion since %, = © . Thus [an]
clusters at O , For a given € > O , choose M 1large
enough so that IaMI <€, 0<t <1, and

|[o,| <€ for m >M . Then

lageg ! £ (-t ) eyl + tn+l|bM|_g € . Similarly,

|aM+ | < € for all positive integers p , i.e.,

P

lim a_ = O ,

L N

4,1.3, Theorem, The method TI'(A) is permanent if

and only if ghn = © ,

Proof. If T(A) 1s permanent, then
- ,
0 = l;m a5 = igl(l-xi) . Hemce =\ = by l.h4.1.

Conversely, if 2ZA_ = o« then lim a =0, It now
n n no

follows from 4,0.2, 4,1.2 and induction that

lim Ay = 0 for each k . It is easy to see that
n

n
kio By = 1 for each n . OSince a,, >0 for all

n and k , it follows that [a satisfies the

1]
Toeplitz conditions (1.3.2), 1.e., T(A) 1is permanent.
An alternate discription of a T-method which is

sometimes useful is the following:
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Given a sequence (so,sl,...) define the ''operator!'!

¢ on the terms of the sequence by 08, = 8.9 -

method T(A) then transforms the sequence (sn) into

The

I I =
the sequence (s/) where s{ = 5, and

n
8} = kgi((l-xk)+mkc)so for n > 0 . This can also be

written as

1 | — — f t
Sn+1 = (1 J‘Ln+1)$n + ln+lcsn
2 3
where o0s8! = I gs, = a_.,8s8 .
n k=oank kT o nk ktl

4.1.4. Definition. A summablility method A is

called left translative'if given any sequence

(sg»87s...) which is A-summable then the sequence
(8ys8455...) 1s A-summable to the same value. A is

called right translative 1f given a sequence

(so,sl,...) which is A-summable then the sequence
(a;85:...) 1is A-summable to the same value for

arbitrary a .,

4,1.5, Theorem, The method T'(A) i1s right translative

if and only if ©& Ay = -
n=1

Proof, The sequence (1,0,0,...) is transformed
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by T(A) into the sequence whose nth term is

n

nl(l-xk) . If T(A) 4is right translative, then this
K=1

sequence must have the same 1imit as the T'(A)-transform

of the sequence (0,0,0,...), i.e. I (-2 ) =0 .
| k=1
Hence & hn = o ,
n=1

Conversely, suppose that 3} ln = o gnd that
n=1

the T(A)-transform of the sequence (S;,5,5...)

converges to s . Let Tret1 denote the kth element

of the T(A)-transform of the sequence (S;,6p5...)
for k =0,1,... and 1let g be arbitrary. Let

(s)) = T(A)(rys8y5...) » then = r. and

!
50 0

s (1

n+l =

os) = (- 98] + AopaThe

Ape1)8h T M

It follows that (sﬁ) = B(rk) s where

[ 0 o ...

l-ll ll O - . .

B = (l—kl)(l~l2) (1-x2)xl A « .o
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i>0 and b (1 for n> k , For

ntl,k = (1Aniq)Pnk
this matrix, bnk~2 O forall n and Kk ,
n

T bnk =1 and lim bnk = 0 for all k since
k=0 n

o]

Y (1-Kk) = 0 ., Therefore, the matrix B 1is permanent
k=1

and hence T(A)(ro,sl,...) converges to s , i.e.,

T{A) 1is right translative.

4,1.6, Theorem, The method T(A) is left translative

if and only if lim ln > 0 .

Proof. Suppose that lim ln > 0 and that

(Sﬁ) = P(A)(SO,Sl;...) is convergent. Let

(r,) = T(A)(ss555...) , then

vt . oal —
S sh (1

| — 1
n+l + X o8 Sn

- 1
JLn+l)sn n+l n

= ln+l(rn-sﬁ) .
Since (s]) converges and 1im X, > O , we have

1lim (rn-sﬁ) =0, i.e., T(A) 1is left translative,

Conversely, suppose there is a subsequence (hnk)
of A with limA_ =0 . By 1.4.2, there is a
k Pk



Q0
divergent sequence (ek) such that T

€.\
k=0 k™n

k

converges. Define a sequence (s!) as follows:

0. 3 for n < no
sl = sl _.+€ A » for n=n
n n 17k ny k
1
snk s for nk <n < nk+1

Then lim s! = bl

€, A » 1i,e.,, the sequence
n -0 k'n

k

I

(sy) T(A)'l(sﬁ) is T(A)-summable; Since

Sha1 = (1-kn+l)sﬁ + A,.,08) , we have

—_ t
csﬁk_l = Snk—l + & . Therefore the subsequence

(os) _3) of T(A)(sys8,,...) diverges. It follows
K

that TI'(A) is not left translative,

55

4.1.7. Definition. A Banach limit (see e.g. [14%, p.731)

is a linear functional L defined on the space 2”

all bounded real sequences such that (a} IL(x,) >0
if x, 20 for all n, (b) L(x,)) = L(x ,,) and

(¢) L{x,) =1 if x =1 for all n.

The next corollary follows immediately from

of
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previous considerations and the Hahn-Banach theorem,

4,1,8. (Corollary. There is a Banach limit whose
restriction to P(A)# N, 1is T(A) if and only if
1lim ln > 0.

4.1,9, Theorem. ILet A =(kl,12,...) and A = (61,62,".)
be two sequences with ln > 0 and 8y > 0 . Let

'(A) and T(A) be the associated T-methods. Then
T'{(A)T(A) is a Temethod if and only if by = 6 for

all n and in this case T(A)T{a) = T'(8A) , where

6/\ = (6l136l2.!ooo) .

Proof. PFirst we note that the product matrix
represents the composed transformation since both

matrices are lower triangular. Let [ank] = T'(A)

and [bnk] = I'(A) and suppose that [ahk][bnk] = [cnk]

is a TI'~method, Then 1t is easy to see that Cog = 1
n .
and c, = iEﬁkiai for n >0 . Also,
n+l

®nt+l,0 = JEOan+l,ijO
n

= Eln—f-:l.,o""_j‘ﬁoa'nﬁt, J+1P3+1,0 °



Hence
®n+1,0 ~ (1=} pr1)ang
n g
" 5o [(2- "n+1)an,J+1b3+1,o+"n+1(1‘6.j+1)ana jo!
= (l'kn+l)°n0+gz Mo (3 63+1) nJ Ja

n
- %
Cno M n+1 J=06J+lanjbjo '

But since [cnk] is by assumption a T-matrix, we have
Cpt1,0 = (l_6n+lkn+l)cn0 » by 4.0.1. Substituting this
above we have

n

8n+1%n0 T JZOGJ-I-:Laan,jo

for all n . From this it follows that 6, =8y =6

for all n and = (1-6A

Cn+l1,0 n+17%n0 -

Conversely, if 6y, = & for all n , then as above

we have Cp.9 o = (1-8%,,1)¢cpg - Also,

n+1

Chntl, k4l = Jzoan+1 3P4, k41

n
= E a
J=0

(since = 0)

n+l, 410541, k1 %5 k41

"

JEO[(1'ln+l)an;J+l+ln+1ahJ]b3+1’k+1 y
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Hence
n

= (l-ln+1)

Cn+l,k+1
n

8§ ¥ a
j=0

+ A

n+l njbjk

(1- (

n+1)°n,k+1 n+1

(1-8A +5A

n+1)°n,k+1

Hence [c ] = T(6A) , by 4.0.1

k,1.10. Theorem, The inverse

the method B given by the mat
1

10

(1-A] -

P

and

botd, k1 = (172 2)bn k+1

Proof, Let

(s1) = T(A) (s

B(s; First, it is cl

k)'=‘(8k)

Suppose

—

8

Then
n 3

n
!
kiobnksk |

n+l

kEobn+1 k

(1-a7t

1

n+1.
s’+ 2 b
k 1

= (aThw

n+l

)b +z:[(1x
k=1

nO

n+1l
8 i+ % [
0 k=1

-1
1+ 3 L

nO O k=1

o 1, G41° 441, k41 0

n+1%nk

k+l)bnk ALY
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1(1-8) E anJ 7,k+1

4+A dc

1-8)en, ke ne1® Cnk

and 4.0.2.

of the method T(A) 1is

rix [bnk] where

0 for k>n

l

k+l nk ’ O<k<n.

k) 3 we show that

ear that b s

0

—3

]
0070

n+l,k k

l |]
n,k~1 Sk

-1, -1
k Pn,k-1"Mk+1Pnk! Sk
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n b

= 8.+ X
N k=0 Mg+l

nk
(sfy1-2g) -

We also have,

Shia " Sk = Meyp (984-8g)

Therefore,

n+i n (

b =8 + Z.b_,(gst-s!)

keO n+l, xS k n k=0 nk k "k

(Ebs1) - % b
= 8 + O b g') - b, 8!
n k=0 nk k k=0 nk k

= 8, + osn - Sn = 8.9 *

Hence the theorem is proved by inductilon,

The next theorem is technical in character and

will be used in the subsequent section.

4,1,1), Theorem. Let TI'(A) and T(A) be two T-methods,

Then D = T(A)F(A)Tl is glven by: d,, =1, d =0

00 O,k

for k > 0 ,

dpe1,0 = (T-bpeadq )dno ;

+ 5. ATt 4

dpta, k41 = (3=8p4q) k+2)dn,k+l n+1 k19

Proof, Let [ank] = T(a) ; [bnk] = P(A)-l
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Then
n+l
el kel T 2n+1,0%, k01t 2 Bne1, 1%, k0
n+l1 -+l
= (1=8501) % 203%5 er1 0041, B %, 1410, k0
i=1 i=1
n+l
= (18,4200 k101, B 8, 12104, ekl

i=1
n+1 -1 .
= (l'6n+l)dn,k+1+6n+11§1[(l-lk+2)bi-l,k+lan:i“1

-1

rx1%n,1-1%1-1, %!

n+1 -1

= 9, k4170001, % Mero®n, 141011, ke

n+l o1

Fon+1, B Mer1®n, 1-1P1-1,k

1
-1 -1
= (1=8,1 k3209, k1 POn+1 k1 %nx -

A similar caleculation establishes the other assertion.

Section 2. Relative Strength of Various Methods.

In this section we compare the relative strength

of various subclasses of permanent I'-methods.

4,2,1, Theorem. ILet A = (51,52,...) and

A = (Ayshys...) be sequences with- O < 0 <A,

n L]
and T, = . Suppose that for all n sufficiently



large, &, <A for 0<k<n, then T(a) > T'(A)

Proof. Let D = I(A)T(A)™1, then it suffices

to show that D 1is permanent, By 4.1.9 we have

= (1-6 k-l)d

dhe1,0 n+1*1 /%o

d o= (1-8 )d +6  ASt 4

n+l,k+1 n+l k+2 n, k+1 n+l k+1l nk °*
n

A routine calculation shows that bN dnk =1 for
k=0

all n . Choose N so that &, <A for 0 {k<n

n
and n>N, and let M= max % |d,l| .
0<n<N k=0
Then,
N+1

-1
R£O|dN+l,kl < (T-tpggr 1 )M dye!

n
-1 -1
+k§0[(1u5N+llk+2)ldN,K+l|+6N+llk+llde|]

N-1
= layol+: 206N+1 1:+2|dN kL
N-1 N
¥ I (B k+2)ldN o1l = kioldel =M

' n
It follows by induction that = |a .| <M for all n

k=0
We note that 1lim dno = 0 since Ean = o , If we
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suppose that 1lim dnk = 0 and apply 4.,1.2 with
n
o = d b = A vt da. and t = s ATt
n n,k+1 ’ k42" k+l nk n n k+2 ’
we see that 1$m dn,k+l = 0 ., Therefore D satisfies

the Toeplitz conditions (1.3.2) and the theorem is

proved.

4,2.2, Corollary. If A = (ll,he,...) where A, > O
and A, <\ for almost all n , then T(A) > T,

4,2.3. Example. Let A = (11,12,...) where 0 <A <1
lim ln =0, Suppose O <A <1 and choose .a such

that a < (A-2)/A . It is easy to check that

rk(l,a,a peee) = (({1-2)ra)? }, and

T(A)(l,a,ag,...) = H ((1-ki)+K a)] . Since

| (1-2)+ra] > 1, the sequence (a,) is not T, -summable.
However, if ¥A = « , then (an) is TI'(A)-summable

to O by 1,4,1,

L.2.4, Corollary. Let A = (ll,ha,...) be a sequence
with X -+ O and IA =« , then T(A) > T, for each
A wlith O <A 1.,
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Proof. This follows from 4.2.2 and the previous

example,

h,2,5, Corollary, If A = (11,12,...) where 0 < A <Ay

for all n , then Ty > T(A) .

It is known that each of the Euler-Knopp methods
Tl is weaker than Borel's exponential method

[32, p.131], hence we have:

4.2.6. Corollary. If A = (Ajsh,s...) where
1im x> O , then I'(A) 1is weaker than Borel's

exponential method,

4,2,7., Corollary. If A = (ll,lg,...) and
A = (51,62,...) are sequences with 0 <A <1,
0 <8, < 1, 1lim ln >0 and 1im 5y, > 0 , then the
methods T(A) and T'(p) are consistent.

Proof. Under these assumptions there is a A > 0
such that A < An and A < 6§, for all n . Therefore,
by #.2.6, T(A) Ty and T(a) T, . Hence T"(A) and

I'(A) cannot sum the same sequence to different limits,

We now glve a theorem which provides a necessary
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condition for T'=summabllity.

4.2.8. Theorem. If the sequence (s ) 1s T(A)-summable,

-~ o

-1
then s = 0f( (eki -1}) .

i=1

1l

Proof. If the sequence (sn) is T'(A)-summable,
then the transformed sequence (sﬁ) is bounded, say

|st] <M for all n . Also,

0
1l
I =33

. 1((1-Ki) + X 0)a,

(Ta )T (t,+0))
nma t.+0))a,
j=1 174210 T 0

where %, = A, =1

. ore
i 5 Therefore,

n n
N (t.+0)a, = O( I (t,+1)) .
1=1 i 0 i=1 1

n
. n .
Since s = 0 5, = igi(ti+°-ti)a0 , 1t follows that

n
s | < M. (2t,+1)
nt = 1=1( 1

for n large., But this is equivalent to

o -1

By making an obvious modification in the preceeding
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argument one obtains:

%.2.9. Gorollary. If (s,) is T(A)-summable to O,

L
then s = O(igl(eli -1)) .

4.,2.10. Theorem. Let A = (61,52,...) and

A = (Aysrps...) be sequences with 0 <&, <1 ;
0 < ln <1, 26, = . Suppose that for all n
sufficiently large, 5, g_lk for 0Lk <n.

If lim A 870 = =, then T(A) > T(A) .
Proof. By 4.2.1 we have that T'(a) > T(A) .

To prove the theorem we must exhibit a sequence which

is T(a)-summable but not T (A)-summable. Let

o 11

b, = kglhk by » then we have b, - 0. If we let
st =1 and s! = (-1)®y_ for n > 0, then the
0 n n ?

sequence (sn) = F(A)-l(sé), is T(a)-summable to O .

It is easy to see by using #4.1.10 that for n odd,
the kth element of the nth row of the matrix

1‘(&)”l has sign (--l)k+l , k=0,1,... . Since the

1

n -
diagonal element of thils row is Il 6, » we obtain

k=1
no_q :
8, > bn kgiak y for n odd, Therefore,



. | nooa -1
sn/igl(exi -1) > bnil: Mgy (272y)

1

. 1 1

n o= ==
;2 i k§6122_1 -+ ©

i=1
1l 1
: 3.2 RS |
since A5 “ + = . Hence s  # O(igl(ehi -1)) ,

and (Sn) £ T(A)#, by 4.2.8.

4,2,1).. Theorem. Let A = (Xl,k ..) where Ay

2’

and XA == . Then P(A)# > U Tf .
Z o<l

Proof, By 4.2.2 we have F(A)# > U Ff .
0 <1

To prove the theorem we must find a single sequence
which is T'(A)-summable but which is not summable
by any of the methods I")L . Let sé =1,

n+l 2 %' | -1, .
s = (-1) iglki » then (s.) = T(A) “(s,) 1is

T(A)-summable and for n odd we have as in 4.2,10,

0

1
n ——

s, > MAZ . Now for any A with Ol and n odd
1=1 ==

we have

1
n

s /(a™-1)" > 1 x?(ex 1) s w
1=1 -
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since A, =+ O , Therefore (s ) is not [ ~-summable

for any A by 4.2.8,

4.2.12. Example. Let &, = (27P,37P,...) and

Ay = ((2° 10g 2P)™ , (3P 10g 3P)™1, ...). Then for

0<q<pgl we have r(ap) > r(nq) and I‘(Ap) > r(/\q)
Also, for O<KpgLl and O<K<1 ,

r(rg) > T(a,) > Ty s

# o U T# P

T(A
(hp) £ o<l

and

#
T{A o U Iy .
(8p) £ oLt

These assertions follow from 4.,2.10 and 4.,2.11,.

Finally, we give a theorem which relates a
F-method with the method obtained from it by shifting
the sequence of parameters (ln) .

4.2.13, Theorem. Let A = (A ,} } and

2’0--
At = (Agsrgse.s) » then T(A) > T(A') if and only if

lim ln >0 .

Proof. Let

67
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(t,) = P(A')((l-hl)sO + hy8ys(1-hy )8 + 1152,...)
and (rk) = F(A)(so,sl,...) . It is easy to see
that (rn+l) = (tn) = (1-xl)r(Af)(so,sl,...)

+ th(A’)(sl,se,...) . From this it follows that

T'(A) > T(A') 1if and only if T(A') is left translative,
ice., lim A, >0 (4.1.6).

Section 3. Summabllity of Series.

We now consider the problem of summing series
with the methods introduced in this chapter. Of course,
a geries is said to be summable by a method A 1if its

sequence of associated partial sums is summable by A .

If g ay is a series which is summable by a method A ,
k=0

we denote the limit of the A-transform of its sequence

of associated partial sums by A( & a) -
=0

4.3.1. Theorem. Let A = (rq,) ) » where

2’-|l
A = ® , If the series & a,_ is T(A)-summable,
n ko &

then T(A)(E a) = £
k=0

o ( , where (at)=T(A)(a) .

k+1%k

Proof. By definition T(A)( § a, ) is the limit
k=0
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of the sequence T(A)(sys84s...) where (s5,8.,...)

ls the sequence of partial sums associated with

o a, . By 4.1.5 this is the same as the limit of
k=0

and USi = 8.

F(A)(O,so,sl,...) = (s]) . If o0 = s,

k

then Osﬁ - si is the kth element of the sequence

P(A)(Soﬁsl’--'J‘T(A)(O:SO:-'-) = T(A)(ao,al,...) = (aﬁ)

It is clear that si = klso = klaé . Suppose

k-1
by induction that s

= ¥ then
k i

X al
o i+171

s' = (1-A yst o+ A, 08
il k+1l/%k k+17" "k

k-1
= Frinal e (O8gmsg)
k-1
' ogoX

= I Xjq8§

al .
100 k+1%k

Hence the theorem 1s proved.

4.3.2. Theorem. Let A = (Aysr,s...) , where

yA, = © . If the series 3¢ ay is TI'(A)-summable,

then the sequence (a,) is T(A)-summable to zero.

Proof. As was seen in the previous precof,

(81) = T(A)(8gs81s-+-)-T(A)(0,s805...) . Since T(A)
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is right translative it follows that aﬂ + 0, i,e.,

(a,) is P(A)-summable to zero.

We have seen that 1f a series § By is summable
k=0

to a by a permanent method T(A) , then the series

¥ kk+laﬁ converges to a . However, the later series
k=0

may converge even if a, 1s not T(A)-summable.
k=0

Accordingly, we make the following definition,

4.3.3. Definition. Let A = (Ay,A ) be a sequence

2,..0

of numbers with O<A <1 . A series ® a is said
n k=0 X

to be T(A)-summable to a if the series

al converges to a , where (al) = F(A)(ak) .

[#s)
> Me+18%

k=0
4,3.4, Theorem., TLet A = (ll,le,...) ; where EA =« .

A series % &) is T(A)-summable if and only if
k=0

o0
kzoak is T(A)-swmmable and (a,) is T(A)-summable.

Proof. The necessity follows from 4,3.1 and #.3,2.

Conversely, if & a, 1is T(A)-summable, then as was
. k=0
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seen in 4,3.1 its T(A)-sum is the limit of the sequence
T(A)(0s855...) . Since (a}) = T({A)(8g,875...)-

- T(A)(0,855...) » 1f 1lim a! exists, then
n

T{(A)(Sn~sS75...) 1is convergent, i.e., % a,_ is
0’71 k=0 k

T(A)-summable.

We note that under the conditions of the

previous theorem that

r(A)( £ ay) =”f(A)(k>°:=°oak) + lim T(A)(a,)

The proof of the next lemma is a trivial exercilse

in mathematical induction.

4.3.5. Lemma, If (A ) 1is any sequence of numbers,
then
n n+l

K
A + DA O (1-2.) =2~ O (1-a,) .
S o 1

4,3.6. fTheorem. The method T(A) 1is a permanent

gseries to series transformation 1f and only 1if

Proof, If § a, =a and FA =« , then
k=0 n
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g is TI'(A)-summable to a and hence 'F(A)~summable
k=0

to a by 4.3.1.

Conversely, suppose 'F(A) is permanent. Let

[d] = T(A) and 1let a5 =1, a8 =0 for k>0,
Then § a, =1 and hence
: k—O
1= § A .8 = (= A, d, .8
k=0 k+1"k k=0 §=0 k+17kj" 3
£,y B (1)
= 2 A d = A, + A 1-A
k=0 k+17k0 1 Kl k+1 1=1 i
o0
=l“n(l")\.i)
i=]1

by 4.3.5. It follows from 1.4.1 that Eln = o

4.3.7. Theorem. The permanent series to series
methods I'(A) and T(A) are equivalent if and only
if lim Rn > 0 .

-

Proof. By %4.3.1 T'(A) 1is weaker than T(A)
By definition, T(A)( £ a,) 1is the limit of the
k=0

sequence I'(A)(0,84,...) . This limit is the same as
the 1limit of the sequence T{A)(sys8;,...) only if
lim A > 0, by 4.1.6.



4,3 B, Theorem,

Each of the permanent T (A)

is absolutely permanent

73

methods

Proof. The method T{(A) transforms the series

¥ a_ into the series § (% &
k=0 ¥

[dnk] = T(A)

Since

n=0 k

n+18nkdy) wher

it suffices (by 1.3.6) to show that

5

A d
0 n+1l @k

= 1 for

k=20,1,2

in the proof of 4,3.6 that %

e

=0

kn+1dnk'2 ¢ for all n and k ,
s... « 1t was shown
Okn+1dn0 =1 1if and

Y=

only if In, =® , i.e., if and only if T(A) 4

permanent. Suppose that

dn+1,k+

and since [dnk]

0 = 1lim
n

o0
= - 3
n=0

Therefore §

A
neo R

0

proved by induect

l=(

Bag

A

n=0

1l

1-

d

n+1%k = 1 . BSinc

A d

ln+l)dn,k+l + n+l nk

1s permanent, we have

d

A d

n+l

+1%,

ion.

n,k+1 ~

£ (a

n=>0

n,k+1 T

w1l = L

n

d

n+l,k+1" n,k+l)

thn+ldnk :

and the theorem is

5

e



It follows from 4.2.8 that if 1lim ln > 0 and

the series & 8 is TI(A)-summable, then the power
k=0

series T akzk has a positive radius of convergence,
k=0

The class of Norlund means also has this property,
thus none of these methods can sum a series which 1s
'"too divergent'', The next example shows that this
1s not necessarily the case with the methods T(A)

when hn -+ 0 .

4.3.9. Example. Let A = (2‘1,3-1,...) , then there

exists a series 8 a), which is T(A)-summable and

k=0
for which the power series & akzk has zero radius
k=0
n+l
of convergence. In fact, let a/ = (-1) and let
n+i
-1 _ -1
(a,) = T(8)""(a}\) . Then T(a)(®a))= ngo =L

converges, that is, & a, 1s ?(A)—summable. Let
k=0

[bnk] = T(A)'l » then for 211 n

n+1l

la, o) = = Iv ., | (see the argument of 4.2.10).
k=0 ?

By the iterative formula for bn+l,k+1 (4.1.10) and



the fact that bnk and bn,k+1 differ in sign we
have

n+l n

kEOIbn+1,k‘ =1+ kiolbn+1,k+l|

I

n
1+ kio(k+2)[|bnkl+|bn’k+1|]

Il

n n
 (k+l)|b. | + = (k+2)]p

n= n,k+1l

n
>e2Z (k+t1)]b
=0

nkl -

Using 4.1.10, one can show that |b2n,krll<|b2n,2n-kl

for ZL5h<n . It follows that

2n n=-1

kin(k+l-n)|b2n’k| > kio(n—k-l)lbgn’kl )

and hence

2n

)| | 2n | n-=1
I (k+l b > Z nib
- on,k k=0

- kio(k+l)|b2n’kl

2n,k|
Therefore, for n even we have

n
n
|an+ll > 2'§'kiolbn,k| = n|an| ’

i.e., by akzk has zero radius of convergence.
k=0

We recall that the classical Abel limit theorem

75
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o0
says that 1f a series Z anzg converges then for each
n=0

z with |z]| < |zl| , the series ¥ a 2" is
n=0 n

absolutely convergent and

lim ¥ a (tz ) = & a2zt .
t31- no0o B 1 n=o 0 1L

We now prove an analogous theorem for the summability
methods studied in this chapter. In the special case
of the Euler-Knopp method such an Abelian theorem was
proved by Knopp [16]. The proof given here is modeled
on the proof of the classical Abel limit theorem and
does not appear to be more difficult than the proof
given by Knopp for the smaller class of Euler-Knopp

methods,

4,3,10. Lemma., Suppose |aﬁ} <M for all n where

(a}) = (a)(a,) . Then

n
n
[ (a )] < Mizl(l—li(l-t)) for n> 1,

Proof. By 4.1.10 we have
(agt)' = (1-A;)ay + A8t
1
= (l-ll)ac') + Klt[ (1-'{:-1.-)&6 + g ai]

= (1-2,)(1-t)a) + ajt .



Hence  [(a;t)'] < M[1-r, (1-t)] . Let c(antn)

n+1l

= an+1t » then given that
| (&, Y1 <M n (124 (1-%))
i1
we have
(a8 ) =] (12, ) (8 t™) + A 0(a t™) 1|

n
5(1-xn+1)Mi£i((1-xi)+xit)

s

+A tM

n+l ((1-hg)+r5%)

i=1

n+l
=M I (1-A, (1-%))
i=1

4.,3.11, Theorem, Let TI'(A) be permanent. If for

3 m [}
some complex number zq the series I a z? is

T'(A)-summable, then the series 3} anz is absolutely
n=0

and uniformly T (A)-summable on compact subsets of the

disec f{z:|z] < |zl|] and

Lim_ r(A)( ?3 a, (tz()") = I‘(A)( ?3 a zy) -

Proof, It is easy to see that we may consider

(4



real values of =z only and teke 2z, = 1. By 4.3.10
and 4.3.5 we have
g n 2 I
1'1=0?L’“+1|(ant 'l S M otn igl[lnli(l~t)]
- M
- 1l-t

Hence the first conclusion of the theorem holds,
Let a=T(A)( B a) ana £(t) =T(A)( § a th),
where Qgt<l . Then

- T(t) = T(A) (g ngoantn)

= T(A)( £ 7 B ath
n=0 n=0

I

F s tP
r(a)( E ot

n
where s = £ a, . Also,
n k=0 k

1 . a=I'(A PN tn . a
-t ° ( )( )

I‘(A)(n%ooatn) :

1

Therefore

a - £(t) = (l-t)l"(l\)(nogo(a-sn)tn) :

78
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Tet € >0 and choose N such that n > N implies
|(a-s)'| < e¢/2 (4.3.2). Then

IT(A)( 8 (a-s,)t™)]
n=0

N
N+1 n

| £ (a~s, )t7 + tVT(A)( § (a-s 3t |

n=0 n n=0 N+n+1 )

N n
n N+1
< |2 (a-s )t + 6 & e/ar I (1-2, (1-t))
n=0 n=0 Bl .97 1
N N+1
t
= | £ (a-s )t + = .
‘ N n N+1
Hence, |a-f(t)| = (-t)]| = (a-s )t"| + e/2t
n=0

| N n
< (A-t)| = (a-s )t7| + e/2 .
n=0

Therefore |a-f(t)| < € if t 4is sufficlently close

to 1 and the theorem is proved.

The next corollary is & simple: partial converse of

the theorem.

4,3.12. Corollary. =Suppose a, 20 for all n and

that % antn is T(A)-summeble for t <1 and t
n=0

sufficiently close to 1 . If lim T(A)( & antn) < ®,
t+1” n=0
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then T a_ 1is I'(A)=~summable,
n=0 °

Proof. First note that aj > 0 for all n .

Suppose f hn+l a = T{A)( Zoa ) = » , then given
N

M , there is an N such that n§0l +lan >M+ 1.

Since lim (antn)' = a! for each n , there is a

t-+1"
tO <1 such that +t > to implies that

N

5 A (et > M, ie., lim T(A)( & at") =
n0n+l ’ ’ tal- 1’]=On
contradiction.

Section 4, Applications to Iteration.

We now give some applications to the iterative
solution of 11ne§r operator equations of the type
u-Tu=7f . Browder and Petryshyn. [6] have approached
this problem by use of the classical Picard iteration

procedure

Ll'-l‘f’cl. xn+l = 'IIJ(n + f -

4.4,2, Theorem, If T 1is a linear operator on a

normed linear space X and if the seguence 4,%4,1
I '



with initial point X, converges, then the convex
iteration procedure 2,0,1 with vy = X; converges

to the same limit if zln = o

Proof, Since {vn} is the T(A) - transform

of [an‘, the theorem follows by 4,1,3.

We now give the promised improvements of 3.1.6
and 3.1.8. TFor this purpose we reconsider the

process T(A) in terms of probability theory (see

section 1.4), If we consider a sequence of independent

random trials in which the probability of a success
on the ith trial is Ai; and if [ank] = I'(A) , then

it is easy to see that is the probability of

®nk
k successes in the first n trials. Equivalently,
if Xi is the random variable indicating the outcome

of the ith trial (i.e., P(X; = 1) =1i; and

P(X,=0) = 1-xi) and 1if 8 = Xi+...+X, , then

i

P ( Sn..—_.k) ank .

4.4.3. Lemma. ILet A = (A;,\,,...) be a D-sequence
and let [ank] = T'{A) . For each positive integer n
there is a nonnegative integer m(n) such that

8 k1 < Bnx for k < m(n) and a, > & k+1 TOF

81



for m(n) { k ¢ n-1 . (If 8 ,k-1 S 8px for 1gk<n

we take m(n)

I

we take m(n) =0 ) .

n and if an,k-l > ahk for 1<k<n

Proof, We first note that the monotonic cases

given in the parenthetical remark cannot occur for

n sufficiently large, In fact, since A is a

D-sequence,  Zh, = © and 2(1-kn) = o , Now

for all n only if

n n
H (l-k ) > = lJ In (1—hi)
j.'_l J=l :'L:l
i#J
n )
for all n., But this implies that 1 > X T:%—
i=1 J
n
> = RJ » which is impossible since zln = Also,
=1
if 25, n-1 L a,, forall n , then
n
Z (1-k } H li < I hi
J=1 i=1 i=1
1#J
co n
for all n . This implies that X (1-A;) < % ——-1
J=1 J=1 J
a contradiction.
Suppose first that l-ll < hl , then m(l) =

82

an0~2 anl
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We prove the theorem by induction on n ., If

an,k-l-s 8k for k { m(n) and 8o 2 for

an,k+l
m(n) < kx < n-1 , then using 4.0,1 and 4.0.2 it is

easy to show that < a for k < m(n
n+l,k-1 = %n+lLk A

> a

and n+1, k+1

2n41,k for m{n) + 1 < k < n+l .

Therefore m(n+l) = m(n) or m(n) + 1 depending on

whether an+l,m(n) > an+l,m(n)+l or

an+l,m(n) S-an+l,m(n)+l . The case l-kl > A, is

handled similarly.

h. 4,4, Theorem. If A 1is a D-sequence and [ank] = T(A)

then 1im a = 0 uniformly in k .
n nk .

Proof. We show that l1lim a

I n’m(m)=0. Tet € > 0O

and choose N large enough so that n > N implies

1 ‘2 2
j exp (-u~/2)du + €/2

J2r tl

Sn™Mn
P(tl <"?n—"" < tE) <

-1 T
for all t; <%, and o, < e‘fg (see 1.4,3), Then
for any n > N 1if we let t; = (m(n)-%-un)/cn and

1
ty, = (m{n)+z-,)/0, , we have
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fn,m(n) = B(Sp=m(n)) = P(m(n)-3 < §, < m(n) + 3)

ShHn

= P(t, < < ty,)

n

t
2
1 f exp (-u2/2) du + €/2

ver "t

1 1 -1
< == (t=t.) + e/2 = o~ + /2 < e ,
JEW 2 1 JEF- n

We note that the condition Ehn = o 1s not
sufficient to guarantee the uniform convergence of the
columns of T(A) to zero, In fact, if A_ = l-(n+l)™2 ,

then EA = o but (ln) is not a D-sequence and

. . -2
lim a_ = f (1-(i+1)™5) >0 .
n ™Mo4.

4,4,5, Theorem, If T 1is an asymptotically bounded
linear operator on a reflexive Banach space and

A = {kn} is a D-sequence, then {An(T)} defined in
3.1;2 is a system of almost invariant integrals for

G(T) .

Proof. If [a,] =T(A) and [T < M, then

IE-Dag @I = 1| E apt - a7
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n

= 2Ma.nm(n) .

Therefore lim H(I-T)Aﬁ(T)H = 0 by 4.4.4 and the
n

theorem follows by 3.1.5.

L.4,6, Corollary. Let T be an asymptotically bounded
linear operator on a reflexive Banach space X and let
(A,] be a D-sequence. (a) If f is in the range of
I-T , then the sequénce 3.1.0 converges to a

sclution u of u - Tu=7f for any vy € X . (b) If
f 1s not in the range of I~T , then for any v, € X
the sequence 3.1.,0 contains no weakly convergent

subsequence,

Proof. The conclusions of the theorem follow
directly from 3.1.9 and 3.1,10,

Browder and Petryshyn [6] have given an approximation
theorem similar to %4.4.6 for the iterative segquence
4.4.1 but under the stronger assumption that T is

asymptotically convergent, l.e., [Tnx} converges

for each x € X , If A =i for all n, [T <1
and X 1is uniformly convex this corollary specializes

to give a result of Dotson [13].
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Finally, we give a simple consistency theorem,
4,4,7. Theorem. Under the assumptions of 4.4.6 (a)
the sequence 3,1.0 converges to a solution of
u - Tu =f which is independent of the D-sequence
so long as the D-sequence is bounded away from O .

Proof. This follows directly from 4.2,7.

Section 5, Some Open Problems,

In this final section we mention a few open
questions concerning the summability methods studied
in this chapter.

We have shown in 4,2.7 that a certain subclass

of T=-methods is consistent.

4,5,1. Is the class of all permanent I'-methods con-

sistent?

A permanent invertible summability method [ank]

is called perfect if the conditions

T ] 0. k=0,1
nioltnl < ©» and niotna,nk_ . k=0,1,..,

imply that tn =0 for n=0,1,... . A perfect method

A has the property that if B 1is a permanent method



87

with A# < B# , then A and B are consistent [1,p.95].
Mazur {23] has gilven a simple argument which shows that

the Euler~Knopp methods are perfect,
4,5,2. Is every permanent T-method perfect?

The author has made several attempts at proving
£,5.1 and 4.5,2 and at this time he feels that perhaps
counterexamples are in order.

Knopp has given a Cauchy product theorem for
Fuler~Knopp methods, however, the author has been
unsuccessful in proving a Cauchy product theorem for-
the general method, There ére several possibilities.

=]

4.5.3. (a) If £ a  is T(A)-summable to a ,
k=0

0

by

b, is T(A)-summable to b and
k=0 k _

[=0]
the Cauchy product series Zc is

k=0 &

T'{A)~-summable to c , is ab =c ?

(b) IFf = a, 1s T'(A)-summable to -a ,
k=0

T b, is T'(A)-summable to b and if
k=0 ¥

one of the series 1s absolutely

I'(A)-summable, 1s the Cauchy product series
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T'(A)-summable, say to ¢ , with ab = ¢ ?

. .
(¢) If I a 18 absolutely T'(A)-summable
k=0 |

to a and b is absolutely
k=0 k

I'(A)-summable to b , is the Cauchy
product series absolutely T (A)-summable,

say toc ¢ , with ab = ¢ ?

An interesting and difficult problem which has
not been congidered in this paper is the problem of
Tauberian theorems. By a Tauberian condition for a
summability method A we mean a growth condition on
the sequence of terms (a,) which along with the

assumption of A-summability of the series g

a
k=0 &
insures that the series is convergent in the ordinary
sengse, Knopp [17] has given a Tauberian condition

for Euler-Knopp summability.

4,5,4, Is there a Tauberian condition for "T'(A)-summa-

bility?

A class of summability methods is sald to be
adequate for bounded sequences if given any bounded

sequence there is a member of the class which sums it.



89

4.5.5. Is the class of T-methods adequate for bounded

sequences?

Mazur and Orlicz [24] have shown that the con-
vergence field of a triangular invertible summability

method is a Banach space under a suitable norm,

4,5,6, What is the structure of the Banach spaces
P(A)# ?

Finally, we mention that except for special cases
(i.e., 4.2.4 and 4,2,6) we have not compared the methods
T'(A) with known methods of swmmability.

4.,5,7. How do the methods T(A) compare with the

known methods of summability (e.g. Riesz, Norlund, etc,)?
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